Chapter 11
Cloud Patterns

Teodor-Florin Fortis and Nicolas Ferry

11.1 Introduction

A large number of design and architecture patterns have been identified during the
last years, as the Cloud technologies were finding their path to maturity. In [1] Fehling
et al., the authors expose a basic pattern-oriented view on Cloud computing, together
with relevant patterns, view which is also applicable in the case of multi-Cloud
applications.

Another set of more than forty patterns are included in the AWS Cloud Design
patterns (CDP) [2], offering “a collection of solutions and design ideas for using
AWS Cloud technology to solve common systems design problems”.

In addition to the core set of Cloud design patterns, Erl et al. [3] propose a set of
compound patterns, which, for most of them, are related to the essential characteris-
tics of Cloud computing, such as Cloud bursting, elastic environment, multi-tenancy,
Cloud deployment models, and others.

The IBM RedPaper [4] offers some insights on Pure Application Systems patterns
and virtual application patterns (VAPs) which are “a new Cloud deployment model
that represents an evolution of the traditional topology patterns that are supported
in virtual system patterns”. Finally, the Microsoft point of view on development of
Cloud-hosted applications is covered by Homer et al. [5].

Complementary to the numerous design and architecture patterns that have already
been described in the literature, a set of design heuristics or success factors was fully

T.-F. Fortig ()

Institute e-Austria Timigoara and West University of Timisoara,
B-dul Vasile Parvan 4, 300223 Timisoara, Romania

e-mail: fortis@info.uvt.ro

N. Ferry
Stiftelsen SINTEF, Postboks 4760, Sluppen, 7465 Trondheim, Norway
e-mail: nicolas.ferry @sintef.no

© The Author(s) 2017 107
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_11

108 T.-F. Fortis and N. Ferry

described in the context of the MODAC]Iouds approach. This set will help mitigate
various pitfalls when designing multi-Cloud applications.

11.2 Motivational Guidance

Important design heuristics and guidances have been identified as highly relevant for
multi-Cloud applications, and especially in the context of MODAC]Iouds.

Compute Partitioning

Compute partitioning is a design heuristic that helps building systems that can easily
be maintained and deployed on Cloud platforms and infrastructures and advocates
the utilization of patterns such as loose coupling, compute partitioning, distributed
applications or integration provider. It allows application developers to efficiently
exploit resources that can be provisioned with minimal effort. Particularly, as Cloud
applications usually rely on multiple distributed resources, modularity and loose
coupling become central for efficient exploitation of Cloud properties.

Thus, the separation of concern principle is essential in order to achieve the dis-
tribution of resources, as multi-Cloud application usually rely on resources possibly
offered by multiple providers with their own specificities. This principle advocates
decomposing and encapsulating the features of an application into modular and
reusable blocks.

Based on the computing partitioning guidance [S] and using the loose coupling and
distribution application patterns [1], the MODACloudML proposal is to decompose
applications into logical components and help the user in allocating and reusing these
components on Cloud resources.

Multiple Datacentre Deployment

Multiple datacentre deployment is one of the key factors that ensures successful
deployments across multiple Cloud providers. This design heuristic relies on the
loose coupling and multiple datacentre deployment patterns.

In the case of multi-Cloud applications, the providers of these applications will
attempt to identify and exploit particularities of the underlying Cloud solutions in
order to achieve an optimization of various characteristics (e.g., performance, avail-
ability, cost, etc.). Developers of such applications may therefore need novel design
approaches in order to fully benefit from the varying sets of services that are supported
by the different Cloud providers.

The approach considered in the case of MODAC]louds consists in a separation
of the design of the application from the technical specification of the underlying
infrastructure as suggested by the MDA architecture. To achieve this separation,
Cloud provider-independent models (CPIM) and Cloud provider-specific models
(CPSM) are considered. The first ones enable the specification of Cloud provider-
independent deployment scenarios in a Cloud agnostic way whilst the second allows
selecting Cloud provider specific resources. CPIM should provide an appropriate

11 Cloud Patterns 109

level of abstraction to allow the generation of CPSM, targeting various providers
and being aware of their specificity at the same time. The identification of the right
level of abstraction, as well as of the concepts that are relevant at the level of each
of these models generates specific challenges in this scenario.

Instrumentation and Telemetry

Instrumentation and telemetry are key success factors in building feedback about the
runtime performance of the system and its underlying platform and infrastructure.
Instrumentation and telemetry, loose coupling, and multiple datacentre deployment
are the most important patterns involved.

While in the case of a simple Cloud-application collecting some metrics related
to the Cloud resources through provider’s platform APIs may provide the right per-
spective on the behaviour of the application, this is not necessarily the case for
multi-Cloud applications. Monitoring interfaces are likely to be incompatible and
provider-specific, and therefore the monitoring activities could be subject to vendor
lock-in. Moreover, it might not be enough to only monitor Cloud resource’s usage in
order to measure application’s resource consumption and to provide efficient resource
management activities.

Consequently, the MODAC]louds approach supports this guidance and offer the
means, at the level of the design-time platform and of the monitoring platform, to
(1) allow the definition of monitoring rules at both the infrastructure and application
levels in a provider-independent way, and (ii) enable the design of monitoring rules
describing how incoming stream of data have to be processed, and what output should
be produced when certain conditions have been verified.

11.3 MODAClouds-Specific Patterns

The guidance and design heuristics that were briefly described in Sect. 11.2 relate
to an important number of Cloud design and architecture patterns, of which some
can be adopted without major changes in a multi-Cloud context. However, a subset
was specifically extended and adapted in the MODACIouds context to better support
the design of multi-Cloud applications. We briefly describe these patterns in the
following subsections.

External Configuration Store

The external configuration store pattern propose to outsource configuration and
deployment information for any component or services of the system into separate
services thus improving reusability and flexibility in the deployment and/or config-
uration process of application components. This pattern, as depicted in Fig. 11.1,
extends the configuration store pattern [5] and it partially involves other patterns
and mechanisms, like the resource management system mechanism [3].

In the case of MODACIouds, the configuration of a multi-Cloud application does
not only include properties associated to the functional behavior of the application,

110 T.-F. Fortis and N. Ferry

Fig. 11.1 The external
configuration store pattern l Comp. 1 I{]
Configuration
Store

l Comp.n lli I

but also provisioning and deployment information for the underlying infrastructure.
Accordingly, the configuration store pattern was extended to include the overall
information required for the deployment and configuration process of the multi-
Cloud application. Therefore, one can achieve an externalization of the configuration
and deployment information for any particular components or services into a separate
service.

The use of this pattern could be relevant in various situations, like: (i) when the
application contains several instances of the same component (or group of com-
ponents), whose configuration must be synchronized; (ii) the configuration of the
various components will have to be dynamically adjusted to accommodate various
load and/or usage patterns; (iii) when similar reconfigurations need to be triggered
on several parts of the application.

Leader-Followers

The aim of the leaders-followers pattern (or leader election pattern, see also [5]) is
to dynamically delegate the management of subparts of the architecture to a separate
component that has been elected. Such a feature is particularly relevant when Cloud
applications aggregate several subsystems, with an appropriate level of complexity,
such that the total complexity exceeds the capacity of a single management entity.

In a multi-Cloud context, the leader-followers pattern enables the election for each
Cloud of a single component responsible for configuring and managing subparts of
the execution environment. Thus, the leader (a master node) will have the necessary
knowledge of its peers, managing their configurations accordingly.

This pattern is relevant especially (i) when the application contains numerous
instances of the same component (or group of components), whose configuration
and deployment must be synchronized, as in Fig. 11.2; (ii) when massive and simul-
taneous updates are necessary for instances of the same group of components.

Runtime Reconfiguration

The intent behind the runtime reconfiguration pattern is to dynamically reconfigure
application components and frameworks as well as their execution environments
to minimize the downtime in a production setting. This pattern is extended from
the pattern with the same name from [5] to the dynamic adaptation of the applica-
tion deployment using the models@runtime architecture. The use of this pattern
together with the models@runtime architecture enables third-parties to adapt

11 Cloud Patterns 111

only selected parts of the deployment whilst minimizing the downtime for the rest
of the application.

Specific interest exists around this pattern especially when an application or the
deployment of an application needs to be reconfigured dynamically at runtime, such
as adapting logging policies, updating database connections, deploying new services,
and others.

Particularly, in the case of MODAC]louds, the model s@runt ime engine main-
tains a MODACloudML deployment model causally connected to the running sys-
tem, and: (i) any modification to the CPIM will be reflected in the CPSM and prop-
agated on-demand onto the running system; (ii) any change in the running sys-
tem will be reflected in the CPSM, which, in turn, can be assessed with respect
to the CPIM. Furthermore, by using the aforementioned deployment model, the
models@runtime environment enables reducing the gap between the runtime
and design-time activities.

Provider Adapter

In the case of multi-Cloud application it is highly important that the implementation
of various components remain unmodified to the specificities of different Cloud
environments. The provider adapter pattern offers the means for a smooth transition
of applications and components from one Cloud provider to another.

The provider adapter pattern is highly relevant in the context of multi-Cloud
applications, and it has been applied to the MODACloudML supporting tools and
extended to the language itself through the concept of Cloud provider-independent

Fig. 11.2 The Global scale

leader-followers pattern (\
Local scale Local scale

Fig. .11.3 The Clowd
provider-adapter pattern Provider 1
Clowd " Provider " Application
Provider 2 Adapter Component

112 T.-F. Fortis and N. Ferry

models that can be automatically or semi-automatically refined into Cloud provider-
specific models.

This pattern is especially relevant when application components are not written
for a specific single Cloud provider, and may move to or across other providers for
maintenance reasons for instance (see also Fig. 11.3).

11.4 Conclusions

In this chapter we provided an overview of the set of guidances and patterns that
have been defined or extended during the MODAC]Iouds project on the basis of the
experience gained in designing and managing multi-Cloud applications. All of them
have been successfully applied during the project to support the design of both the
MODACIouds tools and case studies. These patterns complement well the large set
of existing pattern already available in the literature.

References

1. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud computing patterns—
fundamentals to design, build, and manage cloud applications. Springer

2. AWS cloud design patterns. http://en.clouddesignpattern.org/index.php

3. Erl T, Cope R, Naserpour A (2015) Cloud computing design patterns. Prentice Hall/Pearson
PTR. http://cloudpatterns.org/

4. Brandle C, Grose V, Hong MY, Imholz J, Kaggali P, Mantegazza M (2014) Cloud computing
patterns of expertise. IBM RedPaper. http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.
pdf

5. Homer A, Sharp J, Brader L, Narumoto M, Swanson T (2014) Cloud design patterns: prescriptive
architecture guidance for cloud applications (Microsoft patterns & practices). MSDN Library.
https://msdn.microsoft.com/en-us/library/dn568099.aspx

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://en.clouddesignpattern.org/index.php
http://cloudpatterns.org/
http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.pdf
https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://creativecommons.org/licenses/by/4.0/

	11 Cloud Patterns
	11.1 Introduction
	11.2 Motivational Guidance
	11.3 MODAClouds-Specific Patterns
	11.4 Conclusions
	References

