
Chapter 10
Closing the Loop Between Ops and Dev

Weikun Wang, Giuliano Casale and Gabriel Iuhasz

10.1 Introduction

DevOps [1] is a recent trend in software engineering that bridges the gap between
software development and operations, putting the developer in greater control of the
operational environment inwhich the application runs. To supportQuality-of-Service
(QoS) analysis, the developer may rely on software performance models. However,
to provide reliable estimates, the input parameters must be continuously updated and
accurately estimated. Accurate estimation is challenging because some parameters
are not explicitly tracked by log files requiring deep monitoring instrumentation that
poses large overheads, unacceptable in production environments.

The MODAClouds Filling-the-Gap (FG) tool is a component for parametrization
of performance models designed in MODAClouds continuously at run time. The
FG tool implements a set of statistical estimation algorithms to parameterize per-
formance models from runtime monitoring data. Multiple algorithms are included,
allowing for alternative ways to obtain estimates for different metrics, but with an
emphasis on resource demand estimation. A distinguishing feature of FG tool is that
it supports advanced algorithms to estimate parameters based on response times and
queue-length data, which makes the tool useful in particular for applications running

W. Wang · G. Casale (B)
Department of Computing, Imperial College London, 180 Queens Gate,
London SW7 2AZ, UK
e-mail: g.casale@imperial.ac.uk

W. Wang
e-mail: weikun.wang11@imperial.ac.uk

G. Iuhasz
Institute E-Austria Timişoara, West University of Timişoara, B-dul Vasile Pârvan 4,
300223 Timişoara, Romania
e-mail: iuhasz.gabriel@info.uvt.ro

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_10

95



96 W. Wang et al.

in virtualized environments where utilization readings are not always available. In
addition, the FG tool offers support for parallel computations, integrates monitoring
data acquisition, and generates performance reports.

10.2 FG Architecture

The FG tool is consisted of four sub-components: the Local DB, the FG Analyzer,
the FG Reporter and the FG Actuator. Figure10.1 descries the relation between each
component.

We show here a brief introduction of each component:

• The Local DB is a local database, which is built upon the Fuseki1 database. The
Local DB is in charge of periodically obtaining runtime monitoring data that will
be used by the FG Analyzer from the Monitoring History DB. Due to the nature
of Fuseki database, the monitoring data will be stored in RDF format in the local
DB.

• The FG Analyzer is the main component of the FG and will be described in
Sect. 10.2.1. After receiving runtime data stored in the Local DB, the FGAnalyzer
provides accurate estimates to parametrise the design-time Quality-of-Service
(QoS) models developed inMODAClouds. These parameters include the resource
demand, the think time and the total number of jobs running in the system.

• The FG Reporter, illustrated in Sect. 10.2.3, periodically generates reports on the
application behavior at run time. The reports shows the performance of the applica-
tion by presenting performance metrics such as the response time and the through-
put of the jobs.

• The FGActuator (see Sect. 10.2.2) is responsible for updating the IDEmodels and
the QoS models based on the result from the FG Analyzer.

10.2.1 FG Analyzer

One of the ultimate objectives of the Filling the Gap (FG) component is to provide
accurate estimates to the parameters in the design-time QoS models. These QoS
models are key in the what-if analysis performed at design time, and in the decision
of the optimal resource provisioning for the Cloud application. These models are ini-
tially parameterised using expert-knowledge or data collected in small deployments.
Once the application has been deployed on the Cloud, possibly in a production envi-
ronment, the FG analysis is deployed to obtain estimates based on monitoring data
collected at run time.

1http://jena.apache.org/documentation/serving_data/.

http://jena.apache.org/documentation/serving_data/


10 Closing the Loop Between Ops and Dev 97

Fig. 10.1 FG architecture

FG Analyzer

Monitoring
History DB

ObjectStore

FG Report FG Actuator

Batch EngineLocal DB

The QoS models developed in MODAClouds are based on layered queueing net-
work models, which capture the contention between users for the available hardware
and software resources, and the interaction between them. In particular, we make use
of closed models that are well-suited for software systems, as real applications are
layered, and the interactions between layers are typically due to admission control
or finite threading limits [2]. To parameterise these models, it is essential to estimate
the inter-request times, modeled as think times, as well as the resource consumption
exerted by each request. Inter-request times can be extracted from the information
and the data that is typically tracked by application- or container-level logs. As to the
gathering of the run time configuration, the FG Analyzer obtains the configuration
file from the Object Store which is kept by the QoS engineer.

Resource consumptions, also referred to as demands, are however harder to obtain
as this is not tracked by logs, and the deep monitoring instrumentations typically
required pose unacceptably large overheads, especially at high resolutions. Since
requests typically complete in a few milliseconds, individual monitoring becomes
cost-expensive to perform in a production system. To address this problem, our
approach is to take coarse-grained measurements and apply statistical inference
to estimate mean resource demands. Most of existing mean demand estimation
approaches rely on the regression against utilization data [3–13], however, utilization
measurements are not always available, for instance in Platform-as-a-Service (PaaS)
deployments where the resource layer is hidden to the application and thus protected
from external monitoring.

In the FG Analyzers, two demand estimation algorithms, GQL (Gibbs sampling
method with Queue Length data) and MINPS, have been proposed as an original
contribution within the MODAClouds research [14]. The fact that utilization mea-
surements are not required makes these methods suitable for applications deployed
on both IaaS and PaaS. In addition to these two methods, the FG Analysis compo-
nent implements existing demand estimation methods. In particular, the component
supports the methods implemented for the Statistical Data Analyzers (SDA) in the
Monitoring Platform.



98 W. Wang et al.

Since the methods supported by the FG Analysis are computationally efficient,
large sample set can be utilized for the analysis. The FG component thus supports
the following three demand estimation methods: the utilization-based optimization
(UBO) method from [15], the utilization-based regression (UBR) method from [12],
and the Extended RPS method from [16]. A short description of these methods is
provided in Sect. 10.4.

Finally, the FG Analyzer calls the Batch Engine periodically and executes several
jobs on multiple nodes performing different analyses. For instance, the FG Analyzer
can execute several demand estimation procedures in parallel using the Batch Engine
to compare the accuracy of them during design time. It also executes the analysis
corresponding to different datasets in parallel, thus speeding up the analysis phase.

10.2.2 FG Actuator

In order to improve the accuracy of the design-time QoS models developed in WP5,
the FG tool estimates the parameters of the models with the monitoring information
collected at runtime. Then the task of updating the actual model is fulfilled by FG
Actuator, which updates the resource demand, think time, number of users circulating
in the system in both the QoS models and PCM models given the input from the FG
Analyzer.

Since the QoS models and PCM models may have inconsistent names for the
deployed resources, the FG actuator requires a properties file indicating the mapping
of the resource names between the twomodels. In addition, the nameof the job classes
could be different from the data analyzers and the models. A job class mapping file
should also be provided.

Given the path to the model files, the FG Actuator first updates the resource
demands in the QoS models by matching the resource and job class names. Then it
obtains an id for the particular resource and class of job. This id is identical to the
one defined in the PCM model. Therefore the FG Actuator uses this id to update the
resource demand in the PCM model. Updating the think time and number of jobs in
the system is straightforward by just changing the corresponding fields in the XML
file.

10.2.3 FG Reporter

In order to provide the developer with runtime information of the application behav-
ior at runtime, the FG periodically generates a report. The report is a PDF document
containing tables and figures of performance metrics such as response time, resource
demands and throughput, which helps the developer to identify periods of high and
low load, as well as to understand the application behavior under the different sce-
narios.



10 Closing the Loop Between Ops and Dev 99

The automatically report generation relies on the DynamicReports,2 which is an
open-source library based on JasperReports3 for generating reports based on complex
datasets. The DynamicReports supports a wide range of data formats, including
relational databases, XML, XLS, and CVS files, among others. In particular, we
utilized its ability to integrate JSON (JavaScript Object Notation) format, as this
format is expressive and easily understandable.

The FG Reporter periodically receives JSON files generated from the FG Ana-
lyzer, which contains necessary information regarding the application such as the
think time, response time, resource demands, etc. Based on these information, the
FG Reporter generates a different report for each physical resource.

10.3 Workflow

In the previous sections we have described the essential components of the FG tool,
here we present the workflow for the FG tool. The operation of the FG can be
categorized into three main stages, which are:

1. Configuration: this is a design-time procedure for the QoS engineer to preconfig-
ure the FG Analyzer through the MODAClouds IDE.

2. Analysis: this is a runtime step performed by the FGAnalyzer with the Local DB.
3. Reporting/Updating: this is a step where the FG Reporter provides the developer

with a report regarding the behavior of the application at runtime. TheFGActuator
will also update the parameters of the QoS models given the output from FG
Analyzer. This steps is performed after the application has already been running
as it requires the results from the FG Analyzer.

The FG workflow is demonstrated in Fig. 10.2, which contains all the above three
main stages. As mentioned in the previous section, the developer configures with
the FG Analzyer through the MODAClouds IDE according to a configuration file,
which is saved in the Object Store. The configuration file includes parameters such
as the frequency to execute the FG Analyzer or the time period of the monitoring
data to use. This configuration file is retrieved at deployment by the FG Analyzer.
Then the Local DB periodically queries the Monitoring History DB to obtain the
necessary information for the FG Analyzer. This data is passed to the FG Analzyer
for the parameter estimation.With the estimation result, the FGReporterwill produce
reports to the developer while the FG Actuator updates the QoS PCM models.

2http://www.dynamicreports.org/.
3https://community.jaspersoft.com/project/jasperreports-library.

http://www.dynamicreports.org/
https://community.jaspersoft.com/project/jasperreports-library


100 W. Wang et al.

F
ig
.1
0.
2

Fi
lli
ng

th
e
ga
p
w
or
kfl

ow



10 Closing the Loop Between Ops and Dev 101

10.4 Estimation Techniques for FG Analysis

10.4.1 A Bayesian Approach Based on Queue-Lengths

Closed queueing networks have been used for analyzing web applications [12,
17]. They are popular for example in software system modelling since complex
applications are layered and the interactions between layers typically happen under
admission control or finite threading limits.

The proposed GQL estimation method sets out to estimate the service demand
placed by requests on the resources excluding contention due to other concurrently
running requests. The service demand is normally difficult to obtain directly and
requires inference. To provide these estimates, out method uses observations of the
number of requests in each of the queueing stations, which makes it more applicable
than utilization-based and response-based methods as the latter information may not
be available in certain environments, such as PaaS deployments, or require deep
instrumentation of the system.

Our method uses a Bayesian approach to estimate the mean demands, of which
there has already been some attention in the recent literature [8, 18]. Still, with the
exception of [18], classic Bayesian methods such as Markov-Chain Monte Carlo
(MCMC) have not been applied before to the problem of queueing model parameter
estimation. Even though the method in [18] is promising, it currently only applies
to open queueing networks and single class systems. Our method, instead, is based
on MCMC estimation with Gibbs sampling, and has the advantage of applying to
closed multi-class models.

Figure10.3 presents the experiment result for the GQL method with different
number of classes of requests and queueing stations. The estimation error is computed
as the mean relative difference between the estimated and the exact (known) value
of the resource demand. From the figure, it can be noticed that the estimation error is
under 10%, showing the good accuracy of the GQL method. The execution time of

Fig. 10.3 Mean estimation error for GQL



102 W. Wang et al.

the GQL method depends on the input parameters of the developed algorithm. The
running time for the presented case is 15min, which shows that the algorithm is able
to handle systems with a larger number of processing stations and request classes.

A detailed description of this method can be found in [19].

10.4.2 A Maximum-Likelihood Approach Based on
Queue-Lengths and Response Times

Another proposed method, MINPS, is similar to the GQL presented in the previous
section as MINPS also attempts to estimate the mean service demands placed by
requests on the physical resources.

The performance model for MINPS is based on a multi-class queueing network
with a single service station. It also considers the limit in the number of concurrent
request in a station, which enables the analyzing of multi-threaded applications with
limits on the number of threads in execution. A typical example is for applications
running on a multi-threaded server, such as an application server or a servlet con-
tainer with a preconfigured set of worker threads. Arriving requests to the application
will stay in an admission buffer until a worker thread is available. We assume the
admission control policy is first-come first-served and no workers are idle if there is a
request staying in the admission buffer. Therefore the described performance model
is indeed a closed queueing network similar as described in the previous section.
Further, a request is able to change its class randomly after leaving the queueing sta-
tion before entering the think time. This class-switching behavior represents systems
where users may change the type of requests they generate.

The proposed MINPS estimation method is built on top of two new estimation
approaches, RPS and MLPS. RPS is a regression based algorithm, which provides
accurate estimation of mean service demand for multi-threaded application running
on a single processor. For the multi-processor case, the proposed MLPS is able to
solve this problem relying on a maximum likelihood demand estimation algorithm.
MINPS integrates RPS and MLPS to produce accurate estimates at all loads of the
multi-threaded applications.

MINPS differs from existing approaches in that, to the best of our knowledge, it
is the first one to apply probabilistic descriptions in estimation problems for multi-
threaded applications. For example, maximum likelihood estimations have been
attempted only for simpler first-come first-served queues [8].

MINPS requires both queue lengths and response times as input metrics. These
metrics can be obtained in several ways, e.g., the MODAClouds application-level
data collectors, application server logs, internal application logs, etc.

Figure10.4 demonstrates the mean estimation error of the MINPS method, com-
pared with a baseline method CI with same sample size. As in the previous section,
the estimation error is computed as the mean relative difference between the esti-
mated and the exact (known) value of the resource demand. The CI method is an
estimation method that requires the complete sample path of the requests, i.e. given



10 Closing the Loop Between Ops and Dev 103

Fig. 10.4 Mean estimation error for MINPS

a time window it knows all the points in time when a request is admitted and when
it completes service. This information is difficult to collect, but it is useful to set
a baseline for comparison, as both methods are assumed to make use of the same
number of samples.

From Fig. 10.4, it can be noticed that the error of the MINPS and CI is similar,
which reveals the accurate performance of MINPS. Although MINPS generates a
larger estimation error, it is still under 15%.

The execution time of MINPS depends on the model and obtained samples size
and varies from 1 to 40min for small models to large models. In light of this, the
technique can be run periodically as part of the FG analysis.

A detailed description of these methods and additional validation results are pro-
vided in [16].

10.5 Conclusion

In this chapter we presented the MODAClouds Filling-the-Gap tool, which is a
DevOps approach aiming to fulfill the gap development and operations. The FG
tool supports a set of advanced algorithms for estimating the parameters of perfor-
mance models at application runtime. Algorithms differ in the way that they take
into consideration of different input monitoring metrics, which makes the tool useful
particularly for application deployed in Cloud. It also features generating reports
regarding the behavior of the application to give developers timely feedback of the
system.

References

1. Roche J (2013) Adopting DevOps practices in quality assurance. Commun ACM 56:38–43



104 W. Wang et al.

2. Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700
3. Kalbasi A, Krishnamurthy D, Rolia J, Dawson S (2012) Dec: service demand estimation with

confidence. IEEE Trans Softw Eng 38:561–578
4. Kalbasi A, Krishnamurthy D, Rolia J, Richter M (2011) MODE: mix driven on-line resource

demand estimation. In: Proceedings of IEEE CNSM
5. Wang W, Huang X, Qin X, Zhang W, Wei J, Zhong H (2012) Application-level CPU con-

sumption estimation: towards performance isolation of multi-tenancy web applications. In:
Proceedings of the 5th IEEE CLOUD

6. Cremonesi P, Dhyani K, Sansottera A (2010) Service time estimation with a refinement
enhanced hybrid clustering algorithm. In: Analytical and stochastic modeling techniques and
applications, ser. Lecture notes in computer science. Springer, Berlin

7. Cremonesi P, Sansottera A (2012) Indirect estimation of service demands in the presence of
structural changes. In: QEST

8. Kraft S, Pacheco-Sanchez S, Casale G, Dawson S (2009) Estimating service resource con-
sumption from response time measurements. In: Proceedings of the 4th VALUETOOLS

9. Kumar D, Zhang L, Tantawi A (2009) Enhanced inferencing: estimation of a workload depen-
dent performance model. In: Proceeding of the 4th VALUETOOLS

10. Menascé D (2008) Computing missing service demand parameters for performance models.
In: CMG 2008, pp 241–248

11. Pacifici G, Segmuller W, Spreitzer M, Tantawi A (2008) CPU demand for web serving: mea-
surement analysis and dynamic estimation. Perform Eval 65:531–553

12. Zhang Q, Cherkasova L, Smirni E (2007) A regression-based analytic model for dynamic
resource provisioning of multi-tier applications. In: Proceedings of the 4th ICAC.Washington,
DC, USA. IEEE Computer Society, p 27ff

13. Zheng T, Woodside C, Litoiu M (2008) Performance model estimation and tracking using
optimal filters. IEEE Trans Softw Eng 34:391–406

14. Ardagna D, Nitto ED, Casale G, Petcu D, Mohagheghi P, Mosser S, Matthews P, Gericke
A, Ballagny C, D’Andria F (2012) Modaclouds: a model-driven approach for the design and
execution of applications on multiple clouds. In: Proceedings of the 4th international workshop
on modeling in software engineering

15. Liu Z, Wynter L, Xia CH, Zhang F (2006) Parameter inference of queueing models for IT
systems using end-to-end measurements. Perform Eval 63(1):36–60

16. Pérez JF, Pacheco-Sanchez S, Casale G (2013) An offline demand estimationmethod for multi-
threaded applications. In: MASCOTS, pp 21–30

17. Urgaonkar B, Pacifici G, Shenoy PJ, Spreitzer M, Tantawi AN (2005) An analytical model for
multi-tier internet services and its applications. In: Proceedings of ACM SIGMETRICS. ACM
Press, pp 291–302

18. Sutton C, JordanMI (2011) Bayesian inference for queueing networks andmodeling of internet
services. Ann Appl Stat 5(1):254–282

19. Wang W, Casale G (2013) Bayesian service demand estimation using gibbs sampling. In:
MASCOTS, pp 567–576



10 Closing the Loop Between Ops and Dev 105

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	10 Closing the Loop Between Ops and Dev
	10.1 Introduction
	10.2 FG Architecture
	10.2.1 FG Analyzer
	10.2.2 FG Actuator
	10.2.3 FG Reporter

	10.3 Workflow
	10.4 Estimation Techniques for FG Analysis
	10.4.1 A Bayesian Approach Based on Queue-Lengths
	10.4.2 A Maximum-Likelihood Approach Based on Queue-Lengths and Response Times

	10.5 Conclusion
	References


