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Abstract. The programming language Haskell plays a unique, priv-
ileged role in Information-Flow Control (IFC) research: it is able to
enforce information security via libraries. Many state-of-the-art libraries
(e.g., LIO, HLIO, and MAC) allow computations to manipulate data
with different security labels by introducing the notion of labeled val-
ues, which protect values with explicit labels by means of an abstract
data type. While computations have an underlying algebraic structure in
such libraries (i.e. monads), there is no research on structures for labeled
values and their impact on the programming model. In this paper, we
add the functor structure to labeled values, which allows programmers
to conveniently and securely perform computations without side-effects
on such values, and an applicative operator, which extends this feature
to work on multiple labeled values combined by a multi-parameter func-
tion. This functionality simplifies code, as it does not force program-
mers to spawn threads to manipulate sensitive data with side-effect free
operations. Additionally, we present a relabel primitive which securely
modifies the label of labeled values. This operation also helps to simplify
code when aggregating data with heterogeneous labels, as it does not
require spawning threads to do so. We provide mechanized proofs of the
soundness our contributions for the security library MAC, although we
remark that our ideas apply to LIO and HLIO as well.

1 Introduction

Nowadays, many applications (apps) manipulate users’ private data. Such apps
could have been written by anyone and users who wish to benefit from their
functionality are forced to grant them access to their data—something that most
users will do without a second thought [21]. Once apps collect users’ informa-
tion, there are no guarantees about how they handle it, thus leaving room for
data theft and data breach by malicious apps. The key to guaranteeing security
without sacrificing functionality is not granting or denying access to sensitive
data, but rather ensuring that information only flows into appropriate places.

Information-flow control (IFC) [32] is a promising programming language-
based approach to enforcing security. IFC scrutinizes how data of different sen-
sitivity levels (e.g., public or private) flows within a program, and raises alarms
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when there is an unsafe flow of information. Most IFC tools require the design
of new languages, compilers, interpreters, or modifications to the runtime, e.g.,
[4,24,26,29]. In this scenario, the functional programming language Haskell plays
a unique privileged role: it is able to enforce security via libraries [18] by using
an embedded domain-specific language.

Fig. 1. Public computation

Many of the state-of-the-art Haskell
security libraries, namely LIO [37],
HLIO [6], and MAC [31], bring ideas
from Mandatory Access Control [3] into
a language-based setting. Every compu-
tation in such libraries has a current
label which is used to (i) approximate
the sensitivity level of all the data in
scope and (ii) restrict subsequent side-
effects which might compromise security. From now on, we simply use the term
libraries when referring to LIO, HLIO, and MAC.

Fig. 2. Labeled values

IFC uses labels to model the sen-
sitivity of data, which are then orga-
nized in a security lattice [7] specify-
ing the allowed flows of information, i.e.,
�1 � �2 means that data with label �1
can flow into entities labeled with �2.
Although these libraries are parameter-
ized on the security lattice, for simplic-
ity we focus on the classic two-point lat-
tice with labels H and L to respectively denote secret (high) and public (low)
data, and where H �� L is the only disallowed flow. Figure 1 shows a graphi-
cal representation of a public computation in these libraries, i.e. a computation
with current label L. The computation can read or write data in scope, which is
considered public (e.g., average temperature of 17◦C in the Swedish summer),
and it can write to public (L-) or secret (H -) sinks. By contrast, a secret com-
putation, i.e. a computation with current label H , can also read and write data
in its scope, which is considered sensitive, but in order to prevent information
leaks it can only write to sensitive/secret sinks. Structuring computations in this
manner ensures that sensitive data does not flow into public entities, a policy
known as noninterference [10]. While secure, programming in this model can be
overly restrictive for users who want to manipulate differently-labeled values.

To address this shortcoming, libraries introduce the notion of a labeled value
as an abstract data type which protects values with explicit labels, in addition
to the current label. Figure 2 shows a public computation with access to both
public and sensitive pieces of information, such as a password (pwd). Public
computations can freely manipulate sensitive labeled values provided that they
are treated as black boxes, i.e. they can be stored, retrieved, and passed around
as long as its content is not inspected. Libraries LIO and HLIO even allow
public computations to inspect the contents of sensitive labeled values, raising
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the current label to H to keep track of the fact that a secret is in scope—this
variant is known as a floating-label system.

Reading sensitive data usually amounts to “tainting” the entire context or
ensuring the context is as sensitive as the data being observed. As a result, the
system is susceptible to an issue known as label creep: reading too many secrets
may cause the current label to be so high in the lattice that the computation can
no longer perform any useful side effects. To address this problem, libraries pro-
vide a primitive which enables public computations to spawn sub-computations
that access sensitive labeled values without tainting the parent. In a sequential
setting, such sub-computations are implemented by special function calls. In the
presence of concurrency, however, they must be executed in a different thread
to avoid compromising security through internal timing and termination covert
channels [36].

Practical programs need to manipulate sensitive labeled values by transform-
ing them. It is quite common for these operations to be naturally free of I/O or
other side effects, e.g., arithmetical or algebraic operations, especially in appli-
cations like image processing, cryptography, or data aggregation for statistical
purposes. Writing such functions, known as pure functions, is the bread and
butter of functional programming style, and is known to improve programmer
productivity, encourage code reuse, and reduce the likelihood of bugs [14]. Nev-
ertheless, the programming model involving sub-computations that manipulate
secrets forces an imperative style, whereby computations must be structured into
separate compartments that must communicate explicitly. While side-effecting
instructions have an underlying structure (called monad [22]), research literature
has neglected studying structures for labeled values and their consequences for
the programming model. To empower programmers with the simpler, functional
style, we propose additional operations that allow pure functions to securely
manipulate labeled values, specifically by means of a structure similar to applica-
tive functors [20]. In particular, this structure is useful in concurrent settings
where it is no longer necessary to spawn threads to manipulate sensitive data,
thus making the code less imperative (i.e., side-effect free). Interestingly, the eval-
uation strategy of the host language (i.e. call-by-value or call-by-name) affects
the validity of our security guarantees. Specifically, call-by-name turns out to
naturally enforce progress-sensitive non-interference in a concurrent setting.

Additionally, practical programs often aggregate information from heteroge-
neous sources. For that, programs needs to upgrade labeled values to an upper
bound of the labels being involved before data can be combined. In previous
incarnations of the libraries, such relabelings require to spawn threads just for
that purpose. As before, the reason for that is libraries decoupling every com-
putation which manipulate sensitive data—even those for simply relabeling—so
that the internal timing and termination covert channels imposed no threats. In
this light, we introduce a primitive to securely relabel labeled values, which can
be applied irrespective of the computation’s current label and does not require
spawning threads.
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We provide a mechanized security proof for the security library MAC and
claim our results also apply to LIO and HLIO. MAC has fewer lines of code
and leverages types to enforce confidentiality, thus making it ideal to model
its semantics in a dependently-typed language like Agda. The contributions of
this paper are: (i) we introduce a functor structure equipped with an applica-
tive operator that enables users to conveniently manipulate and combine labeled
values using pure functions, encouraging a more functional (side-effect free) pro-
gramming style; (ii) we introduce a relabeling primitive that securely modifies
the label of labeled values, bypassing the need to spawn threads when aggregat-
ing heterogeneous data; (iii) we identify and discuss the impact of the evalua-
tion strategy of the host language on the security of the applicative operators
in MAC with respect to the internal timing and termination covert channels;
(iv) we implement a prototype of our ideas in the MAC library1; and (v) we
formalize MAC with secure applicative operators as a λ-calculus, providing a
mechanized proof in Agda of progress-insensitive (PINI) and progress-sensitive
noninterference (PSNI) [1] for the sequential and (respectively) concurrent
setting.

This paper is organized as follows. Section 2 describes the core aspects of
MAC. Sections 3 and 4 present functors, applicative, and relabeling operations.
Section 5 gives formal guarantees. Section 6 gives related work and Sect. 7 con-
cludes.

2 Background

Fig. 3. Simplified API for MAC

In MAC, each label is
represented as an abstract
data type. Figure 3 shows
the core part of MAC’s
API. Abstract data type
Labeled � a classifies data of
type a with a security label
�. For instance, creditCard ::
Labeled H Int is a sensi-
tive integer, while weather ::
Labeled L String is a public
string. (Symbol :: is used to
describe the type of terms in
Haskell.) Abstract data type
MAC � a denotes a (pos-
sibly) side-effectful secure
computation which handles
information at sensitivity
level � and yields a value of type a as a result. A MAC � a computation
enjoys a monadic structure, i.e. it is built using the fundamental operations
1 https://hackage.haskell.org/package/mac.

https://hackage.haskell.org/package/mac
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return :: a → MAC � a and (>>=) :: MAC � a → (a → MAC � b) → MAC � b
(read as “bind”). The operation return x produces a computation that returns
the value denoted by x and produces no side-effects. The function (>>=) is used to
sequence computations and their corresponding side-effects. Specifically, m >>= f
takes a computation m and function f which will be applied to the result pro-
duced by running m and yields the resulting computation. We sometimes use
Haskell’s do-notation to write such monadic computations. For example, the pro-
gram m >>= λx → return (x + 1), which adds 1 to the value produced by m, can
be written as shown in Fig. 4.

Fig. 4. do-notation

Secure flows of information. Generally speaking, side-
effects in a MAC � a computation can be seen as actions
which either read or write data. Such actions, however,
need to be conceived in a manner that respects the sensi-
tivity of the computations’ results as well as the sensitivity
of sources and sinks of information modeled as labeled values. The functions label
and unlabel allow MAC � a computations to securely interact with labeled val-
ues. To help readers, we indicate the relationship between type variables in their
subindexes, i.e. we use �L and �H to attest that �L � �H. If a MAC �L computa-
tion writes data into a sink, the computation should have at most the sensitivity
of the sink itself. This restriction, known as no write-down [3], respects the sen-
sitivity of the data sink, e.g., the sink never receives data more sensitive than its
label. In the case of function label , it creates a fresh labeled value, which from
the security point of view can be seen as allocating a fresh location in memory
and immediately writing a value into it—thus, it applies the no write-down prin-
ciple. In the type signature of label , what appears on the left-hand side of the
symbol ⇒ are type constraints. They represent properties that must be statically
fulfilled about the types appearing on the right-hand side of ⇒. Type constraint
�L � �H ensures that when calling label x (for some x in scope), the computa-
tion creates a labeled value only if �L, i.e. the current label of the computation,
is no more confidential than �H, i.e. the sensitivity of the created labeled value.
In contrast, a computation MAC �H a is only allowed to read labeled values
at most as sensitive as �H—observe the type constraint �L � �H in the type
signature of unlabel . This restriction, known as no read-up [3], protects the con-
fidentiality degree of the result produced by MAC �H a, i.e. the result might
only involve data �L which is, at most, as sensitive as �H.

Fig. 5. Implicit flows are ill-typed.

The interaction between the current label
of a computation and the no write-down
restriction makes implicit flow ill-typed, as
shown in Fig. 5. In order to branch on sen-
sitive data, a program needs first to unla-
bel it, thus requiring the computation to be
of type MAC H a (for some type a). From
that point, the computation cannot write to
public data regardless of the taken branch. As
MAC provides additional primitives respon-
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sible for producing useful side-effects like exception handling, network communi-
cation, references, and synchronization primitives—we refer the interested reader
to [31] for further details.

Handling data with different sensitivity. Programs handling data with heteroge-
neous labels necessarily involve nested MAC � a computations in its return type.
For instance, consider a piece of code m with type MAC L (String ,MAC H Int)
which handles both public and secret information. Note that the type indicates
that it returns a public string and a sensitive computation MAC H Int . While
somehow manageable for a two-point lattice, it becomes intractable for gen-
eral cases. In a sequential setting, MAC presents the primitive joinMAC to safely
integrate more sensitive computations into less sensitive ones—see Fig. 3. Oper-
ationally, function joinMAC runs the computation of type MAC �H a and wraps
the result into a labeled expression to protect its sensitivity. As we will show
in Sect. 5, Haskell programs written using the monadic API, label , unlabel , and
joinMAC satisfy PINI, where leaks due to non-termination of programs are ignored.
This design decision is similar to that taken by mainstream IFC compilers (e.g.,
[11,25,34]), where the most effective manner to exploit termination takes expo-
nential time in the size (of bits) of the secret [1].

Fig. 6. Termination leak

Concurrency. The mere pos-
sibility to run (conceptually)
simultaneous MAC � compu-
tations provides attackers with
new tools to bypass security
checks. In particular, the pres-
ence of threads introduce the
internal timing covert channel,
a channel that gets exploited
when, depending on secrets,
the timing behavior of threads
affect the order of events per-
formed on public-shared resources [35]. Furthermore, concurrency magnifies the
bandwidth of the termination covert channel to be linear in the size (of bits)
of secrets [36]. Since the same countermeasure closes both covert channels, we
focus on the latter. What constitutes a termination leak is the fact that a non-
terminating MAC �H-computation can suppress the execution of subsequently
MAC �L-events. To illustrate this point, we present the attack in Fig. 6. We
assume that there exists a function publish which sends an integer to a public
blog. Observe how function leak may suppress subsequent public events with infi-
nite loops. If a thread runs leak 0 secret , the code publishes 0 only if the first bit
of secret is 0; otherwise it loops (see function loop) and it does not produce any
public effect. Similarly, a thread running leak 1 secret will leak the second bit of
secret , while a thread running leak 2 secret will leak the third bit of it and so on.
To securely support concurrency, MAC forces programmers to decouple compu-
tations which depend on sensitive data from those performing public side-effects.
As a result, non-terminating loops based on secrets cannot affect the outcome
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of public events. To achieve this behavior, MAC replaces joinMAC by forkMAC as
defined in Fig. 3. It is secure to spawn sensitive computations (MAC �H) from
non-sensitive ones (MAC �L) because that decision depends on data at level �L.

Example 1. To show how to program using MAC, we present a simple scenario
where Alice writes an API that helps users prepare and file their taxes. Alice
models a tax declaration as values of type TaxDecl , which is obtained based on
users’ personal information—modeled as values of type Data. She releases the
first version of the API:

-- API
declareTaxes :: Data → IO ()
declareTaxes user = send (fillTaxes user)

-- Internal operations (not exported)
fillTaxes :: Data → TaxDecl
send :: TaxDecl → IO ()

We remark that, although we focus on this API for simplicity, Alice is using
the concurrent version of MAC. Function declareTaxes does two things: it fills
out the tax forms (function fillTaxes) and sends them to the corresponding gov-
ernment agency (function send). Due to the use of send , function declareTaxes
returns a computation in the IO-monad—a special data type which permits
arbitrary I/O effects in Haskell. Function send generates a valid PDF for tax
declarations and sends it to the corresponding authorities. However, there is
nothing stopping this function from leaking tax information to unauthorized
entities over the network. Alice’s customers notice this problem and are con-
cerned about how their sensitive data gets handled by the API.

Alice then decides to adapt the API to use MAC. For simplicity, we assume
that MAC also includes a secure operation to send data over the network:

sendMAC :: �L � �H ⇒ Labeled �H URL → Labeled �H a → MAC �L ()
This primitive sends a labeled value of type a to the URL given as an argument,

e.g., via HTTP-request or other network protocol. Using MAC’s concurrent API
and primitive sendMAC, Alice rewrites her API to adhere to the following interface.

declareTaxes :: Labeled H URL → Labeled H Data → MAC L ()
declareTaxes url user = forkMAC (do info ← unlabel user

tax ← label (fillTaxes info)
sendMAC url tax

-- Internal operations
fillTaxes :: Data → TaxDecl

Observe that Alice’s API needs to spawn a secure computation of type
MAC H () in order to unlabel and access user’s data (user). Once user’s data
is accessible, a pure function gets applied to it (fillTaxes info), the result is
relabeled (tax ) again and a side-effectful action takes place (sendMAC). In the
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next section we extend MAC’s API so that it is possible to manipulate labeled
values with pure functions, like fillTaxes, and perform side-effectful actions, like
sendMAC, without the need to spawn threads.

3 Functors for Labeled Values

Fig. 7. Functor structure for labeled values

In this section, we show how
labeled values can be manipu-
lated using functors.

Intuitively, a functor is a
container-like data structure which provides a method called fmap that applies
(maps) a function over its content, while preserving its structure. Lists are the
most canonical example of a functor data-structure. In this case, fmap corre-
sponds to the function map, which applies a function to each element of a list,
e.g. fmap (+1) [1, 2, 3] ≡ [2, 3, 4]. A functor structure for labeled values allows to
manipulate sensitive data without the need to explicitly extract it—see Fig. 7.
For instance, fmap (+1) d , where d :: Labeled H Int stores the number 42,
produces the number 43 as a sensitive labeled value. Observe that sensitive
data gets manipulated without the need to use label and unlabel , thus avoiding
their overhead (no security checks are performed). Despite what intuition might
suggest, it is possible to securely apply fmap in any MAC �-computation to
any labeled value irrespectively of its security level. A secure implementation of
fmap then allows manipulation of data without forking threads in a concurrent
setting—thus, introducing flexibility when data is processed by pure (side-effect
free) functions. However, obtaining a secure implementation of fmap requires a
careful analysis of its security implications.

Fig. 9. Security guarantees

Interestingly, the evaluation strat-
egy of the programming language and
the sequential or concurrent setting
determine different security guarantees
in the presence of fmap. Figure 9 shows
our findings. In a sequential setting with
call-by-value semantics, fmap can be
exploited to create a termination covert channel in a similar manner as it is
done with joinMAC. To illustrate this point, we rephrase the attack in Fig. 6 to
use fmap rather than joinMAC—see Fig. 8. Under a call-by-value evaluation strat-
egy, function loopOn passed to fmap is eagerly applied to the secret, which
might introduce a loop depending on the value of the n-th bit of the secret—a
termination leak. Under a call-by-name evaluation strategy, however, function

Fig. 8. Termination leak under call-by-value evaluation
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loopOn does not get immediately evaluated since result is not needed for com-
puting publish n. Therefore, publish n gets executed independently of the value
of the secret, i.e. no termination leaks are introduced. Instead, loopOn gets eval-
uated when “unlabeling” result and inspecting its value in a computation of type
MAC H a (for some a), which is secure to do so. Although functors can be used
to exploit non-termination of programs, they impose no new risks for sequential
programs (MAC already ignores termination leaks in such setting).

Fig. 10. Attack magnification

Unfortunately, a call-by-
value concurrent semantics mag-
nifies the bandwidth of the
attack in Fig. 8 to the point
where confidentiality can be
systematically and efficiently
broken—see Fig. 10. Assuming
a secret of 100-bits, the magni-
fication consists on leaking the whole secret by spawning a sufficient number
of threads—each of them leaking a different bit. Since leak cannot exploit the
termination channel under a call-by-name evaluation strategy, the magnifica-
tion attack becomes vacuous under such semantics. More precisely, the attack
can only trigger the execution of leak by first unlabeling result , an operation
impossible to perform in a public computation—recall there is no joinMAC prim-
itive for concurrent programs. As the table suggests, call-by-name gives the
strongest security guarantees when extending MAC with functors. We remark
that it is possible to close this termination channel under a call-by-value seman-
tics by defining Labeled with an explicit suspension, e.g. data Labeled � a =
Labeled (() → a), and corresponding forcing operation, so that fmap behaves
lazily as desired.

Example 2. Alice’s realizes that she could spare her API from forking threads
by exploiting the functorial structure of labeled values.

declareTaxes :: Labeled H URL → Labeled H Data → MAC L ()
declareTaxes url user = sendMAC url (fmap fillTaxes user)

-- Internal operations
fillTaxes :: Data → TaxDecl

The construct fmap applies the function fillTaxes without requiring use
of unlabel , while keeping the result securely encapsulated in a labeled value.
Observe how the code is much less imperative, since there is no need to fork a
thread to unlabel sensitive data just to apply a pure function to it.

Fig. 11. Lattice.

While functors help to make the code more func-
tional, there are still other programming patterns which
draw developers to fork threads due to security reasons
rather than the need for multi-threading. Specifically,
when aggregating data from sources with incomparable
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labels, computations are forced to spawn a thread with a sufficiently high label.
To illustrate this point, we present the following example.

Example 3. Alice knows that there is a third-party API which provides finan-
cial planning and she would gladly incorporate its functionality into her API.
However, Alice wants to keep the third-party code isolated from hers, while still
providing functionality to the user. To do so, she incorporates a new label into
the system, namely TP and modifies the lattice as shown in Fig. 11. The lattice
reflects the mistrust that Alice has over the third-party code by making L and
TP incomparable elements.

Alice’s API is extended with the third-party code as follows.

declareTaxes :: Labeled H URL → Labeled H Data → MAC L ()
reportPlan :: Labeled H URL → Labeled H Data → MAC L ()

-- Internal operations
fillTaxes :: Data → TaxDecl
financialPlan :: Labeled TP (Data → FinancePlan)

Function reportPlan needs to fork a thread in order to unlabel the third-party
code (financialPlan).

reportPlan :: Labeled H URL → Labeled H Data → MAC L ()
reportPlan url user = do

forkMAC (do user ← unlabel user
financialPlan ′ ← unlabel financialPlan
plan ← label (financialPlan ′ user)
sendMAC url plan)

In the next section, we show how to avoid forking threads for this kind of
scenarios.

4 Applicative Operator and Relabeling

Fig. 12. Extended API for labeled values

To aggregate sensitivity-heterogeneous
data without forking, we further
extend the API with the primitives
shown in Fig. 12. Primitive relabel
copies, and possibly upgrades, a
labeled value. This primitive is use-
ful to “lift” data to an upper bound
of all the data involved in a compu-
tation prior to combining them. Operator (〈∗〉) supports function application
within a labeled value, i.e. it allows to feed functions wrapped in a labeled value
(Labeled � (a → b) with arguments also wrapped (Labeled � a), where aggre-
gated results get wrapped as well (Labeled � b). We demonstrate the utility of
relabel and (〈∗〉) by rewriting Example 3.
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Example 4. Alice easily modifies reportPlan as follows:

reportPlan url user = do
let financialPlan ′ = relabel financialPlan
in sendMAC url (financialPlan ′ 〈∗〉 user)

The third-party function (financialPlan) is relabeled to H , which is justified
since TP � H , and then applied to the user data (financialPlan ′ 〈∗〉 user) using
the applicative (functor) operator. Note that the result is still labeled with H .

Discussion. In function programming, operator (〈∗〉) is part of the applicative
functors [20] interface, which in combinations with fmap, is used to map func-
tions over functors. Note that if labeled values fully enjoyed the applicative func-
tor structure, our API would include also the primitive pure :: a → Labeled � a.
This primitive brings arbitrary values into labeled values, which might break
the security principles enforced by MAC. Instead of pure, MAC centralizes the
creation of labeled values in the primitive label . Observe that, by using pure,
a programmer could write a computation m :: MAC H (Labeled L a) where
the created labeled information is sensitive rather than public. We argue that
this situation ignores the no-write down principle, which might bring confusion
among developers. More importantly, freely creating labeled values is not com-
patible with the security notion of cleareance, where secure computations have
an upper bound on the kind of sensitive data the they can observe and generate.
This notion becomes useful to address certain covert channels [40] as well as
poison-pill attacks [13]. While MAC does not yet currently support cleareance,
we state this research direction as future work.

5 Security Guarantees

This section presents the core part of our formalization of MAC as a simply
typed call-by-name λ-calculus extended with booleans, unit values, and monadic
operations. Note that our mechanized proofs, available online2, cover the full cal-
culus which also includes references, synchronization variables, and exceptions.
Given the number of advanced features in the calculus we remark that a proof
assistant has proved to be an invaluable tool to verify the correctness of our
proofs. Figure 13 shows the formal syntax. Meta variables τ , v and t denote
types, values, and terms, respectively. Most of these syntactic categories are
self-explanatory with the exception of a few cases that we proceed to clarify. We
note that, even though labels are actual types in MAC, we use a separate syn-
tactic category � for clarity in this calculus. Furthermore, we assume that labels
form a lattice (L ,�). Constructors MAC and Res represent a secure computa-
tion and a labeled resource, respectively. The latter is an established technique
to lift arbitrary resources such as references and synchronization variables into

2 https://bitbucket.org/MarcoVassena/mac-agda.

https://bitbucket.org/MarcoVassena/mac-agda
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Fig. 13. Formal syntax for types, values, and terms.

Fig. 14. Semantics for non-standard constructs.

MAC [31]. MAC and Res are MAC’s internals constructors, therefore they are
not available to users of the library and are not part of the surface syntax. Data
type Id τ denotes an expression of type τ and Res (Id t) represents a labeled
expression t , which we abbreviate as Labeled t . Similarly we write Labeled � τ
for the type Res � (Id τ). Node 〈∗〉 corresponds to the applicative (functor)
operator and is overloaded for Labeled � t and Id τ . Every applicative functor is
also a functor [20], hence fmap f x is simply defined as (Labeled f ) 〈∗〉 x . The
special syntax nodes •, 〈∗〉•, and relabel• represent erased terms and are used
by our proof technique to examine the security guarantees of the calculus.

Types. The typing judgment Γ � t : τ denotes that term t has type τ assuming
the typing environment Γ. All the typing rules are standard and thus omitted,
except for • which can assume any type, i.e. Γ � • : τ .

Semantics. The small-step semantics of the calculus is represented by the rela-
tion t1 � t2, which denotes that t1 reduces to t2 in one step. Most of the
rules are standard and hence omitted; the rules for interesting constructs are
shown in Fig. 14. Term • merely reduces to itself according to rule [Hole.] Rule
[Labeled〈∗〉] describes the semantics of operator 〈∗〉, which applies a labeled
function to a labeled value. Terms t1 and t2 are wrapped in Id so they cannot
be combined by plain function application. As rule [Id〈∗〉] shows, Id is also an
applicative operator and therefore 〈∗〉 is used instead. Observe that symbol 〈∗〉
is overloaded, where the type of its argument determines which rule to apply,
i.e. either [Labeled〈∗〉] or [Id〈∗〉]. Rule [Id〈∗〉] requires a function to be in
weak-head normal form ((λx .t1) t2) where beta reduction occurs right away. (As
usual, we write [t1 / x ] t2 for the capture-avoiding substitution of every occur-
rence of x with t1 in t2). This manner to write the rule is unusual since it
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would be expected that Id f 〈∗〉 Id t � Id (f t). Nevertheless, the eagerness
of 〈∗〉 in its first argument is needed for technical reasons in order to guaran-
tee non-interference. Rule [Relabelu]pgrades the label of a labeled value. Since
relabeling occurs at the level of types, the reduction rules simply create another
labeled term. Finally rule [unlabele]xtracts the labeled value and returns it
in a computation at the appropriate security level. We omit the two context
rules that first reduce the labeled value to weak-head normal form and then the
expression itself.

5.1 Sequential Calculus

Fig. 15. Commutative
diagram

In this section, we prove progress-insensitive non-
interference for our calculus. Similar to other work
[19,30,37], we employ the term erasure proof technique.
To that end, we introduce an erasure function which
rewrites sensitive information, i.e. data above the secu-
rity level of the attacker, to term •. Since security levels
are at the type-level, the erasure function is type-driven.
We write ετ

�A
(t) for the erasure of term t with type τ of

data above the security of the attacker �A. We omit the type superscript when
it is either irrelevant or clear from the context. Figure 15 highlights the intuition
behind the used proof technique: showing that the drawn diagram commutes.
More precisely, we show that erasing sensitive data from a term t and then
taking a step (lower part of the diagram) is the same as firstly taking a step
(upper part of the diagram) and then erasing sensitive data. If term t leaks data
which sensitivity label is above �A, then erasing all sensitive data and taking a
step might not be the same as taking a step and then erasing secret values—the
leaked sensitive data in t ′ might remain in ετ

�A
(t ′).

Fig. 16. Erasure function.
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Fig. 17. Reduction rules for 〈∗〉• and relabel•.

Figure 16 shows the definition of the erasure functions for the interest-
ing cases. Before explaining them, we remark that ground values (e.g., True)
are unaffected by the erasure function and that, for most of the terms,
the function is homomorphically applied, e.g., ε

()
� (if t1 then t2 else t3) =

if εBool
� (t1) then ε

()
� (t2) else ε

()
� (t3). Labeled resources are erased according

to the label found in their type (Res � τ). If the attacker can observe the
term (� � �A), the erasure function is homomorphically applied; otherwise,
it is replaced with •. In principle, one might be tempted to apply the erasure
function homomorphically for 〈∗〉 and relabel , but such approach unfortunately
breaks the commutativity of Fig. 15. To illustrate this point, consider the term
(Res f ) 〈∗〉 (Res x ) of type Labeled H Int , which reduces to Res (f 〈∗〉 x )
according to rule [Labeled〈∗〉]. By applying the erasure function homomor-
phically, we get εL(Res f ) 〈∗〉 εL(Res x ), that is (Res •) 〈∗〉 (Res •) which
reduces to Res (• 〈∗〉 •) �≡ Res •. Operator relabel raises a similar problem.
Consider for example the term relabel (Labeled 42) :: Labeled H Int , where
Labeled 42::Labeled L Int . If the erasure function were applied homomorphically,
i.e. consider relabel εLabeled L Int

L (Labeled 42), it means that sensitive data pro-
duced by relabel remains after erasure—thus, breaking commutativity. Instead,
we perform erasure in two-steps—a novel technique if compared with previous
papers (e.g., [37]). Rather than being a pure syntactic procedure, erasure is also
performed by additional evaluation rules, triggered by special constructs intro-
duced by the erasure function. Specifically, the erasure function replaces 〈∗〉 with
〈∗〉• and erasure is then performed by means of rule [Labeled〈∗〉•]—see Fig. 17.
Following the same scheme, the erasure function replaces relabel with relabel•
and rule [Relabel•] performs the erasure. 〈∗〉• and relabel• and their seman-
tics rules are introduced due to mere technical reasons (as explained above) and
they do not impact the performance of MAC since they are not part of its
implementation. Finally, terms of type MAC � τ are replaced by • when the
computation is more sensitive than the attacker level (� �� �A); otherwise, the
erasure function is homomorphically applied.

Progress-Insensitive Non-interference. The non-interference proof relies on
two fundamental properties of our calclulus: determinism and distributivity.
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Proposition 1 (Sequential determinancy and distributivity)

– If t1 � t2 and t1 � t3 then t2 = t3.
– If t1 � t2 then ε�A(t1) � ε�A(t2).

In Proposition 1, we show the auxiliary property that erasure distributes
over substitution, i.e. ε�A([x / t1 ] t2) = [x / ε�A(t1)] ε�A(t2). Note, however, that
the erasure function does not always distribute over function application, i.e.
ετ
�A

(t1 t2) �≡ ε�A(t1) ε�A(t2) when τ = MAC h τ ′ and h �� �A. It is precisely for
this reason that rule [Id〈∗〉] performs substitution rather than function applica-
tion. Before stating non-interference, we formally define �A-equivalence.

Definition 1 (�A-equivalence). Two terms are indistinguishable from an
attacker at security level �A, written x ≈�A y, if and only if ε�A(x ) = ε�A(y).

Using Proposition 1, we show that our semantics preserves �A-equivalence.

Proposition 2 (�A-equivalence preservation). If t1 ≈�A t2, t1 � t ′
1, and

t2 � t ′
2, then t ′

1 ≈�A t ′
2.

We finally prove progress-insensitive non-interference for the sequential calculus.
We employ big-step semantics, denoted by t ⇓ v , which reduces term t to value
v in a finite number of steps.

Theorem 1 (PINI). If t1 ≈�A t2, t1 ⇓ v ′
1, and t2 ⇓ v ′

2, then v ′
1 ≈�A v ′

2.

5.2 Concurrent Calculus

Fig. 18. Syntax for concurrent calclulus.

Figure 18 extends the calculus
from Sect. 5 with concurrency.
It introduces global configura-
tions of the form 〈s, Φ〉 com-
posed by an abstract scheduler
state s and a thread pool Φ.
Threads are secure computa-
tions of type MAC � () which get organized in isolated thread pools according
to their security label. A pool ts in the category Pool � contains exclusively
threads at security level �. We use the standard list interface [ ], t : ts, and ts[n]
for the empty list, the insertion of a term into an existing list, and accessing
the nth-element, respectively. We write Φ[�][n] = t to retrieve the nth-thread
in the �-thread pool—it is a syntax sugar for Φ(�) = ts and ts[n] = t . The
notation Φ[�][n] := t denotes the thread pool obtained by performing the update
Φ(�)[n �→ t ]. Reading from an erased thread pool results in an erased thread, i.e.
•[n] = • and updating it has no effect, i.e. •[n �→ t ] = •.
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Fig. 19. Scheme rule for concurrent semantics.

Semantics. The relation ↪→(�,n)

represents an evaluation step
for global configurations, where
the thread identified by (�,n)
gets scheduled. Figure 19 shows
the scheme rule for ↪→(�,n). The
scheduled thread is retrieved from the configuration (Φ[�][n] = t1) and executed
(t1 �e t2). We decorate the sequential semantics with events e, which provides
to the scheduler information about the effects produced by the scheduled instruc-
tion, for example • �• •. Events inform the scheduler about the evolution of
the global configuration, so that it can realize concrete scheduling policies. The

relation s1
(�,n,e)−−−−→ s2 represents a transition in the scheduler, that depending

on the initial state s1, decides to run thread identified by (�,n) and updates its
state according to the event e. Lastly, the thread pool is updated with the final
state of the thread (Φ[�][n] := t2).

Progress-Sensitive Non-interference. Our concurrent calculus satisfies
progress sensitive non-interference—a security condition often enforced by IFC
techniques for π-calculus [12,27]. A global configurations is erased by erasing
its components, that is ε�A(〈s, Φ〉) = 〈ε�A(s), ε�A(Φ)〉. The thread pool Φ is
erased point-wise, pools are either completely collapsed if not visible from the
attacker, i.e. εPool �

�A
(ts) = • if � �� �A, or the erasure function is homomorphi-

cally applied to their content. The erasure of the scheduler state s is scheduler
specific. To obtain a parametric proof of non-interference, we assume certain
properties about the scheduler. Specifically, our proof is valid for deterministic
schedulers which fulfill progress and non-interference themselves, i.e. schedulers
cannot leverage sensitive information in threads to determine what to schedule
next As for the sequential calculus, we rely on determinancy and distributivity
of the concurrent semantics.

Proposition 3 (Concurrent determinancy and distributivity)

– If c1 ↪→(�,n) c2 and c1 ↪→(�,n) c3, then c2 = c3.
– If c1 ↪→(�,n,e) c2, then it holds that ε�A(c1) ↪→(�,n,ε�A

(e)) ε�A(c2).

In the non-interference theorem, we write as usual ↪→�for the reflexive tran-
sitive closure of ↪→ and we generalize ≈�A to denote �A-equivalence between
configurations.

Theorem 2 (Progress-sensitive non-interference). Given the global config-
urations c1, c′

1, c2, and assuming a deterministic and non-interfering scheduler
that makes progress, if c1 ≈�A c2 and c1 ↪→(�,n) c′

1, then there exists c′
2 such that

c2 ↪→�c′
2 and c2 ≈�A c′

2.
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6 Related Work

Security Libraries. Li and Zdancewic’s seminal work [18] shows how the structure
arrows can provide IFC as a library in Haskell. Tsai et al. [39] extend that work
to support concurrency and data with heterogeneous labels. Russo et al. [30]
implement the security library SecLib using a simpler structure than arrows,
i.e. monads—rather than labeled values, this work introduces a monad which sta-
tically label side-effect free values. The security library LIO [36,37] dynamically
enforces IFC for both sequential and concurrent settings. LIO presents opera-
tions similar to fmap and 〈∗〉 for labeled values with differences in the returning
type due to LIO’s checks for clearence—this work provides a foundation to ana-
lyze the security implications of such primitives. Mechanized proofs for LIO are
given only for its core sequential calculus [37]. Inspired by SecLib and LIO’s
designs, MAC leverages Haskell’s type system to enforce IFC [31]—this work
does not contain formal guarantees and relies on its simplicity to convince the
reader about its correctness. HLIO uses advanced Haskell’s type-system fea-
tures to provide a hybrid approach: IFC is statically enforce while allowing the
programmers to defer selected security checks to be done at runtime [6]. Our
work studies the security implications of extending LIO, MAC, and HLIO
with a rich structure for labeled values. Devriese and Piessens provide a monad
transformer to extend imperative-like APIs with support for IFC in Haskell [8].
Jaskelioff and Russo implements a library which dynamically enforces IFC using
secure multi-execution (SME) [15]—a technique that runs programs multiple
times. Rather than running multiple copies of a program, Schmitz et al. [33]
provide a library with faceted values, where values present different behavior
according to the privilege of the observer. Different from the work above, we
present a fully-fledged mechanized proof for our sequential and concurrent cal-
culus which includes references, synchronization variables, and exceptions.

IFC tools. IFC research has produced compilers capable of preserving confiden-
tiality of data: Jif [25] and Paragon [4] (based on Java), and FlowCaml [34]
(based on Caml). The SPARK language presents a IFC analysis which has been
extended to guarantee progress-sensitive non-inference [28]. JSFlow [11] is one of
the state-of-the-art IFC system for the web (based on JavaScript). These tools
preserve confidentiality in a fine-grained fashion where every piece of data is
explicitly label. Specifically, there is no abstract data type to label data, so our
results cannot directly apply to them.

Operating systems research. MAC systems [3] assign a label with an entire OS
process—settling a single policy for all the data handled by it. While proposed
in the 70s, there are modern manifestations of this idea (e.g., [17,23,40]) applied
to diverse scenarios like the web (e.g., [2,38]) and mobile devices (e.g., [5,16]).
In principle, it would be possible to extend such MAC-like systems to include
a notion of labeled values with the functor structure as well as the relabeling
primitive proposed by this work. For instance, COWL [38] presents the notion
of labeled blob and labeled XHR which is isomorphic to the notion of labeled
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values, thus making possible to apply our results. Furthermore, because many
MAC-like system often ignore termination leaks (e.g., [9,40]), there is no need
to use call-by-name evaluation to obtain security guarantees.

7 Conclusions

We present an extension of MAC that provides labeled values with an applica-
tive functor-like structure and a relabeling operation, enabling convenient and
expressive manipulation of labeled values using side effect-free code and sav-
ing programmers from introducing unnecessary sub-computations (e.g., in the
form of threads). We have proved this extension secure both in sequential and
concurrent settings, exposing an interesting connection between evaluation strat-
egy and progress-sensitive non-interference. This work bridges the gap between
existing IFC libraries (which focus on side-effecting code) and the usual Haskell
programming model (which favors pure code), with a view to making IFC in
Haskell more practical.

Acknowledgement. This work was supported in part by the Swedish research agen-
cies VR and STINT, The Sloan Foundation, and by NSF grant 1421770.
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