
Efficient Encrypted Keyword Search
for Multi-user Data Sharing

Aggelos Kiayias1, Ozgur Oksuz2(B), Alexander Russell2, Qiang Tang3,
and Bing Wang2

1 University of Edinburgh, Edinburgh, UK
aggelos@cse.uconn.edu

2 University of Connecticut, Storrs, USA
{ozgur.oksuz,bing}@engr.uconn.edu, acr@cse.uconn.edu

3 Cornell University/NJIT, Ithaca, USA
qt44@cornell.edu

Abstract. In this paper, we provide a secure and efficient encrypted
keyword search scheme for multi-user data sharing. Specifically, a data
owner outsources a set of encrypted files to an untrusted server, shares
it with a set of users, and a user is allowed to search keywords in a
subset of files that he is authorized to access. In the proposed scheme,
(a) each user has a constant size secret key, (b) each user generates a
constant size trapdoor for a keyword without getting any help from any
party (e.g., data owner), independent of the number of files that he is
authorized to search, and (c) for the keyword ciphertexts of a file, the
network bandwidth usage (from the data owner to the server) and storage
overhead at the server do not depend on the number of users that are
authorized to access the file. We show that our scheme has data privacy
and trapdoor privacy. While several recent studies are on secure keyword
search for data sharing, we show that they either suffer from scalability
issues or lack user privacy.

Keywords: Data sharing · Keyword search · Broadcast encryption

1 Introduction

Cloud computing has become a prevalent and economic platform for users to
outsource and share data. For instance, through a file or picture sharing ser-
vice (e.g., Dropbox, Flickr), users can conveniently upload files or pictures to
the cloud to share them with their friends, family or colleagues. In a health
information sharing system, a number of research institutes and hospitals may
share medical data to facilitate collaboration and accelerate scientific discov-
ery. In such data sharing applications, the sensitive nature of the data means
that it is necessary for data owners to encrypt the data before outsourcing it

Research supported by H2020 Project Panoramix # 653497.

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part I, LNCS 9878, pp. 173–195, 2016.
DOI: 10.1007/978-3-319-45744-4 9

174 A. Kiayias et al.

to the cloud. On the other hand, useful functions, e.g., searching over the out-
sourced encrypted data, should still be supported to preserve the utility of the
data. Another complication in such data sharing applications is that data owners
often selectively share data with others. For instance, Alice may want to share
family pictures with her family members, while share work related files with her
colleagues. As such, a user can only have access to a subset of the files that are
permitted by the corresponding data owners. Since different users have access
to different files, a natural way for encryption is that a data owner encrypts
different files using different keys. After that, a data owner gives each user the
encryption/decryption keys of all the files that the user is authorized to search.
This trivial solution is clearly inefficient. First, the number of keys that the data
owner needs to send to a user depends on the number of files. Secondly, the
number of trapdoors (or tokens) that a user needs to submit when searching for
a keyword also depends on the number of files.

In a recent study [25], Popa and Zeldovich solve the above problem by propos-
ing a multi-key searchable encryption scheme that allows a user to provide a
single search token to the server, while allowing the server to search for the
(encrypted) keyword in documents encrypted with different keys. Their solution
requires each data owner to send the server some public information (delta val-
ues) for each user that is allowed to search a file. In general, suppose a data
owner has m files, each file is shared with up to n users, and each file contains
up to k keywords, the data owner needs to outsource O(m(n + k)) amount of
data to the server to support keyword search, where O(mn) and O(mk) corre-
spond to delta values and keyword ciphertexts, respectively. As a result, both
the network bandwidth overhead (from the data owner to the server) and stor-
age overhead (at the server) are O(m(n + k)). While the overhead associated
with outsourcing keyword ciphertexts is unavoidable, it is desirable to reduce
the overhead for outsourcing the delta values, which can dominate the overhead
when k � n (e.g., for a picture with a small number of keywords but shared
with many users).

Our contributions. Our contributions are as follows:

– We give an efficient encrypted keyword search scheme for multi-user data
sharing that overcomes the drawbacks in [25]. Specifically, in our scheme, when
a data owner has m files, each file has up to k keywords, to support encrypted
keyword search by up to n users, the data owner only needs to outsource
O(mk) amount of information to the cloud. Given that outsourcing keyword
ciphertexts is unavoidable (which is O(mk)), our scheme is asymptotically
optimal in network bandwidth usage and cloud storage. In addition, each
user has constant size secret keys and generates constant size trapdoor for a
keyword search in all the files that he is authorized to search by a data owner.

– Our scheme requires very different techniques to compress ciphertexts and
succinctly represent the search/access policies that dictate which files a user
can access. We model and analyze the security of our construction and provide
detailed proofs for keyword, file and trapdoor privacy, respectively.

Efficient Encrypted Keyword Search for Multi-user Data Sharing 175

– We give an extension that allows a system with multiple trusted parties (e.g.,
managers, data owners) to generate distributively the public key for the system
and secret keys for the users, thus eliminating the need of having a single
trusted party.

Related Work. To the best of our knowledge, no existing study achieves effi-
ciency comparable to ours in the setting that we study. Our work is related to
searchable encryption in general. Single-user searchable encryption considers a
single data owner and only the data owner is allowed to submit search queries. It
has been studied extensively, with focus on symmetric-key settings [13,16,19,27],
asymmetric-key settings [5,8], supporting complicated (conjunctive, subset, or
boolean) queries [10,12], or dynamic settings [21]. Our work is in multi-user
setting where a group of users can submit search queries.

Multi-user searchable encryption. While multi-user searchable encryption has
been investigated in a number of studies, these studies differ from our study in
important aspects. In [16], a user is allowed to search all the files owned by a
data owner while in our study each user is allowed to search a different subset
of the files. The study in [4] relies on a fully trusted user manager, which not
only sets system public parameters but also generates secret keys of all parties.
In addition, when a data owner outsources his data, he needs to interact with
the semi-trusted server, and the keyword ciphertext size depends on the number
of users. Similar to [4], the study in [17] also uses a fully trusted third party.
In addition, their scheme does not provide an access control mechanism that
specifies which users can access which files. A recent study [20] proposes multi-
user searchable encryption that supports boolean queries. It does not provide
an access control mechanism either. In addition, an authorized user needs to
interact with the data owner to get a token. Then, he can generate a trapdoor
based on the token for the query. The same limitations hold for [18], which
extends [20] to support range, substring, wildcard and phrase queries.

In the above studies, the documents are encrypted with a single key. In
other studies, the documents are encrypted with different keys. We have men-
tioned [25], which has motivated our study. Tang [28] improves the study of [25]
by presenting a new security model for multiparty searchable encryption and
proposing a scheme that authorizes users to share their files. Liu et al. [24] pro-
pose a data sharing scheme, which however has two major drawbacks. First, a
user needs to interact with a honest-but-curious server to download some infor-
mation in advance to generate a trapdoor. Secondly, the trapdoor size is linear
in the number of files. Cui et al. [15] adapt the idea in [14] and propose a key-
aggregate searchable encryption scheme. In their scheme, a data owner provides
a single aggregated key that contains information about all files that a user is
authorized to search. Each user is given a secret key (i.e., the aggregated key)
and then a user generates constant size trapdoor to search a keyword from all
files. Their scheme is, however, vulnerable to cross pairing attack, and hence has
neither data privacy nor trapdoor privacy. Basically, an untrusted server can
figure out the encrypted keyword from the ciphertext and recover the aggregate
key of any user (see more details in Appendix A.1). Rompay et al. [29] propose

176 A. Kiayias et al.

a scheme that uses a proxy based architecture to achieve a stronger security
model. Their scheme suffers from the same inefficiency problem as that in [25].

Other related primitives for encrypted keyword search. The study [8] introduces
a scheme that transforms a given identity based encryption (IBE) to public key
encryption with keyword search (PEKS). A later study [1] examines the relation-
ships between these two primitives and points out that if one has an anonymous
IBE scheme, then he achieves secure PEKS. Attrapadung et al. [2,3] introduce
a new cryptographic primitive called coupling. It is a broadcast encryption that
further has hierarchical identity based dimension. It combines user index with
identity. They provide restricted anonymous identity based encryption. Their
scheme does not have a concrete proof of security. Moreover, it cannot be applied
to our setting since the transformation does not provide trapdoor privacy. Last,
existing studies [23,30] investigate attribute based keyword search, which differ
significantly from our study. In [30], the access control policy is based on key-
words instead of files, while [23] does not allow a secret key holder to generate
search token (trapdoor) individually. In [23], the trapdoor is generated by the
collaboration between a secret key holder and the fully trusted PKG (private key
generator). In addition, in both schemes, the keyword cliphertext, and trapdoor
and secret key sizes depend on the total number of attributes that are involved
in a data owner’s access control policy.

2 Preliminaries

Bilinear Map: (1) G1, G2 and G′ are three multiplicative cyclic groups of
prime order p; (2) g1 is a generator of G1, g2 is a generator of G2. A bilinear
map e : G1 × G2 → G′ has the following properties: (1) for all u ∈ G1, v ∈ G2

and a, b ∈ Zp, we have e
(
ua, vb

)
= e (u, v)ab; (2) the map is not degenerate, i.e.,

e (g1, g2) �= 1. It is a symmetric bilinear map when G1 = G2 = G.

2.1 Popa-Zeldovich Scheme [25]

We briefly summarize the construction in [25]. For simplicity, we only present
the scenario where a single data owner has m files (each file is encrypted with a
different key) and can search all the files with a single trapdoor (token).

Let H : {0, 1}∗ → G1, H2 : G′ × G′ → {0, 1}∗ be hash functions that are
modeled as random oracles. Let e : G1 × G2 → G′ be a bilinear map. The
multi-key searchable encryption (MKSE) scheme proposed in [25] is as follows.

– MK.Setup(λ): return params (p,G1,G2,G, e, g1, g2, g
′).

– MK.KeyGen(params): returns uk, k1, ..., km, where uk is the user secret
key, kj is the encryption key of file j.

– MK.Delta(uk, k1, ..., km): returns Δj = g
kj/uk
2 ∈ G2.

– MK.Token(uk,w): returns tkw = H(w)uk ∈ G1.
– MK.Enc(kj , w): Draw r ∈ G′, outputs cj,w = (r, h), where

h = H2(r, e(H(w), g2)kj) .

Efficient Encrypted Keyword Search for Multi-user Data Sharing 177

– MK.Adjust(tkw,Δj): returns stkj,w = e(tkw,Δj) = e(H(w)uk, g
kj/uk
2).

– MK.Match(stkj,w, cj,w): parse cj,w as (r, h) and check if H2(r, stkj,w) ?= h.
if so, outputs b = 1, otherwise b = 0.

In the above construction, to search T different keywords, a user only needs
to provide O(T + m) pieces of information to the server (T trapdoors and m
delta values), much more efficient than that when using standard searchable
encryption (which needs O(Tm) pieces of information).

The authors show that the MKSE scheme has data hiding and token hiding
properties. Data hiding (privacy) requires that the semi-honest adversary is not
able to distinguish between ciphertexts of two values not matched by some token.
Token hiding (privacy) requires that the adversary cannot learn the keyword that
one searches for.

The MKSE scheme is inefficient since the data owner needs to provide a
delta value for each user that is authorized to search a file. Hence the number of
delta values for a file is linear in the number of users. This results a significant
communication overhead between a data owner and the server when the data
owner outsources the delta values, and significant storage overhead for the server
to store these ciphertexts.

2.2 Complexity Assumptions

Decision Linear Assumption. Let G be a bilinear group of prime order p. The
Decision Linear problem [7] in G is stated as follows: given a vector (g, Z1 =
gz1 , Z2 = gz2 , Z13 = gz1z3 , Z24 = gz2z4 , Z) ∈ G6 as input, determine whether
Z = gz3+z4 or a random value R ∈ G. The advantage of an algorithm B in
deciding the decision linear problem in G is

∣
∣
∣Pr

[B (
g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4

)
= 0

]

− Pr [B (g, gz1 , gz2 , gz1z3 , gz2z4 , R) = 0]
∣
∣
∣ ≤ ε .

�-Bilinear Diffie-Hellman Exponentiation Assumption (�-BDHE) [6].
Let G be a bilinear group of prime order p. The �-BDHE problem in G is defined
as follows: given a vector of 2� + 1 elements (h, g, gα, gα2

, ..., gα�

, gα�+2
, ..., gα2�

)
as input, output e (g, h)α�+1

. Once g and α are specified, we denote gi = gαi

as
shorthand. An algorithm A has advantage ε in solving �-BDHE in G if

Pr
[
A

(
h, g, gα, ..., gα�

, gα�+2
, ..., gα2�

)
= e

(
gα�+1

, h
)]

≥ ε ,

where the probability is over the random choice of generators g, h ∈ G, the
random choice of α ∈ Zp and random bits used by B. The decisional version of
the �-BDHE problem in G is defined analogously. Let

ȳg,α,� =
(
gα, . . . , gα�

, gα�+2
, . . . , gα2�

)
.

178 A. Kiayias et al.

An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving decision
�-BDHE in G if

∣
∣Pr

[B (
g, h, ȳg,α,�, e (g�+1, h)

)
= 0

] − Pr
[B (

g, h, ȳg,α,�, R
)

= 0
]∣∣ ≥ ε,

where the probability is over the random choice of generators g, h in G, the
random choice of α ∈ Zp, the random choice of R ∈ G′, and the random bits
consumed by B.

n-Decisional Diffie-Hellman Inverse Assumption (n-DDHI). Let G be a
bilinear group of prime order p. The n-DDHI assumption in G is stated as
follows: given a vector g, ȳg,α,n = (g1, . . . , gn, gn+2, . . . , g2n), gγ , h = gz, Z ∈
G2n+3 as input, determine whether Z = hγ/αn+1

or a random value R in G.
The advantage of an algorithm B in deciding the n-DDHI in G is
∣
∣
∣Pr

[
B

(
g, ȳg,α,n, gγ , gz, gzγ/αn+1

)
= 0

]
− Pr

[B (
g, ȳg,α,n, gγ , gz, R

)
= 0

]∣∣
∣ ≤ ε .

We provide security evidence of our hardness assumption (n-DDHI) by pre-
senting bounds on the success probabilities of an adversary A. We follow the
theoretical generic group model (GGM) as presented in [26] and show the justi-
fication of it.

Theorem 1. Let A be an algorithm that solves the n-DDHI problem in the
generic group model, making a total of at most q queries to the oracles computing
the group action in G,G′ and the oracle computing the bilinear pairing e. If
α, γ, r, z ∈ Z∗

p and ξ, ξ′ are chosen at random, then

Pr

⎡

⎣
A(p, ξ(1), ξ(z), ξ(α), . . . , ξ(αn),

ξ(αn+2), . . . , ξ(α2n), ξ(γ), ξ(t0), ξ(t1)) = d :
α, γ, z ← Z∗

p , d ← {0, 1}, td ← zγ
αn+1 , t1−d ← r

⎤

⎦ ≤ 1
2

+
16n(q + n + 1)2

p
.

We provide security evidence for the hardness of the n-DDHI in Appen-
dix A.2.

3 Secure and Efficient Multi-user Encrypted Keyword
Search (SEMEKS)

In this section, we define the notion of secure and efficient multi-user encrypted
keyword search (SEMEKS) for data sharing. The constructions are deferred to
Sect. 4.

Definition 1. In SEMEKS, there are n users, m documents (files) and a server.
Let U denote the set of users and D = {M1, . . . ,Mm} denote the set of docu-
ments. Each document has a set of unique keywords. Let Fj denote the set of
unique keywords in Mj. Let Sj ⊆ U denote the set of users that can access file j.
If user i ∈ Sj, then he is able to search any keyword in Fj and retrieve Mj.

Efficient Encrypted Keyword Search for Multi-user Data Sharing 179

The server S stores all ciphertexts for keywords and documents. The server is
honest-but-curious, i.e., he does not change any data, and he gives the query
results honestly, but he is curious in that he is trying to learn more information
from the data and queries (for extracting keywords from ciphertexts and trap-
doors). Our model does not allow the adversary (the server) to collude with any
of the users. Otherwise, it leaks keywords.

Definition 2. A SEMEKS scheme consists of the following five algorithms.

– Setup(n, λ): a randomized algorithm that takes the number of users n, and
the security parameter λ, as input. It outputs (pk, {sk1, . . . , skn}), where pk
is the set of system public key and ski is the secret key of user i.

– Enc(pk, Fk, Sk,Mk): a randomized algorithm that takes file Mk, the set of
unique keywords Fk, public key pk, and user set Sk as input. It outputs keyword
ciphertext Ck and file ciphertext C ′′

k .
– Trap(ski, w): a randomized algorithm that takes secret key ski and keyword

w as input. It outputs trapdoor ti,w for user i to query w.
– Test(pk, Sk, ti,w, Ck): a deterministic algorithm that takes keyword ciphertext

Ck, trapdoor ti,w, user set Sk, and public key pk as input. It outputs b ∈ {0, 1},
where b = 1 if i ∈ Sk and Ck includes the ciphertext of w; otherwise, b = 0.

– Dec(pk, ski, C
′′
k , Sk): a deterministic algorithm. If b = 1, then the algorithm

takes public key pk, secret key ski, file ciphertext C ′′
k and user set Sk as input,

and outputs the plaintext file Mk. Otherwise, it outputs ⊥.

We consider keyword privacy, file privacy, and trapdoor privacy. In addition,
we refer to keyword and file privacy together as data privacy. The security defi-
nitions of keyword and trapdoor privacy are similar as those defined in [25] with
some differences (our encryption scheme uses asymmetric key, and hence the
adversary is able to encrypt keywords himself in our setting, which differs from
that in [25]). File privacy is defined in our study while not in [25] since it does
not consider file decryption functionality.

We define a semantically secure keyword privacy game. In the game, A is
static that he outputs a keyword and a set pair that he wants to be challenged
on. He observes encryption of keywords and trapdoors. However, he is not able to
distinguish whether the challenge ciphertext is encoded by the challenge keyword
or a random keyword.

Definition 3 (Keyword Privacy). We define static semantic security for key-
word privacy in SEMKS by the following game between an adversary A and a
challenger C. Both C and A are given (n, λ) as input.

– Init: A takes security parameter λ and outputs a set S0, a keyword w∗ that
he wants to be challenged on.

– Setup: C runs Setup(n, λ) algorithm to obtain system public key pk and a set
of private keys, sk1, . . . , skn. It then gives the public key pk to A.

– Query: A adaptively issues queries q1, . . . , qλ, where query qk is a trapdoor
query (i, w). For such a query, C responds by running algorithm Trap(ski, w)
to derive ti,w, and sends it to A.

180 A. Kiayias et al.

– Guess: C picks a random number b ∈ {0, 1}, computes (C0, S0) as the output
of Enc(pk,wb, S0), where w0 = w∗, and w1 is a random keyword (of the same
length as w0), returns the value (C0, S0) to A. A outputs its guess b′ ∈ {0, 1}
for b and wins the game if b = b′.

Restriction: The adversary asks trapdoor queries only when i /∈ S0 and w �= w∗.

A SEMKS scheme is keyword private if, for all PPT adversaries A, for all suffi-
ciently large λ, Pr[winA(λ, n)] < 1/2 + negl(λ, n), where winA(λ, n) is a random
variable indicating whether the adversary wins the game for security parame-
ter λ.

We define a file privacy game that is similar to a semantically secure broad-
cast encryption definition since a file is encrypted for a set of users. If a user
is a member of the corresponding set, he can download the file ciphertext and
retrieves the file using his decryption key. In file privacy game, A outputs two
messages M0,M1 and a user set S0 he wants to be challenged upon. He gets
public parameters and user secret keys that are not in the target user set (S0).
However, he is not able to distinguish whether the given ciphertext is the cipher-
text of M0 or M1.

Definition 4 (File Privacy). We define static semantic security for file pri-
vacy in SEMEKS by the following game between a challenger C and an adver-
sary A.

– Init: A takes parameters (n, λ) and outputs a set S0 and two messages M0,M1

that he wants to be challenged on.
– Setup: C runs Setup(n, λ) algorithm to obtain system public key pk. It then

gives the public key pk to A.
– Query: A adaptively issues private key queries of user j /∈ S0. C gives the

secret keys, skj to A, where j /∈ S0.
– Challenge: C chooses a random b ∈ {0, 1} and runs Enc(S0, pk,Mb) to obtain

the ciphertext C ′′∗, and gives it to A.
– Guess: A guesses b′ ∈ {0, 1} for b and wins the game if b = b′.

File privacy game is secure against CPA if for all attacks |Pr[b = b′] − 1/2| ≤
negl(λ, n).

We define a static trapdoor privacy game that A outputs challenge user index
and keyword pair at the beginning of the game to be challenged on. In the game,
A can observe encryptions of keywords and the challenge trapdoor, but he is not
able to distinguish the challenge keyword from a random keyword.

Definition 5 (Trapdoor Privacy). The trapdoor privacy game is between a
challenger C and an adversary A as follows:

– Init: A takes parameters (n, λ) and outputs a user and keyword tuple (i∗, w∗)
that he wants to be challenged on.

– Setup: C runs Setup(n, λ) to obtain system public key pk and private keys
sk1, ..., skn. It gives pk to A.

Efficient Encrypted Keyword Search for Multi-user Data Sharing 181

– Query: A adaptively issues queries q1, ..., qλ, where query qk is a trapdoor
query (i, w). C responds by running algorithm Trap(ski, w) to derive ti,w, and
sends it to A.

– Guess: C runs Trapdoor algorithm on input (i∗, w∗
b) for a random bit b to

obtain ti∗,w∗
b
, where w∗

b = w∗ if b = 0, otherwise, it is a random keyword, and
sends it to A. A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

A SEMEKS scheme is trapdoor private if, for all PPT adversaries A,

Pr[winA(λ, n)] < 1/2 + negl(λ) .

4 Constructions

In this section, we give two constructions. For simplicity, we present the con-
structions assuming there is a single data owner; the scenario where there are
multiple data owner can be solved similarly. For ease of exposition, we start with
assuming that a centralized trusted third party initializes the system public keys;
in Sect. 6, we describe how to eliminate the need of this trusted party. The data
owner generates the secret key for each user, and then distributes the secret key
to the user.

We adapt the coupling primitive in [2,3] carefully to the setting of multi-user
keyword search where the data owner encrypts each file with a different key;
different users are allowed to search different subset of (encrypted) files. Specif-
ically, we couple the broadcast dimension (user index; each user is assigned an
index) and the keyword dimension (keyword searchability). When user i wants
to retrieve the documents that contain keyword w, user i generates trapdoor
ti,w that has two dimensions: index i and keyword w. It binds both dimensions
(index, keyword) to let the server search w in all the files that user i is allowed
to access, and then retrieve the corresponding files. Both constructions use two
useful cryptographic primitives: broadcast encryption from [9] and anonymous
identity-based encryption from [11]. The broadcast encryption primitive pro-
vides constant size keyword ciphertexts and user secret keys. Specifically, it uses
an aggregation method for ciphertexts that results in constant size ciphertexts
(i.e., ciphertext size does not depend on the number of users). The anonymous
encryption primitive provides anonymity of the keyword that is being encrypted.
It uses anonymous encryption that does not reveal keyword from the ciphertext.
Specifically, it uses linear splitting method on the random exponent values, which
does not allow the adversary to do guessing attack (cross pairing attack).

The first construction uses a single server. We show that it satisfies data
privacy but does not satisfy trapdoor privacy. The second construction (i.e.,
the main construction) is developed to address the problem. It uses two servers
that do not collude. We show that it satisfies both data privacy and trapdoor
privacy. At the end, we describe how to eliminate the need of having a single
trusted party in our constructions.

182 A. Kiayias et al.

4.1 First Construction

Setup(n, λ): Let G be a bilinear group of prime order p. The algorithm first
picks a random generator g ∈ G and a random value α ∈ Zp. It computes
gi = gαi ∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n (these values are generated by
the centralized trusted third party). Next, it picks at random γ, β ∈ Zp and
sets v = gγ , v′ = gβ ∈ G. It then picks random elements h0,1, h0,2, h1,1, h1,2 ∈
G and a1, b1, a2, b2 ∈ Zp (these values are picked by the data owner (DO)).
The public key is: pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, v′, ha1

�,1, h
b1
�,1, h

a2
�,2, h

b2
�,2),

where � = {0, 1}. The secret key of the DO is skDO = (γ, β, a1, b1, a2, b2). The
algorithm outputs pk and skDO. For users’ secret keys, the DO chooses random
ρi1, ρi2, ρ

′
i1, ρ

′
i2 for user i and computes secret key for user i as follows:

di,1 = gγ
i , di,2 = ga1ρi1 , di,3 = ga1ρ′

i1 ,

di,4 = ga2ρi2 , di,5 = ga2ρ′
i2 , di,6 = gb1ρi1 ,

di,7 = gb1ρ′
i1 , di,8 = gb2ρi2 , di,9 = gb2ρ′

i2 ,

di,10 = ha1b1ρi1
0,1 ha2b2ρi2

0,2 , di,11 = h
a1b1ρ′

i1
0,1 h

a2b2ρ′
i2

0,2 , di,12 = ha1b1ρi1
1,1 ha2b2ρi2

1,2 ,

di,13 = h
a1b1ρ′

i1
1,1 h

a2b2ρ′
i2

1,2 , di,14 = gβ
i .

These values are given to user i via a secure channel. Specifically, ski =
(di,1, . . . , di,14).
Enc(pk,w, Sk,Mk): The DO picks random values t, t′, t1, t2 ∈ Zp for keyword w
from Fk, and computes the following:

K = e(gn+1, g)
t, K′ = e(gn+1, g)

t′
, hdrk,1 = (ha1

0,1(h
a1
1,1)

w)t1 ,

hdrk,2 = (hb1
0,1(h

b1
1,1)

w)t−t1 , hdrk,3 = (ha2
0,2(h

a2
1,2)

w)t2 , hdrk,4 = (hb2
0,2(h

b2
1,2)

w)t−t2 ,

hdrk,5 = gt, hdrk,6 =
(
v
∏

j∈Sk

gn+1−j

)t
, hdrk,7 = K,

hdrk,8 = gt
′
, hdrk,9 =

(
v′ ∏

j∈Sk

gn+1−j

)t′
, hdrk,10 = K′Mk.

Let the first part of the ciphertext Ck = (hdrk,1, . . . , hdrk,7). Let the second part
of the ciphertext C ′′

k = (hdrk,8, hdrk,9, hdrk,10)
Trap(di,1||....||di,13, w): User i picks r, r′ ∈ Zp and computes ti,w as

tr1 = di,1d
r
i,10d

r′
i,11

(
dr

i,12d
r′
i,13

)w

, tr2 = dr
i,2d

r′
i,3, tr3 = dr

i,4d
r′
i,5,

tr4 = dr
i,6d

r′
i,7, tr5 = dr

i,8d
r′
i,9 .

Test(pk, Sk, ti,w, Ck): The server checks if

hdrk,7
?=

e(gi, hdrk,6)e(hdrk,1, tr4)T
e(tr1

∏
j∈Sk,i �=j gn+1−j+i, hdrk,5)

,

Efficient Encrypted Keyword Search for Multi-user Data Sharing 183

where T = e(hdrk,3, tr5)e(hdrk,2, tr2)e(hdrk,4, tr3). If the equality holds, then
the test result b = 1. Otherwise, b = 0.
Dec(pk, di,14, C

′′
k , Sk): Once the server outputs b = 1 from the Test algorithm,

he sends Sk, C ′′
k to user i (we call this process as download). Then, user i does

the decryption in the same way as that in [9] to recover first K ′ then extracts
Mk by computing Mk = K ′Mk/K ′.

It is easy to see that the keyword ciphertext does not reveal w by using cross
pairing. The data privacy is achieved by using linear splitting method that is
introduced in [11] for ciphertexts. The idea in [11] is to use different random
blind values in ciphertexts. This scheme is correct as follows:
(pk, skDO, ski = (di,1|| . . . ||di,14)i=1,..n)) ← Setup(n, λ),
(Ck, C ′′

k) = (hdrk,j)j=[1,10] ← Enc(pk,w, Sk,Mk),
ti,w = (trl)l=[1,5] ← Trap(ski = (di,1|| . . . ||di,13), w),
If i ∈ Sk, b ← Test(pk, ti,w, Ck, Sk),
Otherwise, ⊥ ← Test(pk, ti,w, Ck, Sk),
If b = 1,Mk ← Dec(pk, di,14, Sk, C ′′

k).
The first construction does not have trapdoor privacy. The first reason is

that the adversary (i.e., the server) can extract the keyword from the generated
trapdoor. The problem happens because user i does not blind his first part of
the secret key di,1 when he generates the first part of the trapdoor tr1. The
attack basically occurs when given a trapdoor for a keyword w from user i,
ti,w = (tr1, tr2, tr3, tr4, tr5), the server picks a keyword w∗ and checks if

e(tr1, g)
e(hb1

0,1, tr2)e(h
b2
0,2, tr3)e(gi, gγ)

= e(ha1
1,1, tr4)

w∗
e(ha2

1,2, tr5)
w∗

.

If the above equality holds, the server concludes that w = w∗. The second reason
is going to be explained in Sect. 5.2.

To counter the above attack, we need to blind the first part of the secret key
of a user, which however breaks the BGW decryption process since it needs the
first part of the secret key not to be blinded. We solve the above issue in the
following construction by using two servers Smain and Said. In our new model,
Said is trusted while Smain is the semi-honest adversary. In trapdoor phase,
a user chooses three random values r, r′, r′′ and generates the trapdoor using
r, r′, r′′. The user uses r′′ to blind the first part of secret key d1 and uses r, r′

to blinds other parts of the secret keys (dj , where j = 2, .., 13). Then, the user
sends a random value r2 with trapdoor to Smain and another random value r1
to Said. Here, r′′ can be thought as a function of r1, r2: f(r1, r2) = r′′. In our
construction, the function f simply takes r1, r2 and outputs r′′ = r1 + r2. Said

stores the values C ′
k = hdrk,5, hdrk,6, hdrk,7, Sk while Smain stores (Ck, C ′′

k) =
(hdrk,1, hdrk,2, hdrk,3, hdrk,4, hdrk,5, hdrk,6, hdrk,7, hdrk,8, hdrk,9, hdrk,10, Sk)
for file Fk. Once the user sends trapdoor and random values to the servers, Said

first computes f1(r1, C ′
k) and sends it to Smain. Then Smain internally checks if

the keyword appears in the ciphertext by using ti,w, f2(r2, Ck), f1(r1, C ′
k), Ck, Sk.

If so, Smain sends C ′′
k and Sk to the user. The user decrypts it and recovers the

184 A. Kiayias et al.

Fig. 1. Illustration of the secure and efficient construction.

plaintext file k where the keyword appears. We illustrate the query process in
Fig. 1.

4.2 Main Construction

This construction has two servers. It is as follows (illustrated in Fig. 1).
Setup(n, λ): This algorithm is the same as that in the first construction in
Sect. 4.1. It outputs system public key pk and user secret key ski for user i =
1, . . . , n.
Enc(pk,w, Sk,Mk): This algorithm is the same as that in the first construc-
tion in Sect. 4.1 and outputs hdrk,1 . . . hdrk,10. Let the first part of the cipher-
text Ck = (hdrk,1, . . . , hdrk,7). Let the second part of the ciphertext C ′′

k =
(hdrk,8, hdrk,9, hdrk,10). In addition, let C ′

k = (hdrk,5, hdrk,6, hdrk,7). The main
server Smain stores Ck, C ′′

k and Sk. The aid server Said stores C ′
k and Sk.

Trap(di,1||....||di,13, w): User i picks r, r′, r′′ ∈ Zp and computes ti,w as

tr1 = dr′′
i,1d

r
i,10d

r′
i,11

(
dr

i,12d
r′
i,13

)w

, tr2 = dr
i,2d

r′
i,3, tr3 = dr

i,4d
r′
i,5,

tr4 = dr
i,6d

r′
i,7, tr5 = dr

i,8d
r′
i,9, tr6 = gr′′

n+1+i .

He sends ti,w = (tr1, . . . , tr6) and r2 to Smain, and sends r1 to Said.

Test(pk, Sk, f2(r2, Ck), f1(r1, C ′
k), ti,w, Ck): Both servers compute

Ak =
e (gi, hdrk,6)

hdrk,7e
(∏

j∈Sk,i �=j gn+1−j+i, hdrk,5

)

for file k. The aid server sends f1(r1, C ′
k) = Ar1

k to Smain. Smain then computes
f2(r2, Ck)f1(r1, C ′

k) = Ar2
k Ar1

k = Ar
k and checks if

e (tr1, hdrk,5)
e (hdrk,1, tr4) T

= Ar
k ,

Efficient Encrypted Keyword Search for Multi-user Data Sharing 185

where T = e(hdrk,3, tr5)e(hdrk,2, tr2)e(hdrk,4, tr3). If the equality holds, then
the test result b = 1. Otherwise, b = 0.

Dec(pk, di,14, C
′′
k , Sk): Once the server outputs b = 1 from the Test algorithm,

he sends Sk, C ′′
k to user i (we call this process as download). Then, user i does

the decryption in the same way as that in [9] to recover first K ′ then extracts
Mk by computing Mk = K ′Mk/K ′.

5 Security

5.1 Data Privacy

Proving Security: We prove security using a hybrid experiment as that in
[11]. Let [hdr0,1, hdr0,2, hdr0,3, hdr0,4, hdr0,5, hdr0,6, hdr0,7] denote the challenge
ciphertext for keyword w∗ and user set S0 that are given to the adversary during
a real attack. Additionally, let R,R′ be two random elements of G. We define
the following hybrid games which differ on what challenge ciphertext is given by
a simulator SIM to the adversary:

Γ0: The challenge ciphertext is

C0 = [hdr0,1, hdr0,2, hdr0,3, hdr0,4, hdr0,5, hdr0,6, hdr0,7].

Γ1: The challenge ciphertext is

C1 = [hdr0,1, R, hdr0,3, hdr0,4, hdr0,5, hdr0,6, hdr0,7].

Γ2: The challenge ciphertext is

C2 = [hdr0,1, R, hdr0,3, R
′, hdr0,5, hdr0,6, hdr0,7].

We remark that the challenge ciphertext in Γ2 leaks no information about
the keyword since it is composed of seven random group elements, whereas in
Γ0 the challenge is well formed. We show that the transitions from Γ0 to Γ1 and
Γ1 to Γ2 are all computationally indistinguishable.

Since we use two servers, we slightly change the definition of keyword privacy
game in Sect. 3. During the game, the adversary makes encryption queries since
Said is trusted and controlled by the simulator. The adversary is not able to
upload any ciphertext that he wants. We restrict the adversary.

Theorem 2 (Keyword Privacy). The main construction of the SEMEKS
scheme has keyword privacy under Decision Linear Assumption.

Proof. Suppose the existence of an adversary A that distinguishes between the
two games (Γ0 and Γ1) with a non-negligible advantage ε. Then we construct
SIM that wins the Decision Linear game as follows. SIM takes in a decision
linear instance g, gz1 , gz2 , gz1z3 , gz2z4 , Z, where Z is either gz3+z4 or random in G
with equal probability. For convenience, we rewrite this as g, gz1 , gz2 , gz1z3 , Y, gt

for t such that gt = Z, and consider the task of deciding whether Y = gz2(t−z3).
SIM plays the game in the following stages.

186 A. Kiayias et al.

– Init: A gives SIM the challenge keyword w∗ and the challenge set S0.
– Setup: The simulator first chooses random exponents α, γ, ζ, a2, b2. It uses the

same g as in the decision linear instance, and sets g1, . . . , gn, gn+2, . . . , g2n,
v, where gi = gαi

, v = gγ , h0,1 = g−w∗ζ+ζ , h1,1 = gζ ,h0,2 = gz2(−w∗ζ)gζ ,
h1,2 = gz2ζ . Next the simulator sets ha1

0,1 ← (gz1)−w∗ζ+ζ , ha1
1,1 ← (gz1)ζ , hb1

0,1

← (gz2)−w∗ζ+ζ , hb1
1,1 ← (gz2)ζ ,ha2

0,2 ← ga2z2(−w∗ζ)ga2ζ , ha2
1,2 ← ga2z2ζ , hb2

0,2 ←
gb2z2(−w∗ζ)gb2ζ , hb2

1,2 ← gb2z2ζ .
The system public key is pk = g, g1, . . . , gn, gn+2, . . . , g2n, v, ha1

0,1, ha1
1,1, hb1

0,1,
hb1
1,1, ha2

0,2, ha2
1,2, hb2

0,2, hb2
1,2 and SIM gives the public key to A and Said.

– Query(S�, w�): To answer encryption query for (S�, w�) where w� �= w∗, the
simulator picks �, �1, �2, and computes hdrk,1, . . . , hdrk,7 as

K = e(gn+1, g)�, hdrk,1 = (ha1
0,1(h

a1
1,1)

w�)�1 ,

hdrk,2 = (hb1
0,1(h

b1
1,1)

w�)�−�1 , hdrk,3 = (ha2
0,2(h

a2
1,2)

w�)�2 ,

hdrk,4 = (hb2
0,2(h

b2
1,2)

w�)�−�2 , hdrk,5 = g�,

hdrk,6 =
(
v

∏

j∈S�

gn+1−j

)�

, hdrk,7 = K

and gives them to A (Smain) and gives hdrk,5, hdrk,6, hdrk,7, S� to Said.
– Query(i, w): To answer trapdoor queries for (i, w) where i /∈ S0 and w �= w∗,

the simulator picks ρi1, ρ
′
i1, ρi2, ρ

′
i2, r, r

′, r′′, and computes ti,w = (tr1, . . . , tr6)
as

tr1 = gr′′γ
i (h0,2h

w
1,2)

a2b2Y (g
−z1Xζ

w−w∗)(g−z1Xζ), tr2 = gz1X ,

tr3 = gz2X , tr4 = ga2Y g
−z1X

b2 g
−z1X

b2(w−w∗) ,

tr5 = gb2Y g
−z1X

a2 g
−z1X

a2(w−w∗) , tr6 = gr′′
n+1+i,

where X = ρi1r + ρ′
i1r

′, Y = ρi2r + ρ′
i2r

′. Then, he gives tr1, tr2, tr3, tr4, tr5,
tr6, r2 to A and r1 to Said.

– Guess: The simulator responds with a challenge ciphertext for the keyword
w∗ and the set S0. Assume t1 = z3. The simulator picks random t2 ∈ Zp. To
proceed, the simulator outputs the ciphertext as

hdr0,1 = (gζ)(t1z1), hdr0,2 = Y ζ , hdr0,3 = (gζ)(t2a2),

hdr0,4 = Zζb2g−ζb2t2 , hdr0,5 = Z = gt, hdr0,6 =

⎛

⎝v
∏

j∈S0

gn+1−j

⎞

⎠

t

,

hdr0,7 = K = e(gn+1, g)t.

If Y = gz2(t−z3) so Z = gt, then all parts of the challenge are well formed and
the simulator simulates game Γ0. If instead Y is independent of z1, z2, t, t1, t2,
which happens when Z is random, then the simulator emulates the game Γ1.

Efficient Encrypted Keyword Search for Multi-user Data Sharing 187

– Output: A outputs a bit b to guess which hybrid game the simulator has
been playing. To conclude, the simulator forwards b as its own answer in the
Decision Linear game.

Restriction: Said does not use the public key gi that is asked in trapdoor query
to compute function f(r1, C ′). The function should be independent of gi since
the index i does not appear in the set S0.

Analysis: Since the challenge ciphertext is independent of w∗, the adversary’s
best success probability is 1/2 when the adversary A gets Γ1 as challenge cipher-
text. The success probability is Pr[winA(λ, n)] < 1/2 + ε when A gets Γ0 as
challenge ciphertext. So, SIM breaks the Decision Linear assumption with
probability |Pr(A(Γ0) = 1) − Pr(A(Γ1) = 1|=1/2 + ε − 1/2 = ε, which is
non-negligible.

Remark 1. The indistinguishability of the hybrid games Γ1 and Γ2 can be shown
similarly by adjusting the parameters as a2 = z1, b2 = z2.

Theorem 3 (File Privacy). The main construction of SEMEKS has file pri-
vacy under n-DBDHE assumption.

Proof. The other parts of the (file) ciphertexts, (gt′
, (v′(

∏
j∈S0

gn+1−j))t′
,K ′M0)

are just for downloading process (independent of the first part of the keyword
ciphertext and other public key values that are formed by a1, a2, b1, b2, γ and
h0,1, h1,1, h0,2, h1,2) when the searched keyword matches the first part of the
keyword ciphertexts. These parts, C ′′

0 , can be simulated in the same way as in
[9]. In the interests of space, we do not give concrete proof.

As a proof sketch, once SIM gets n-DBDHE parameters, he will set pk,
hdr0,8, hdr0,9, v′ and user secret keys dj,14, where j /∈ S0, in the same way as
in [9]. Then, he follows the same game steps (Challenge and Guess) as those
in [9].

5.2 Trapdoor Privacy

Formalizing a security model for trapdoor privacy is challenging since an adver-
sary can use the public resource and/or provided secret information (trapdoor)
to verify if the given trapdoor is generated under a specific keyword. This is a
serious problem if a scheme is built in a public key setting. It is because the
adversary can encrypt any keyword, then he can verify if the encrypted keyword
and the given trapdoor are generated under the same keyword. The solution for
this is to restrict the adversary to avoid generating any ciphertext for a set of
users to verify if the given trapdoor and the generated ciphertext match under
the same keyword.

Our Solution: Since we use a two-server solution for trapdoor privacy, we
change the definition of trapdoor privacy in Sect. 3. In the new model, we are
going to have some query restrictions.

188 A. Kiayias et al.

Restriction: For a challenge trapdoor (i∗, w∗) in the trapdoor privacy game,
the restriction on A for encryption query Enc(pk,w, Sj): if i∗ ∈ Sj or w = w∗,
the simulator outputs ⊥. It means that the adversary is not able to ask the
challenger an encryption query where the challenge user index is in the given
set Sj or the challenge keyword. One can think that the adversary can encrypt
whatever he wants to encrypt since he has the system public key pk. However, in
our model Said is trusted and is controlled by the simulator. So, the adversary is
not able to upload any keyword ciphertext to Said. But he can encrypt keywords
on his will offline. It means that he can encrypt keywords and see the ciphertext
but he is not able to use them in test algorithm since he needs Said to send
partial trapdoor information. Another restriction is that Said does not use the
public key of the challenge user (gi) to compute function f(r1, C ′). The function
should be independent of gi.

Theorem 4 (Trapdoor Privacy). The construction of SEMEKS is trapdoor
private under n-DDHI assumption.

In the interest of space, we leave the proof to Appendix A.3.

6 Eliminating Single Trusted Party

The two constructions above use a single trusted party to generate the public
key pk. The single trusted party can be a manager or a DO. In either case, a DO
generates secret keys for the users that are eligible to do keyword search on the
DO’s files and distributes the secret keys to the users. A user’s secret key is hence
known by the DO, which is not desirable since a user might want her secret key
to be only known by herself. Furthermore, when there are multiple DOs and a
user wants to search multiple DOs’ data files, each DO needs to generate and
send a secret key to the user, and the user needs to generate a trapdoor that is
linear in the number of DOs. This results in a scalability problem. In addition,
if there are multiple DOs, each setting her own public key which is of size O(n),
the system total public key size is going to be O(n2) for n DOs. This results in
another scalability problem.

To address the above issues, we can use the recently proposed distributed
parameter generation protocol [22]. In [22], n parties can jointly generate system
public key and user secret keys that eliminates the need of having a single trusted
authority. These n parties can be all DOs that share their data files with each
other (group data sharing), or a single DO that share his files with n − 1 users.
Since most parts of the system public key are in the from of n-BDHE parameters,
they can be generated straightforwardly from [22]. The remaining part of the
values ha1

0,1, h
a1
1,1, h

b1
0,1, h

b1
1,1, h

a2
0,2, h

a2
1,2, h

b2
0,2, h

b2
1,2 can be distributively generated by

applying DKG and REC a couple of times. The secret keys of the users can
be distributively generated by applying DKG,REC and RECSQ sub-protocols.
Since these are straightforward, we do not provide the constructions explicitly.

Efficient Encrypted Keyword Search for Multi-user Data Sharing 189

7 Conclusion

We have proposed a secure and efficient encrypted keyword search (SEMEKS)
scheme for multi-user data sharing. In the scheme, an authorized user uses a
single trapdoor to search all files that he is authorized to search. In addition,
for keyword ciphertexts of a file, the network bandwidth usage and the storage
required at the server does not depend on the number of authorized users that
can search that file. We have also performed rigorous security analysis to show
that SEMEKS has trapdoor privacy and data privacy.

As future work, we will investigate how to use a single server to achieve secure
and efficient keyword search for data sharing. In addition, we want to support
boolean and not conjunctive keyword queries and update users set efficiently
(adding or removing users from pre-defined authorized set).

A Appendix

A.1 Vulnerability of the Scheme in [15]

Cui et al. [15] proposed a scheme that provides an aggregation method on files
for a user. Basically, each user’s secret key is mapped to an aggregated num-
ber of files. With this aggregation function, in their scheme, a file size does
not depend on the number users. In addition, in their scheme, keyword cipher-
text size is constant. We argue that their scheme is vulnerable to cross pairing
attacks. Specifically, (1) the adversary (server) is able to extract keywords from
the ciphertext, and (2) the adversary captures the secret key of any user so the
adversary is able to build trapdoors to search any keyword as an authorized
user. The first attack (cross-pairing or dictionary or guessing) is to the cipher-
texts as follows. Since each file j is encrypted with a single encryption key tj ,
the ciphertexts of the keywords are of the form

Cw1 =
e(H(w1), g)tj

e(gn, g1)tj
, Cw2 =

e(H(w2), g)tj

e(gn, g1)tj
.

Given Cw1 , Cw2 , C1 = gtj , C2 = (vgj)tj , the server (adversary) picks two
keywords w∗

1 , w
∗
2 and checks if e(H(w∗

1), g)tj /Cw1 = e(gn, g1)tj = e(H(w∗
1), g)tj /

Cw2 . If so, the server concludes that w∗
1 = w1, w

∗
2 = w2. Moreover, the adversary

recovers e(gn, g1)tj for file j.
Another weakness of the scheme in [15] happens in producing a trapdoor.

Basically, the DO computes a secret key for a user by computing kagg =∏
j∈S gγ

n+1−j , where γ ∈ Zp is the secret key of the DO, and any subset
S ⊆ {1, .., n} which contains the indices of documents that the user is autho-
rized to search. Once the user gets the secret key, he makes a query for key-
word w1 by computing Tr1 = kaggH(w1). The user sends (Tr1, S) to the
could server. If the same user makes another query for keyword w2, he sends
(Tr2 = kaggH(w2), S) to the server. The problem is that the server can choose
two keywords w∗, w∗∗ and computes H(w∗),H(w∗∗). Then, the server checks

190 A. Kiayias et al.

if Tr1H(w∗) = Tr2H(w∗∗) or Tr1H(w∗∗) = Tr2H(w∗). If the first equality
holds, the server concludes H(w1) = H(w∗∗) and H(w2) = H(w∗) while the sec-
ond equality holds, the server concludes H(w1) = H(w∗) and H(w2) = H(w∗∗).
Either case, the server obtains secret key of the user kagg. This is the very crucial
information because the server makes query as if an authorized user.

A.2 Generic Security of n-DDHI Assumption

In the generic group model, elements of G and G′ appear to be encoded as
unique random strings, so that no property other than equality can be directly
tested by the adversary A. Three oracles are assumed to perform operations
between group elements, such as computing the group action in each of the two
groups G,G′ and the bilinear pairing e : G × G → G′. The opaque encoding
of the elements of G is modeled as injective functions ξ, ξ′ that are chosen at
random.

Let ξ : Zp → Ξ, where Ξ ⊂ {0, 1}∗, which maps all a ∈ Zp to the string
representation ξ(ga) of ga ∈ G. We similarly define ξ′ : Zp → Ξ ′ for G′. The
attacker A communicates with the oracles using the ξ-representations of the
group elements only.

Let α, γ, z ∈ Z∗
p , T0 ← g

zγ

αn+1 , where h = gz, T1 ← gr, and d ← {0, 1}.
We show that no generic algorithm A that is given the encodings of g, h =
gz, g1, .., gn, gn+2, .., g2n, g′, where gi = gαi

, g′ = gγ and makes up to q oracle
queries can guess the value of d with probability greater than 1/2 + Ω(q2n3/p).

Proof of Theorem 1. Consider an algorithm B that plays the following game
with A. B maintains two lists of pairs, L1 = {(F1,i, ξ1,i) : i = 0, ..., τ1 − 1}, LT =
{(FT,i, ξ

′
T,i) : i = 0, ..., τ2 − 1}, under the invariant that, at step τ in the game,

τ1 + τT = τ + 2n + 2. Here, the F∗,∗ ∈ Zp[A,Γ, Z, T0, T1] are polynomials in
the indeterminates A,Γ, Z, T0, T1 with coefficients in Zp. The ξ′

∗,∗ ∈ {0, 1}∗ are
arbitrary distinct strings.

The lists are initialized at step τ = 0 by initializing τ1 ← 2n + 2, τT ← 0,
and setting F1,0 = 1, F1,1 = A, F1,2 = A2,..., F1,n = An, F1,(n+2) = An+2,...,
F1,2n = A2n, F1,2n+1 = Γ , F1,2n+2 = z, F1,2n+3 = T0, F1,2n+4 = T1. The
corresponding strings are set to arbitrary distinct strings in {0, 1}∗ (Here, F1,n+1

is skipped).
We may assume that A only makes oracle queries on strings previously

obtained from B, since B can make them arbitrarily hard to guess. We note
that B can determine the index i of any given string ξ1,i in L1 (resp. ξ′

T,i ∈ LT),
where ties between multiple matches are broken arbitrarily.

B starts the game by providing A with the encodings ξ1,0, ξ1,1, ξ1,2, . . . , ξ1,n,
ξ1,(n+2), . . . , ξ1,2n, ξ1,(2n+1), ξ1,2n+2, ξ1,2n+3, ξ1,2n+4. The simulator B responds to
algorithm A’s queries as follows.

Group action. Given a multiply/divide selection bit and two operands ξ1,i and
ξ1,j with 0 ≤ i, j < τ1, compute F1,τ1 ← F1,i ∓ F1,j depending on whether
a multiplication or a division is requested. If F1,τ1 = F1,l for some l < τ1, set
ξ1,τ1 ← ξ1,l; otherwise, set ξ1,τ1 to a string in {0, 1}∗ distinct from ξ1,0, ..., ξ1,τ1−1.

Efficient Encrypted Keyword Search for Multi-user Data Sharing 191

Add (F1,τ1 , ξ1,τ1) to the list L1 and give ξ1,τ1 to A, then increment τ1 by one.
Group action queries in G′ are treated similarly.

Pairing. Given two operands ξ1,i and ξ1,j with 0 ≤ i, j < τ1, compute the
product FT,τT

← FT,iFT,j . If FT,τT
= FT,l for some l < τT , set ξ′

T,τT
← ξ′

T,l;
otherwise, set ξ′

T,τT
to a string in {0, 1}∗ \ {ξ′

T,0, ..., ξ
′
T,τT −1}. Add (FT,τT

, ξ′
T,τT

)
to the list LT , and give ξ′

T,τT
to A, then increment τT by one.

Observe that at any time in the game, the total degree of any polynomial
in each of the two lists is bounded as follows: deg(F1,i) ≤ 2n, deg(FT,i) ≤ 4n.
After at most q queries, A terminates and returns a guess d′ ∈ {0, 1}. At this
point B chooses random α, γ, z ← Zp. Consider td ← zγ

αn+1 and t1−d ← r for
both choices of d ∈ {0, 1}. The simulation provided by B is perfect and reveals
nothing to A about d unless the chosen random values for the indeterminates
give rise to a nontrivial equality relation (identical polynomial in any of the lists
L1, LT) between the simulated group elements that was not revealed to A, i.e.,
when we assign A ← α, Γ ← γ, and either T0 ← zγ

αn+1 , T1 ← r or the converse
T0 ← r, T1 ← zγ

αn+1 . This happens only if for some i, j one of the following holds:

– F1,i(α, .., αn, αn+2, . . . , α2n, γ, z, γ
αn+1 , r)−

F1,j(α, .., αn, αn+2, . . . , α2n, γ, z, γ
αn+1 , r) = 0, yet F1,i �= F1,j ,

– FT,i(α, .., αn, αn+2, . . . , α2n, γ, z, γ
αn+1 , r)−

FT,j(α, .., αn, αn+2, . . . , α2n, γ, z, γ
αn+1 , r) = 0, yet FT,i �= FT,j ,

– any relation similar to the above in which γ
αn+1 and r have been exchanged.

We now determine the probability of a random occurrence of a non-trivial
numeric cancellation. Since F1,i −F1,j for fixed i and j is a polynomial of degree
at most 2n, it vanishes for random assignment of the indeterminates in Zp with
probability at most 2n/p. Similarly, for fixed i and j, the second case occurs
with probability ≤ 4n/p. The same probabilities are found in the analogous
cases where γ/αn+1 and r have been exchanged.

Now, absent of any of the above events, the distribution of the bit d in A’s
view is independent, and A’s probability of making a correct guess is exactly 1

2 .
Thus, by summing over all valid pairs i, j in each case, we find that A makes a
correct guess with advantage

≤ 2
((

τ1
2

)
2n

p
+

(
τT

2

)
4n

p

)
.

Since τ1 + τT ≤ q + 2n + 2, we have ε ≤ 16n(q + n + 1)2/p, as required.

A.3 Proof of Theorem 4

We will show trapdoor privacy that is the challenge keyword is indistinguishable
from the same length random keyword. To show this we will present two games
G1,G2. In G1 (ideal game), SIM chooses uniformly random r1, r2 values while in
G2 (real game), SIM follows the protocol r′′ = r1 + r2 and we show that these
two games are indistinguishable.

192 A. Kiayias et al.

Proof. We first consider G1. Suppose there exists an adversary A that distin-
guishes between challenge keyword w∗ from random keyword with advantage ε.
Then we construct a simulator SIM that wins the n-DDHI game as follows.
Once SIM gets a n-DDHI instance g, g1, . . . , gn,gn+2, . . . , g2n,gγ , h, Z = h

γ

αn+1 ,
the game between SIM and A is as follows:

– Init: A gives SIM the challenge keyword w∗, user index i∗ that he wants to
be challenged on.

– Setup: SIM lets g, g1, . . . , gn, gn+2, . . . , g2n in the simulation be as in the
instance and picks a1, b1, a2, b2, ζ, ζ ′, θ, θ′ values from Zp. He also sets h0,1 ←
g−w∗ζ+ζ′

, h1,1 ← gζ , h0,2 ← g−w∗θ+θ′
, h1,2 ← gθ, He computes public key

parameters as ha1
0,1 = (ga1)−w∗ζ+ζ′

, ha1
1,1 = (ga1)ζ , hb1

0,1 = (gb1)−w∗ζ+ζ′
, hb1

1,1 =
(gb1)ζ , ha2

0,2 = (ga2)−w∗θ+θ′
, ha2

1,2 = (ga2)θ, hb2
0,2 = (gb2)−w∗θ+θ′

, hb2
1,2 = (gb2)θ,

v = gγ and gives them to both A and Said. SIM generates user secret keys
ski by running Setup algorithm. As a note that, the simulator does not know
the values α, γ. Then, SIM gives public parameters to A and Said.

– Query: A makes the following queries to SIM adaptively. For encryption
query (S�, w�),
If w� �= w∗ ∧ i∗ /∈ S�, the simulator picks k, k1, k2 encryption keys for file �
and gives the computed values,
hdr�,1 = ga1(w�−w∗)ζk1ga1ζ′k1 , hdr�,2 = g(w�−w∗)b1ζ(k−k1)gb1ζ′(k−k1), hdr�,3 =
ga2(w�−w∗)θk2ga2θ′k2 , hdr�,4 = g(w�−w∗)b2θ(k−k2)gb2θ′(k−k1), hdr�,5 = gk,

hdr�,6 =
(
gγ

∏
j∈S�

gn+1−j

)k

, hdr�,7 = e(gn+1, g)k, S� and gives them to A
and gives hdr�,5, hdr�,6, hdr�,7, S� to Said.
if i∗ ∈ S� ∨ w∗ = wl : The simulator outputs ⊥.

– Guess: SIM assigns h is the form of h = gr′′
n+1+i (r′′ is unknown to SIM).

He picks random ρi1, ρ
′
i1, ρi2, ρ

′
i2, r, r

′ then computes the trapdoor as
tr1 = Zga1b1ζ′Xga2b2θ′Y , tr2 = ga1X , tr3 = ga2Y , tr4 = gb1X , tr5 = gb2Y , tr6 =
h = gr′′

n+1+i, where X = ρi1r + ρ′
i1r

′, Y = ρi2r + ρ′
i2r

′. Then, he gives
tr1, tr2, tr3, tr4, tr5, tr6, r2 to A and r1 to Said.

– Output: A outputs a bit b. To conclude, the simulator forwards b as its own
answer in the n-DDHI game. If the n-DDHI instances are well formed, the
adversary outputs b = 0 which is a random keyword, otherwise it outputs
b = 1 which keyword is w∗.

Analysis: Under the restriction in the encryption phase, Said does not store
keyword ciphertext that is formed by the challenge index (the public key of the
challenge user gi∗). Therefore, the challenge trapdoor and any keyword cipher-
texts are not going to be compatible when Said computes function of r1, C

′. It
means that the challenge trapdoor is independent of w∗, the adversary’s best
success probability is 1/2 when A outputs b = 0 if the game is totally random.
The success probability is Pr[winA(λ)] < 1/2 + ε when A outputs b = 1 if the
n-DDHI instances are well formed. So, SIM breaks n-DDHI assumption with
probability |Pr(A(b = 1) = 1) − Pr(A(b = 0) = 1|=1/2 + ε − 1/2 = ε, which is
non-negligible. So ∣

∣Pr
[GA

1

]∣∣ ≥ ε

Efficient Encrypted Keyword Search for Multi-user Data Sharing 193

In G2, SIM follows real game, chooses r1 and r2 such that r′′ = r1 + r2
and gives r1 to Said and r2 to A. In the real game, A can not ask encryption
queries that user index i∗ ∈ S� or w∗ = wl. This results A is not able to test
if the keyword is w∗ or a random keyword. We argue that since A gets the
function of r1 and C ′ and he is not able to learn any non-trivial information
about r1 under the restriction of the game. The function of r1 and C ′ is totally
random to A for every r1 since for each encryption of a keyword w the challenger
chooses fresh (random) elements (k, k1, k2) from Zp. Basically, the information
(randomized ciphertext) given to A is semantically secure. Let ε is the advantage
of A winning the semantic security encryption then we can say SIM breaks n-
DDHI assumption with probability |Pr(A(b = 1) = 1) − Pr(A(b = 0) = 1|=1/2
+ ε − (1/2 + ε) = ε − ε. Then,

∣
∣Pr

[GA
2

]∣∣ ≤ ε − ε

As a result, ∣
∣Pr

[GA
1

]∣∣ − ∣
∣Pr

[GA
2

]∣∣ ≤ ε

This completes the proof.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Attrapadung, N.: Unified Frameworks for Practical Broadcast Encryption and Pub-
lic Key Encryption with High Functionalities. Ph.D. thesis, University of Tokyo
(2007)

3. Attrapadung, N., Furukawa, J., Imai, H.: Forward-secure and searchable broadcast
encryption with short ciphertexts and private keys. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 161–177. Springer, Heidelberg (2006)

4. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-
user settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991,
pp. 71–85. Springer, Heidelberg (2008)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

194 A. Kiayias et al.

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

11. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

12. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

13. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

14. Chu, C.-K., Chow, S.S.M., Tzeng, W.-G., Zhou, J., Deng, R.H.: Key-aggregate
cryptosystem for scalable data sharing in cloud storage. IEEE Trans. Parallel Dis-
trib. Syst. 25(2), 468–477 (2014)

15. Cui, B., Liu, Z., Wang, L.: Key-aggregate searchable encryption (KASE) for group
data sharing via cloud storage. IEEE Trans. Comput. 65(8), 2374–2385 (2016)

16. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS (2006)

17. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for
untrusted servers. In: Proceeedings of the 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (2008)

18. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS. LNCS, vol. 9327, pp. 123–145. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24177-7 7

19. Goh, E.-J.: Secure indexes. Cryptology eprint archive, report 2003/216 (2003)
20. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric

private information retrieval. In: CCS (2013)
21. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-

tion. In: CCS (2012)
22. Kiayias, A., Oksuz, O., Tang, Q.: Distributed parameter generation for bilinear

Diffie Hellman exponentiation and applications. In: López, J., Mitchell, C.J. (eds.)
ISC 2015. LNCS, vol. 9290, pp. 548–567. Springer, Heidelberg (2015)

23. Liang, K., Susilo, W.: Searchable attribute-based mechanism with efficient data
sharing for secure cloud storage. IEEE Trans. Inform. Forensics Secur. 10, 1981–
1992 (2015)

24. Liu, Z., Li, J., Chen, X., Yang, J., Jia, C.: TMDS: thin-model data sharing scheme
supporting keyword search in cloud storage. In: Susilo, W., Mu, Y. (eds.) ACISP
2014. LNCS, vol. 8544, pp. 115–130. Springer, Heidelberg (2014)

25. Popa, R.A., Zeldovich, N.: Multi Key Searchable Encryption (2013). https://
people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf

26. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

27. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy (2000)

http://dx.doi.org/10.1007/978-3-319-24177-7_7
https://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf
https://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf

Efficient Encrypted Keyword Search for Multi-user Data Sharing 195

28. Tang, Q.: Nothing is for free: security in searching shared and encrypted data.
IEEE Trans. Inform. Forensics Secur. 9, 1943–1952 (2014)

29. Van Rompay, C., Molva, R., Önen, M.: Multi-user searchable encryption in the
cloud. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 299–316.
Springer, Heidelberg (2015)

30. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In: INFOCOM (2014)

	Efficient Encrypted Keyword Search for Multi-user Data Sharing
	1 Introduction
	2 Preliminaries
	2.1 Popa-Zeldovich Scheme
	2.2 Complexity Assumptions

	3 Secure and Efficient Multi-user Encrypted Keyword Search (SEMEKS)
	4 Constructions
	4.1 First Construction
	4.2 Main Construction

	5 Security
	5.1 Data Privacy
	5.2 Trapdoor Privacy

	6 Eliminating Single Trusted Party
	7 Conclusion
	A Appendix
	A.1 Vulnerability of the Scheme in
	A.2 Generic Security of n-DDHI Assumption
	A.3 Proof of Theorem 4

	References

