
Combining Third Party Components Securely
in Automotive Systems

Madeline Cheah(B), Siraj A. Shaikh, Jeremy Bryans, and Hoang Nga Nguyen

Centre for Mobility and Transport Research, Coventry University, Coventry, UK
cheahh2@uni.coventry.ac.uk,

{siraj.shaikh,jeremy.bryans,hoang.nguyen}@coventry.ac.uk

Abstract. Vehicle manufacturers routinely integrate third-party com-
ponents and combining them securely into a larger system is a chal-
lenge, particularly when accurate specifications are not available. In this
paper, we propose a methodology for users to introduce or strengthen
security of these composed systems without requiring full knowledge of
commercially sensitive sub-components. This methodology is supported
by attack trees, which allow for systematic enumeration of black box com-
ponents, the results of which are then incorporated into further design
processes. We apply the methodology to a Bluetooth-enabled automo-
tive infotainment unit, and find a legitimate Bluetooth feature that con-
tributes to the insecurity of a system. Furthermore, we recommend a
variety of follow-on processes to further strengthen the security of the
system through the next iteration of design.

Keywords: Automotive security · Attack trees · Secure design ·
Security testing · Bluetooth

1 Introduction

Automotive security has become an issue with the advent of smarter vehicles,
which incorporate a large variety of external facing interfaces that could be
used to maliciously affect vehicles. The context of our work is the way in which
various components are combined to achieve the final vehicle product. Compo-
nents are often generic with many general purpose features. This promotes their
reuse, which drives overall costs within the supply chain down. Larger compo-
nents are often provided as whole “off-the-shelf” subsystems (for example an
infotainment unit), with each component originating with a different manufac-
turer. Within the automotive supply chain, system integrators often do not have
the final detailed designs of the components, especially where these components
represent intellectual property such as source code. Components for which no
privileged information is available are often referred to as “black boxes” [11], with
“white boxes” being those for which all information is available. This distinction
becomes important when testing the integrated system [13].

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Foresti and J. Lopez (Eds.): WISTP 2016, LNCS 9895, pp. 262–269, 2016.
DOI: 10.1007/978-3-319-45931-8 18



Secure Combination of Third Party Components 263

The contribution of this paper is a methodology for the secure combination
of third party components. The methodology includes a systematic and semi-
automated penetration testing process supported by attack trees. This leads to
the identification of additional security requirements over and above the func-
tional and integration requirements that already exist for the system, which can
then be used to improve the design of the system with respect to security. The
motive for beginning the process with testing is to acquire confidence with regard
to the overall implementation. The testing process moves knowledge of the com-
ponent along the black-white spectrum, where we can then extract requirements
for secure behaviour in the given context to help mitigate security flaws. This is
particularly valuable where a system contains many third party components of
which even the original equipment manufacturer (OEM) may not have complete
sight because of commercial sensitivities.

The remainder of this paper is structured as follows: we review related work
in Sect. 2, followed by an outline of our proposed methodology in Sect. 3. We then
apply this methodology to a case study in Sect. 4. We discuss the implications
thereof and our conclusions in Sect. 5.

2 Related Work

There are comparative approaches to each of the stages of our methodology,
and as such our survey has been divided into categories of gathering security
requirements, threat assessment and attack trees, along with a brief discussion
on the automotive specific cybersecurity standard J3061.

Security Requirements. Similar methods for gathering security requirements
have been proposed by [6], in that security requirements are linked to possi-
ble attacks. A key difference to our methodology however is that a functional
model of the system is required, which is more information than is usually
available in a black box system. Attack trees in a requirements gathering and
actioning process are also used in the System Quality Requirements Engineering
(SQUARE) methodology [7]. However, use cases in this methodology concen-
trated on application to a company’s procedures rather than embedded systems.

Threat Assessment. This process determines threats (defined as potential
negative events that could compromise an asset) to the surface of the target
system, typically by looking at the potential malicious actions. In the automo-
tive domain, empirical studies have already shown that attacks on vehicular
components are possible [3]. However, despite impressive experimental analyses,
actions taken to compromise the vehicle and their results were not systematised.
This, in addition to the “grey box” nature of automotive components led us to
penetration testing for threat assessment, supported by attack trees, in order to
determine the initial security state of the system relative to the target attack
goal.

Attack Trees. Attack trees are diagrams modelling the potential actions of
an attacker to reach an attack goal [19]. They have been discussed as a pos-
sible threat modelling technique in the automotive specific SAE cybersecurity



264 M. Cheah et al.

standard J3061 [18], which draws from the “E-safety vehicle intrusion protected
applications” (EVITA) project. It is for this reason that we have chosen to use
this method. Furthermore, attack trees can help inform threat assessment even in
an informal capacity [16]. Formal methods such as attack graphs are not feasible
as there is not enough up-front information about the target system.

These trees can be represented diagrammatically or textually. Logic gates
(AND and OR) are also commonly used within these trees. Where AND is
used, an attack (parent node) is considered complete only if all steps have been
completed. Where OR is used, the parent node is complete if at least one of the
steps is completed. These gates are also sometimes referred to as conjunctive
and disjunctive refinements respectively [12]. For application purposes, where
temporal order may be a concern, sequential AND (SAND) could also be used.

A related approach is the formation of “anti-models” [10], depicting how
model elements may be threatened (analogous to attack trees). However, these
anti-models are derived from the model of the system-to-be (with attendant
high informational needs), which makes it less suitable for a black-box system.
Even where there are methods that allow for only partial specifications (such
as the framework based on Model Driven Engineering) [9], perfectly legitimate
behaviour in those specifications could actually be a weakness in terms of the
larger system boundary.

EVITA and J3061. EVITA elaborates on some of the possible usages of attack
trees. Deliverable 2.3 also includes an outline in which security requirements
could be traced back to the attack tree [5]. This is, broadly, along similar lines
to our work (although we begin with less knowledge of functionality and other
requirements). Additionally, the “dark-side scenario analysis”, closest to our
security testing process, places particular emphasis on risk assessment, whereas
the purposes of our own methodology would be to identify specific insecurities
relating to an attack goal without looking at the motivations behind it. J3061
[18] also outlines the use of attack trees (in reference to EVITA). The standard
also notes that it may only be possible to consider high-level concepts early
in the product development cycle. Security analysts or designers could use our
methodology as a way of gathering low level requirements for the next design
iteration.

In summary, many of the comparative methodologies reviewed above require
in-depth knowledge of the system. Our proposed methodology addresses specifi-
cally the problem of a black box with many layers of obscurity, all of which may
be individually secure, but may exhibit system-wide insecurities.

3 Proposed Methodology

The methodology adopted in this paper is as follows:

Step 1 - Security testing: Since full specifications are generally unavailable,
we begin with security testing (more specifically penetration testing) to probe
the black box. This is systematised using attack tree methodology. Initial attack



Secure Combination of Third Party Components 265

trees are first defined relative to an attack goal. These goals can be as low level
(flood an open port with data) or high level (denial of service) as needed and
tailored to the target interface.

Step 2 - Inferring requirements: Requirements can be extracted from
whichever attack proved successful through a process of inference, and is essen-
tially a negation of observed undesirable behaviours found from testing. The
determination of security requirements at this stage can be cross-referenced back
to the attack tree. This allows for specific insecurities to be addressed as well as
separation of security requirements from other types of requirements (known to
be useful for interaction analysis [10]).

Step 3 - Suggesting specifications: Once the requirements gathering phase is
considered complete, possible specifications could be suggested using a process
such as design space exploration. There may be a number of different design
choices (and therefore specifications) that could be made to mitigate the threat.
These derived specifications could be cross-referenced with other subsets of spec-
ifications (such as safety), and where there are contradictions, could help clarify
design choices. Where there are no conflicts, the derived security specifications
from our process could be added to the overall set of specifications.

Step 4 - Incorporation of specifications into existing processes: Agreed
specifications can be sent down the supply chain. Alternatively, the end user
could follow up with in-house model-based design and testing processes. We
discuss the latter within the context of our case study (see Sect. 4). The reason
for keeping such flexibility is to enable incorporation of this methodology into
the wider processes that might be carried out by the end user.

4 Case Study: Automotive Infotainment Unit

For this paper we concentrate on the infotainment unit, where diverse technolo-
gies are integrated to deliver functionality such as hands-free communication.
We demonstrate the proposed methodology using a case study below. Although
this case study came from a single vehicle, it can be reasonably assumed that
vehicles of the same make, model and age would share the same weaknesses as
production lines are standardised.

Step 1 - security testing: The security testing process was focused on the
Bluetooth interface because it is a viable attack vector [15], and because of
its ubiquity in cars (an estimated nine million vehicles have implemented this
technology [8]). As a vector, it can be used to mount many attacks [4] ranging
from denial of service to man-in-the-middle attacks. Implementations can also
differ greatly, with various “profiles” available to customise the technology.

The building of the initial attack tree was manually guided, using known vul-
nerabilities in other Bluetooth applications and surveyed from literature and the
National Vulnerability Database [14]. We then evaluated the Bluetooth interface
of an automotive infotainment unit using this attack tree (Fig. 1). A number of



266 M. Cheah et al.

Fig. 1. Attack tree focusing on extracting data via mounting the filesystem

undesirable behaviours were found, including the ability to mount the filesystem
of the infotainment unit and read its contents. This was possible because of the
presence of the Object Exchange File Transfer Profile (OBEXFTP) service [1].
We highlight this as an example for the remainder of the paper.

Step 2 - inferring requirements: After having connected to the interface
using a legitimate pairing and device (the connection, vehicle or device had
not been tampered with in any way), we mounted the file system. Being able
to mount the filesystem through Bluetooth could lead to injection of malware,
directory traversal and data extraction, manipulation or destruction. As such
it is undesirable behaviour, so our inferred requirement from this would be “no
unauthorised external agency should be able to see or influence the vehicular
operating system’s filesystem”.

Step 3 - suggesting specifications: Based on the case study attack tree,
we could fulfil the requirement above by creating specifications that either (a)
remove the ability to request files or data (could conflict with functional require-
ments); (b) remove the ability to mount the filesystem (may have functional
or cost implications) or (c) allow the above, but remove support for extract-
ing, deleting or creating (injecting) files (which would conflict with the required
functionality of the FTP server role as specified by Bluetooth SIG [1]).

Step 4 - model-based design and formal verification: Formal analyses
of the Bluetooth protocol and its authentication and secrecy properties exist
[2]. However, we are not attacking the protocol, but rather probing the larger
system in which it resides. This is an example of two components in themselves
being secure, but exhibiting insecure behaviour when combined into a larger
system. Additionally, all users of the Bluetooth system in this test vehicle are
able to use all services offered regardless of who they are. Authentication thus
becomes irrelevant. Therefore a more appropriate analysis would be reachability,
to demonstrate that such an insecure system state could not be reached through
the pathways dictated by the attack tree.

We use the process algebra CSP (Communicating Sequential Processes) to
describe a specification of the inferred requirements. We choose CSP because it



Secure Combination of Third Party Components 267

Fig. 2. Small illustrative model of the OBEXFTP service

Fig. 3. Example specification and verification

is able to represent and combine the message passing choreography expected by
individual components. A complete introduction may be found in [17].

The specification for the Bluetooth FTP is available [1] and so we developed
a small illustrative CSP model (Fig. 2). We then developed a suggested speci-
fication from our inferred requirement, such as never displaying the filesystem
(see Fig. 3) which fails during the verification process with trace 〈pair, connect,
service discovery, advertise service, obexftp.MountFS, displayfs〉. If, how-
ever, we removed OBEXFTP, and assuming none of the other services offered
the ability to mount a filesystem, it would verify correctly.

We use this exercise to show that the inferred requirement is not met by
the standard FTP specification (that a server must respond to a request from



268 M. Cheah et al.

a client for “Folder Listing Objects”) and is, in fact, contradictory. Thus, any
attempt to remove support whilst still maintaining the profile would be breaking
Bluetooth’s specification.

Here, the model and example specification is simplistic enough to make it self-
evident that the removal of OBEXFTP would allow for successful verification.
This exercise would add value provided: (a) the systems are sufficiently complex;
(b) we can create a more accurate model of the system under investigation, or
(c) there is more than one path to mount the filesystem (or, more generally, to
achieve any other undesirable behaviour).

5 Discussion and Conclusion

Our methodology is suited for tiered supply chains, as there is no need to have com-
plete specifications of the integrated item for security testing. It also reflects real
world security issues that have arisen through the testing process. The attack tree
methodology allows for systematisation and traceability, especially where design
choices are concerned. These choices could also be cross-referenced against sce-
narios that were posited in attack trees but were not tested. Any security require-
ments gathered can be kept separate for interaction analysis and allows for reason-
ing about alternatives. The formal exercise could allow for clarification of ambi-
guities, and using a verifier leads to a higher level of confidence in the resulting
design (albeit dependent on the model constructed). Limitations include the fact
that the initial creation of the attack tree is manually guided although domain
expert input in reviewing the tree and repeated testing over more vehicles would
mitigate this. There is also a one-off cost of building these trees, although reuse
is possible in future testing processes. As testing scope expands, trees could also
become crowded, and so tree navigation will be essential. Problems with scalability
could also be mitigated using mechanical tools such as design space exploration.
Furthermore, the data available to construct the model at the end of the process
directly impacts the quality of the model created.

In this paper, we have presented a methodology for securely combining third
party components into a wider system and applied it in the context of an automo-
tive head unit using the Bluetooth interface. We have found weaknesses through
structured security testing, and using the case study of being able to mount the
filesystem through Bluetooth, we demonstrated how to infer security require-
ments and suggest specifications. We have also recommended follow-on processes
that we envisage end users would find constructive in strengthening the security
of their systems. Future work would include refining the process by applying
the methodology to a more significant case study, with different attack goals.
Through both of these, we also aim to acquire enough information as to be more
concrete with regards to formal processes. Ultimately, we wish to position this
methodology in a larger design process such as that espoused by standards such
as J3061.

Acknowledgements. The authors would like to thank Olivier Haas (Coventry
University) and Alastair Ruddle (HORIBA MIRA) for valuable comments.



Secure Combination of Third Party Components 269

References

1. Bluetooth SIG Inc.: Bluetooth Specification: File Transfer Profile (FTP) (2012)
2. Chang, R., Shmatikov, V.: Formal analysis of authentication in bluetooth device

pairing. In: Foundations of Computer Security and Automated Reasoning for Secu-
rity Protocol Analysis, p. 45. Wroclaw, Poland (2007)

3. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of 20th USENIX Security
Symp. pp. 77–92. USENIX Assoc., San Francisco, August 2011

4. Dunning, J.P.: Taming the blue beast: a survey of bluetooth based threats. IEEE
Secur. Priv. 8(2), 20–27 (2010)

5. EVITA Project: Deliverable D2.3 - Security requirements for automotive on-board
networks based on dark-side scenarios. Technical report (2009)

6. Fuchs, A., Rieke, R.: Identification of security requirements in systems of systems
by functional security analysis. In: Lemos, R., Gacek, C., Casimiro, A. (eds.) Archi-
tecting Dependable Systems VII. LNCS, vol. 6420, pp. 74–96. Springer, Heidelberg
(2010)

7. Gordon, D., Stehney, T., Wattas, N., Yu, E.: System Quality Requirements Engi-
neering (SQUARE) Methodology: Case Study on Asset Management System. Tech-
niacl report Carnegie Mellon University, Pittsburgh, May 2005

8. GSMA: Connected Car Forecast: Global Connected Car Market to Grow Three-
fold within Five Years. Technical report, GSMA (2013). http://www.gsma.com/
connectedliving/wp-content/uploads/2013/06/cl ma forecast 06 13.pdf

9. Idrees, M.S., Roudier, Y., Apvrille, L.: A framework towards the efficient identifica-
tion and modeling of security requirements. In: Proceedings of the 5th Conference
on Network Architecture and Information Systems, pp. 1–15. Menton, France, May
2010

10. van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: Proceedings of 26th International Conference on Software
Engineering, p. 10. IEEE Computer Society, Edinburgh, May 2004

11. Liu, B., Shi, L., Cai, Z., Li, M.: Software vulnerability discovery techniques: a
survey. In: Proceedings of the 4th International Conference on Multimedia Infor-
mation Networking and Security. IEEE, Nanjing, China (2012)

12. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

13. Midian, P.: Perspectives on penetration testing - Black box vs. white box. Netw.
Secur. 2002(11), 10–12 (2002)

14. National Institute of Standards and Technology: National Vulnerability Database
15. Oka, D.K., Furue, T., Langenhop, L., Nishimura, T.: Survey of vehicle iot blue-

tooth devices. In: Proceedings of the IEEE 7th International Conference on
Service-Oriented Computing and Applications, pp. 260–264. IEEE, Matsue, Japan,
November 2014

16. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol. 51(5), 916–932 (2009)

17. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer, London (2010)
18. SAE International: J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle

Systems (2016). http://standards.sae.org/j3061 201601/
19. Schneier, B.: Attack trees: modeling security threats (1999). http://www.schneier.

com/paper-attacktrees-ddj-ft.html

http://www.gsma.com/connectedliving/wp-content/uploads/2013/06/cl_ma_forecast_06_13.pdf
http://www.gsma.com/connectedliving/wp-content/uploads/2013/06/cl_ma_forecast_06_13.pdf
http://standards.sae.org/j3061_201601/
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html

	Combining Third Party Components Securely in Automotive Systems
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Case Study: Automotive Infotainment Unit
	5 Discussion and Conclusion
	References


