
Lightweight Delegatable Proofs of Storage

Jia Xu1(B), Anjia Yang1,2(B), Jianying Zhou1, and Duncan S. Wong3

1 Infocomm Security Department, Institute for Infocomm Research,
Singapore, Singapore

{xuj,jyzhou}@i2r.a-star.edu.sg
2 City University of Hong Kong, Hong Kong, China

ayang3-c@my.cityu.edu.hk
3 Hong Kong Applied Science and Technology Research Institute,

Hong Kong, China
duncanwong@astri.org

Abstract. Proofs of Storage (including Proofs of Retrievability and
Provable Data Possession) is a cryptographic tool, which enables data
owner or third party auditor to audit integrity of data stored remotely
in a cloud storage server, without keeping a local copy of data or down-
loading data back during auditing. We observe that all existing publicly
verifiable POS schemes suffer from a serious drawback: It is extremely
slow to compute authentication tags for all data blocks, due to many
expensive group exponentiation operations. Surprisingly, it is even much
slower than typical network uploading speed, and becomes the bottle-
neck of the setup phase of the POS scheme. We propose a new variant
formulation called “Delegatable Proofs of Storage”. In this new relaxed
formulation, we are able to construct a POS scheme, which on one side
is as efficient as privately verifiable POS schemes, and on the other side
can support third party auditor and can efficiently switch auditors at
any time, close to the functionalities of publicly verifiable POS schemes.
Compared to traditional publicly verifiable POS schemes, we speed up
the tag generation process by at least several hundred times, without
sacrificing efficiency in any other aspect. Like many existing schemes, we
can also speed up our tag generation process by approximately N times
using N CPU cores in parallel, before I/O cost becomes the bottleneck.
We prove that our scheme is sound under Bilinear Strong Diffie-Hellman
Assumption in standard model.

Keywords: Proof of Storage · Proof of Retrievability · Third party
verifier · Lightweight homomorphic authentication tag · Applied
cryptography

(1) The full version [46] with all details of proof is available at http://eprint.iacr.
org/2014/395.
(2) A. Yang contributed to this work when he took his internship in Infocomm
Security Department, Institute for Infocomm Research, Singapore.

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part I, LNCS 9878, pp. 324–343, 2016.
DOI: 10.1007/978-3-319-45744-4 16

http://eprint.iacr.org/2014/395
http://eprint.iacr.org/2014/395

Lightweight Delegatable Proofs of Storage 325

1 Introduction

Since Proofs of Retrievability (POR [22]) and Provable Data Possession
(PDP [4]) are proposed in 2007, a lot of effort of research community has been
devoted to constructing proofs of storage schemes with more advanced features.
The new features include, public key verifiability [30], supporting dynamic oper-
ations [10,16,35] (i.e. inserting/deleting/editing a data block), supporting mul-
tiple cloud servers [13], privacy-preserving against auditor [42], and supporting
data sharing [37], etc.

1.1 Drawbacks of Publicly Verifiable Proofs of Storage

Expensive Setup Preprocessing. We look back into the very first feature—
public verifiability, and observe that all existing publicly verifiable POS schemes
suffer from serious drawbacks: (1) Merkle Hash Tree based method is not disk
IO-efficient and not even a sub-linear memory authenticator [24]: Every bit of the
file has to be accessed by the cloud storage server in each remote integrity audit-
ing process. (2) By our knowledge, all other publicly verifiable POS schemes
employ a lot of expensive operation (e.g. group exponentiation) to generate
authentication tags for data blocks. As a result, it is prohibitively expensive
to generate authentication tags for medium or large size data file. For exam-
ple, Wang et al. [38] achieves throughput of data pre-processing (i.e. generating
authentication tag) at speed 17.2 KB/s with an Intel Core 2 1.86 GHz worksta-
tion CPU, which means it will take about 17 h to generate authentication tags
for a 1 GB file. Even if the user has a CPU with 8 cores, it still requires more
than 2 h heavy computation. Such amount of heavy computation is not appro-
priate for a laptop, not to mention tablet computer (e.g. iPad) or smart phone.
It might be weird to tell users that, mobile device should be only used to verify
or download data file stored in cloud storage server, and should not be used to
upload (and thus pre-process) data file to cloud. Unless a formal lower bound
is proved and shows that existing study of POS has reach optimality, it is the
responsibility of our researchers to make both pre-processing and verification
of (third party verifiable) POS practically efficient, although the existing works
have already reached good amortized complexity. In this paper, we make our
effort towards this direction, improving pre-processing speed by several hundred
times without sacrificing efficiency on other aspects.

In many publicly verifiable POS (POR/PDP) scheme (e.g. [4,30,38,42]), pub-
licly verifiable authentication tag function, which is a variant of signing algorithm
in a digital signature scheme, is applied directly over every block of a large user
data. This is one of few application scenarios that a public key cryptography
primitive is directly applied over large user data. In contrast, (1) public key
encryption scheme is typically employed to encrypt a short symmetric cipher
key, and the more efficient symmetric cipher (e.g. AES) will encrypt the user
data; (2) digital signature scheme is typically applied over a short hash digest
of large user data, where the hash function (e.g. SHA256) is much more efficient
(in term of throughput) than digital signature signing algorithm.

326 J. Xu et al.

Lack of Control on Auditing. The benefit of publicly verifiable POS schemes
is that, anyone with the public key can audit the integrity of data in cloud
storage, to relieve the burden from the data owner. However, one should not allow
any third party to audit his/her data at their will, and delegation of auditing task
should be in a controlled and organized manner. Otherwise, we cannot prevent
extreme cases: (1) on one hand, some data file could attract too much attention
from public, and are audited unnecessarily too frequently by the public, which
might actually result in distributed denial of service attack against the cloud
storage server; (2) on the other hand, some unpopular data file may be audited
by the public too rarely, so that the possible data loss event might be detected
and alerted to the data owner too late and no effective countermeasure can be
done to reduce the damage at that time.

1.2 Existing Approaches to Mitigate Drawbacks

Outsourcing Expensive Operations. To reduce the computation burden on
data owner for preprocessing in setup phase, the data owner could outsource
expensive operations (e.g. group exponentiation) to some cloud computing server
during authentication tag generation, by using existing techniques (e.g. [12,21])
as black-box, and verify the computation result.

However, this approach just shifts the computation burden from data owner
to cloud storage server, instead of reducing the amount of expensive operations.
Furthermore, considering the data owner and cloud computing server as a whole
system, much more cost in network communication and computation will be
incurred: (1) uploading (possibly transformed) data file, to the cloud computing
server, and downloading computation results from the cloud computing server;
(2) extra computation cost on both data owner side and cloud computing server
side, in order to allow data owner to verify the computation result returned by
the cloud computing server and maintain data privacy against cloud computing
server.

One may argue that it could save much of the above cost, if the outsourcing
of expensive operations and proofs of storage scheme are integrated together
and letting cloud storage server takes the role of cloud computing server. But
in this case, simple black-box combination of existing proofs of storage scheme
and existing privacy-preserving and verifiable outsource scheme for expensive
operations, may not work. Thus, a new sophisticated proofs of storage scheme
is required to be constructed following this approach, which remains an open
problem.

Dual Instantiations of Privately Verifiable Proof of Storage. The data
owner could independently apply an existing privately verifiable POS scheme
over an input file twice, in order to generate two key pairs and two authentication
tags per each data block, where one key pair and authentication tag (per data
block) will be utilized by data owner to perform data integrity check, and the
other key pair and authentication tag (per data block) will be utilized by auditor
to perform data integrity check, using the interactive proof algorithm in the

Lightweight Delegatable Proofs of Storage 327

privately verifiable POS scheme. The limitation of this approach is that, in order
to add an extra auditor or switch the auditor, the data owner has to download
the whole data file to refresh the key pair and authentication tags for auditor.

Recently, [2] gave an alternative solution. The data owner runs privately
verifiable POS scheme (i.e. Shacham-Water’s scheme [30] as in [2]) over a data
file to get a key pair and authentication tag per each data block, and uploads
the data file together with newly generated authentication tags to cloud stor-
age server. Next, the auditor downloads the whole file from cloud storage server,
and independently runs the same privately verifiable POS scheme over the down-
loaded file, to get another key pair and another set of authentication tags. The
auditor uploads these authentication tags to cloud storage server. For each chal-
lenge query provided by the auditor, the cloud storage server will compute two
responses, where one is upon data owner’s authentication tags and the other is
upon auditor’s authentication tags. Then the auditor can verify the response gen-
erated upon his/her authentication tags, and keeps the other response available
for data owner.

Since [2] aims to resolve possible framing attack among the data owner, cloud
storage server and auditor, all communication messages are digitally signed by
senders, and the auditor has to prove to the data owner that, his/her authentica-
tion tags are generated correctly, where this proof method is very expensive, and
comparable to tag generation complexity of publicly verifiable POS scheme (e.g.
[4,30,38,42]). Furthermore, in this scheme, in the case of revoking or adding an
auditor, the new auditor has to download the whole file, then compute authenti-
cation tags, and prove that these tags are correctly generated to the data owner.

We remark that our early version of this work appeared as a private internal
technique report in early 2014, before [2] became available to public.

Program Obfuscation. Very recently, [19] proposed to construct publicly ver-
ifiable POR from privately verifiable POR using indistinguishability obfuscation
technique [17]. This obfuscation technique is able to embed the data owner’s
secret key in a verifier program, in a way such that it is hard to recover the
secret key from the obfuscated verifier program. Therefore, this obfuscated ver-
ifier program could be treated as public key and given to the auditor to per-
form data integrity check. However, both [17,19] admit that indistinguishability
obfuscation is currently impractical. Particularly, [1] implements the scheme of
[17] and shows that, it requires about 9 h to obfuscate a simple function which
contains just 15 AND gates, and resulted obfuscated program has size 31.1 GB.
Furthermore, it requires around 3.3 h to evaluate the obfuscated program on a
single input.

1.3 Our Approach

To address the issues of existing publicly verifiable POS schemes, we propose a
hybrid POS scheme, which on one hand supports delegation of data auditing task
and switching/adding/revoking an auditor, like publicly verifiable POS schemes,
and on the other hand is as efficient as a privately verifiable POS scheme.

328 J. Xu et al.

Unlike in publicly verifiable POS scheme, the data owner could delegate
the auditing task to some semi-trusted third party auditor, and this auditor is
responsible to audit the data stored in cloud storage on behalf of the data owner,
in a controlled way and with proper frequency. We call such an exclusive auditor
as Owner-Delegated-Auditor or ODA for short. In real world applications, ODA
could be another server that provides free or paid auditing service to many cloud
users.

Our bottom line is that, even if all auditors colluded with the dishonest cloud
storage server, our formulation and scheme should guarantee that the data owner
still retains the capability to perform POR auditing by herself.

Overview of Our Scheme. Our scheme generates two pairs of public/private
keys: (pk, sk) and (vpk, vsk). The verification public/private key pair (vpk, vsk)
is delegated to the ODA. Our scheme proposes a novel linear homomorphic
authentication tag function [5], which is extremely lightweight, without any
expensive operations (e.g. group exponentiation or bilinear map). Our tag func-
tion generates two tags (σi, ti) for each data block, where tag σi is generated in
a way similar to Shacham and Waters’ privately verifiable POR scheme [30], and
tag ti is generated in a completely new way. Each of tag σi and tag ti is of length
equal to 1/m-fraction of length of a data block, where the data block is treated as
a vector of dimension m1. ODA is able to verify data integrity remotely by check-
ing consistency among the data blocks and both tags {(σi, ti)} that are stored
in the cloud storage server, using the verification secret key vsk. The data owner
retains the capability to verify data integrity by checking consistency between
the data blocks and tags {σi}, using the master secret key sk. When an ODA is
revoked and replaced by a new ODA, data owner will update all authentication
tags {ti} and the verification key pair (vpk, vsk) without downloading the data
file from cloud, but keep tags {σi} and master key pair (pk, sk) unchanged.

Furthermore, we customize the polynomial commitment scheme proposed by
Kate et al. [23] and integrate it into our homomorphic authentication tag scheme,
in order to reduce proof size from O(m) to O(1).

1.4 Contributions

Our main contributions can be summarized as below:

• We propose a new formulation called “Delegatable Proofs of Storage” (DPOS),
as a relaxed variant of publicly verifiable POS. Our formulation allows data
owner to delegate auditing task to a third party auditor, and meanwhile retains
the capability to perform audit task by herself, even if the auditor colluded
with the cloud storage server. Our formulation also supports revoking and
switching auditors efficiently.

• We design a new scheme under this formulation. Our scheme is as efficient
as privately verifiable POS: The tag generation throughput is slightly larger

1 System parameter m can take any positive integer value and typical value is from a
hundred to a thousand.

Lightweight Delegatable Proofs of Storage 329

T
a
b
le

1
.

P
er

fo
rm

a
n
ce

C
o
m

p
a
ri

so
n

o
f

P
ro

o
fs

o
f

S
to

ra
g
e

(P
O

R
,P

D
P

)
S
ch

em
es

.
In

th
is

ta
b
le

,
p
u
b
li
cl

y
v
er

ifi
a
b
le

P
O

S
sc

h
em

es
a
p
p
ea

r
a
b
ov

e
o
u
r

sc
h
em

e,
a
n
d

p
ri

va
te

ly
v
er

ifi
a
b
le

P
O

S
sc

h
em

es
a
p
p
ea

r
b
el

ow
o
u
r

sc
h
em

e.

S
c
h
e
m
e

C
o
m

p
u
ta

ti
o
n

(D
a
ta

P
re

-p
ro

c
e
ss
)

C
o
m

m
u
n
ic
a
ti
o
n

b
it
s

S
to

ra
g
e

O
v
e
r-

h
e
a
d

(S
e
rv

e
r)

C
o
m

p
u
ta

ti
o
n

(V
e
ri
fi
e
r)

C
o
m

p
u
ta

ti
o
n

(P
ro

v
e
r)

e
x

p
.

m
u

l.
a

d
d
.

C
h
a
ll
e
n
g
e

R
e
sp

o
n
se

e
x

p
.

m
u

l.
p
a

ir
.

a
d
d
.

e
x

p
.

m
u

l.
p
a

ir
.

a
d
d
.

[3
,4

]
2

|F
|

m
λ

|F
|

m
λ

0
lo
g

�
+

2
κ

2
λ

|F
|

m
�

�
0

0
�

2
�

0
�

[3
0
,3

1
]-
p
u
b
.

|F
|

λ
+

|F
|

m
λ

|F
|

λ
0

�
λ
+

�
lo
g
(

|F
|

m
λ
)

(m
+

1
)λ

|F
|

m
�
+

m
�
+

m
2

0
�

m
�
+

�
0

m
�

[4
3
,4

4
]

2
|F

|
λ

|F
|

λ
0

�
λ
+

�
lo
g
(

|F
|

m
λ
)

(�
+

3
)λ

+

�
(�

lo
g
(

|F
|

m
λ
)�

−
1
)

|h
|

|F
|

�
�

4
0

�
2
�

0
�

[4
2
]

2
|F

|
λ

|F
|

λ
0

�
λ

+
�
lo
g
(

|F
|

m
λ
)

3
λ

|F
|

�
�

2
0

�
2
�

0
�

[3
8
]a

|F
|

λ
+

|F
|

m
λ

|F
|

λ
0

�
λ

+
�
lo
g
(

|F
|

m
λ
)

(2
m

+
1
)λ

|F
|

m
�
+

m
�
+

2
m

2
0

�
+

m
m

�
+

�
1

m
�

[5
3
]

|F
|

m
λ

+
m

2
|F

|
λ

+
m

|F
|

λ
+

m
�
λ

+
�
lo
g
(

|F
|

m
λ
)

(m
+

3
)λ

|F
|

m
�
+

m
�
+

m
3

0
�
+

m
m

�
+

2
�
+
2
m

1
m

�

[2
0
]

|F
|

m
λ

0
0

λ
+

k
λ

0
b

|F
|

m
λ

|F
|

m
λ

0
0

lo
g
(

|F
|

m
λ
)

+
m

|F
|

m
λ

0
|F

|
m

λ

[4
9
]

|F
|

λ
+

|F
|

m
λ

+
m

|F
|

λ
0

(�
+

1
)λ

+
�
lo
g
(

|F
|

m
λ
)

2
λ

|F
|

m
�

2
�

2
0

�
+

m
m

�
+

m
+

�
m

m
�

[5
0
]

|F
|

λ
+

2
|F

|
m

λ
|F

|
λ

0
2
λ

+
�
lo
g
(

|F
|

m
λ
)

3
λ

|F
|

m
�

2
�

4
0

�
+

m
m

�
+

m
+

�
0

m
�

[3
4
]

2
|F

|
m

λ
|F

|
m

λ
0

|F
|

m
+

2
λ

5
λ

|F
|

m
|F

|
m

λ
+

4
|F

|
m

λ
+

1
5

0
|F

|
m

λ
+

5
3

|F
|

m
λ

3
2

|F
|

m
λ

O
u
r
S
c
h
e
m
e

0
2

|F
|

λ
2

|F
|

λ
3
λ

+
2
8
0

6
λ

2
|F

|
m

6
�

7
�

3
m

m
�
+

2
�

+
6
m

0
m

�
+

2
�

+
2
m

[3
0
,3

1
]-
p
ri
.c

0
|F

|
λ

|F
|

λ
�
λ
+

�
lo
g
(

|F
|

m
λ
)

(m
+

1
)λ

|F
|

m
0

�
+

m
0

�
+

m
0

m
�
+

�
0

m
�
+

�
a

[3
8
]
is

a
jo
u
rn

a
l
v
e
rs
io
n

o
f
[4
2
],

a
n
d

th
e
m

a
in

sc
h
e
m

e
is

a
lm

o
st

th
e
sa

m
e
a
s
[4
2
].

W
e
n
o
w

c
o
n
si
d
e
r
th

e
o
n
e
th

a
t
d
iv
id

e
s
e
a
c
h

d
a
ta

b
lo
c
k

in
to

m
se

c
to

rs
.

b
In

H
a
o

e
t
a
l.
’s

p
a
p
e
r
[2
0
],

th
e
a
u
th

e
n
ti
c
a
ti
o
n

ta
g
s
a
re

st
o
re

d
a
t
b
o
th

th
e
c
li
e
n
t
a
n
d

th
e
v
e
ri
fi
e
r
si
d
e
,
ra

th
e
r
th

a
n

th
e
se

rv
e
r
si
d
e
.

c
T
h
e
p
ri
v
a
te

k
e
y

v
e
ri
fi
a
b
le

P
O
R

sc
h
e
m

e
o
f
S
h
a
c
h
a
m

a
n
d

W
a
te

rs
[3
0
,3

1
].

N
o
ti
c
e
th

a
t
th

e
p
u
b
li
c
k
e
y

v
e
ri
fi
a
b
le

P
O
S

sc
h
e
m

e
o
f
[3
0
,3

1
]
a
ls
o

a
p
p
e
a
rs

in
th

is
ta

b
le
.

κ
,
k

a
re

sy
st
e
m

p
a
ra

m
e
te

rs
,

|h
|i

s
th

e
le
n
g
th

o
f
a

h
a
sh

o
u
tp

u
t.

|F
|i

s
th

e
d
a
ta

fi
le

si
z
e
.

λ
is

g
ro

u
p

e
le
m

e
n
t
si
z
e
.

m
is

th
e

n
u
m
b
e
r
o
f
se

c
to

rs
in

e
a
c
h

d
a
ta

b
lo
c
k
.

�
is

th
e

sa
m

p
li
n
g

si
z
e
.

330 J. Xu et al.

than 10 MB/s per CPU core on a mobile CPU released in Year 2008. On the
other side, our scheme allows delegation of auditing task to a semi-trusted
third party auditor, and also supports switching and revoking an auditor at
any time, like a publicly verifiable POS scheme. We compare the performance
complexity of our scheme with the state of arts in Table 1, and experiment
shows the tag generation speed of our scheme is more than hundred times
faster than the state of art of publicly verifiable POS schemes.

• We prove that our scheme is sound (Theorems 1 and 2) under Bilinear Strong
Diffie-Hellman Assumption in standard model.

2 Related Work

Recently, much growing attention has been paid to integrity check of data stored
at untrusted servers [3–6,8,9,11,13–16,20,22,28–33,36–45,47–53]. In CCS’07,
Ateniese et al. [4] defined the provable data possession (PDP) model and pro-
posed the first publicly verifiable PDP scheme. Their scheme used RSA-based
homomorphic authenticators and sampled a number of data blocks rather than
the whole data file to audit the outsourced data, which can reduce the commu-
nication complexity significantly. However, in their scheme, a linear combination
of sampled blocks are exposed to the third party auditor (TPA) at each audit-
ing, which may leak the data information to the TPA. At the meantime, Juels
and Kaliski [22] described a similar but stronger model: proof of retrievability
(POR), which enables auditing of not only the integrity but also the retrievability
of remote data files by employing spot-checking and error-correcting codes. Nev-
ertheless, their proposed scheme allows for only a bounded number of auditing
services and does not support public verification.

Shacham and Waters [30,31] proposed two POR schemes, where one is pri-
vate key verifiable and the other is public key verifiable, and gave a rigorous
proof of security under the POR model [22]. Similar to [4], their scheme utilized
homomorphic authenticators built from BLS signatures [7]. Subsequently, Zeng
et al. [51], Wang et al. [43,44] proposed some similar constructions for publicly
verifiable remote data integrity check, which adopted the BLS based homomor-
phic authenticators. With the same reason as [4], these protocols do not support
data privacy. In [38,42], Wang et al. extended their scheme to be privacy pre-
serving. The idea is to mask the linear combination of sampled blocks in the
server’s response with some random value. With the similar masking technique,
Zhu et al. [53] introduced another privacy-preserving public auditing scheme.
Later, Hao et al. [20] and Yang et al. [49] proposed two privacy-preserving pub-
lic auditing schemes without applying the masking technique. Yuan et al. [50]
gave a POR scheme with public verifiability and constant communication cost.
Ren [26] designed mutual verifiable public POS application.

However, by our knowledge, all of the publicly verifiable PDP/POR protocols
require to do a large amount of computation of exponentiation on big numbers for
generating the authentication tags upon preprocessing the data file. This makes
these schemes impractical for file of medium or large size, especially limiting the
usage on mobile devices.

Lightweight Delegatable Proofs of Storage 331

Although delegable POS has been studied by [25,27,34], unfortunately these
works have the same drawback with public POS, i.e., the cost of tag generation
is extremely high.

3 Formulation

We propose a formulation called “Delegatable Proofs of Storage” scheme (DPOS
for short), based on existing POR [22,30] and PDP [4] formulations. We provide
the system model in Sect. 3.1 and the trust model in Sect. 3.2. We will defer the
security definition to Sect. 5, where the security analysis of our scheme will be
provided.

3.1 System Model

Definition 1. A Delegatable Proofs of Storage (DPOS) scheme consists of algo-
rithms (KeyGen, Tag, UpdVK, OwnerVerify), and a pair of interactive algorithms
〈P,V〉, where each algorithm is described as below

• KeyGen(1λ) → (pk, sk, vpk, vsk) : Given a security parameter 1λ, this random-
ized key generating algorithm generates a pair of public/private master keys
(pk, sk) and a pair of public/private verification keys (vpk, vsk).

• Tag(sk, vsk, F) → (ParamF , {(σi, ti)}) : Given the master secret key sk, the
verification secret key vsk, and a data file F as input, the tag algorithm gener-
ates a file parameter ParamF and authentication tags {(σi, ti)}, where a unique
file identifier idF is a part of ParamF .

• UpdVK(vpk, vsk, {ti}) → (vpk′, vsk′, {t′i}) : Given the current verification key
pair (vpk, vsk) and the current authentication tags {ti}, this updating algo-
rithm generates the new verification key pair (vpk′, vsk′) and the new authen-
tication tags {t′i}.

• 〈P(pk, vpk, {(�Fi, σi, ti)}i),V(vsk,vpk,pk,ParamF)〉 → (b, Context, Evidence):
The verifier algorithm V interacts with the prover algorithm P to output a
decision bit b ∈ {1, 0}, Context and Evidence, where the input of P consists
of the master public key pk, the verification public key vpk, and file blocks
{ �Fi} and authentication tags {σi, ti}, and the input of V consists of the veri-
fication secret key vsk, verification public key vpk, master public key pk, and
file information ParamF .

• OwnerVerify(sk, pk, Context, Evidence, ParamF)) → (b0, b1) : The owner ver-
ifier algorithm OwnerVerify takes as input the master key pair (sk, pk) and
Context and Evidence, and outputs two decision bits b0, b1 ∈ {0, 1}, where b0
indicates accepting or rejecting the storage server, and b1 indicates accepting
or rejecting the ODA.

A DPOS system is described as below and illustrated in Fig. 1(a) and (b).

332 J. Xu et al.

Fig. 1. Illustration of system model of DPOS.

Definition 2. A DPOS system among three parties—data owner, cloud storage
server and auditor, can be implemented by running a DPOS scheme (KeyGen,
Tag, UpdVK,〈P,V〉,OwnerVerify) in the following three phases, where the setup
phase will execute at the very beginning, for only once (for one file); the proof
phase and revoke phase can execute for multiple times and in any (interleaved)
order.

Setup phase. The data owner runs the key generating algorithm KeyGen(1λ) for
only once across all files, to generate the per-user master key pair (pk, sk) and
the verification key pair (vpk, vsk). For every input data file, the data owner
runs the tag algorithm Tag over the (possibly erasure encoded) file, to gener-
ate authentication tags {(σi, ti)} and file parameter ParamF . At the end of setup
phase, the data owner sends the file F , all authentication tags {(σi, ti)}, file para-
meter ParamF , and public keys (pk, vpk) to the cloud storage server. The data
owner also chooses an exclusive third party auditor, called Owner-Delegated-
Auditor (ODA, for short), and delegates the verification key pair (vpk, vsk) and
file parameter ParamF to the ODA. After that, the data owner may keep only
keys (pk, sk, vpk, vsk) and file parameter ParamF in local storage, and delete
everything else from local storage.

Proof phase. The proof phase consists of multiple proof sessions. In each proof
session, the ODA, who runs algorithm V, interacts with the cloud storage server,
who runs algorithm P, to audit the integrity of data owner’s file, on behalf of
the data owner. Therefore, ODA is also called verifier and cloud storage server
is also called prover. ODA will also keep all outputs of algorithm V, i.e. tuples
(b, Context, Evidence), and allow data owner to fetch and verify these tuples
using algorithm OwnerVerify at any time.

Revoke phase. In the revoke phase, the data owner downloads all tags {ti} from
cloud storage server, revokes the current verification key pair, and generates a
fresh verification key pair and new tags {t′i}, by running algorithm UpdVK. The
data owner also chooses a new ODA, and delegates the new verification key pair

Lightweight Delegatable Proofs of Storage 333

to this new ODA, and sends the updated tags {t′i} to the cloud storage server to
replace the old tags {ti}.
Definition 3 (Completeness). A DPOS scheme (KeyGen, Tag, UpdVK,
〈P,V〉, OwnerVerify) is complete, if the following condition holds: For any keys
(pk,sk, vpk,vsk) generated by KeyGen, for any file F , if all parties follow our
scheme exactly and the data stored in cloud storage is intact, then interactive
proof algorithms 〈P,V〉 will always output (1, . . .) and OwnerVerify algorithm will
always output (1, 1).

3.2 Trust Model

In this paper, we aim to protect data integrity of data owner’s file. The data
owner is fully trusted, and the cloud storage server and ODA are semi-trusted
in different sense: (1) The cloud storage server is trusted in maintaining ser-
vice availability and is not trusted in maintaining data integrity (e.g. the server
might delete some rarely accessed data for economic benefits, or hide the data
corruption events caused by server failures or attacks to maintain reputation).
(2) Before he/she is revoked, the ODA is trusted in performing the delegated
auditing task and protecting his/her verification secret key securely. A revoked
ODA could be potentially malicious and might surrender his/her verification
secret key to the cloud storage server.

4 Our Proposed Scheme

4.1 Preliminaries

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be
a randomly chosen generator of group G. Let e : G × G → GT be a non-
degenerate and efficiently computable bilinear map. For vector �a = (a1, . . . , am)

and �b = (b1, . . . , bm), the notation
〈
�a, �b

〉
def=

m∑
j=1

ajbj denotes the dot product

(a.k.a inner product) of the two vectors �a and �b. For vector �v = (v0, . . . , vm−1)

the notation Poly�v(x)def=
m−1∑
j=0

vjx
j denotes the polynomial in variable x with �v

being the coefficient vector.

4.2 Construction of the Proposed DPOS Scheme

We define our DPOS scheme (KeyGen, Tag, UpdVK, 〈P,V〉, OwnerVerify) as
below, and these algorithms will run in the way as specified in Definition 2.
We remind that in the following description of algorithms, some equations have
inline explanation highlighted in box, which is not a part of algorithm procedures
but could be useful to understand the correctness of our algorithms.
KeyGen(1λ) → (pk, sk, vpk, vsk) Choose at random a λ-bits prime p and a
bilinear map e : G × G → GT , where G and GT are both multiplicative cyclic

334 J. Xu et al.

groups of prime order p. Choose at random a generator g ∈ G. Choose at random
α, γ, ρ ∈R Z

∗
p, and (β1, β2, . . ., βm) ∈R (Zp)

m. For each j ∈ [1,m], define αj := αj

mod p, and compute gj := gαj , hj := gρ·βj . Let α0 := 1, β0 := 1, g0 = gα0
= g,

h0 = gρ, vector �α := (α1, α2, . . ., αm), and �β := (β1, β2, . . . , βm). Choose two
random seeds s0, s1 for pseudorandom function PRFseed : {0, 1}λ × N → Zp.

The secret key is sk = (α, �β, s0) and the public key is pk = (g0, g1, . . . , gm).
The verification secret key is vsk = (ρ, γ, s1) and the verification public key is
vpk = (h0, h1, . . . , hm).
Tag(sk, vsk, F) → (ParamF , {(σi, ti)}) Split file2 F into n blocks, where each
block is treated as a vector of m elements from Zp: { �Fi = (Fi,0, . . . , Fi,m−1) ∈
Z

m
p }i∈[0,n−1]. Choose a unique identifier idF ∈ {0, 1}λ for file F . Define a cus-

tomized3 pseudorandom function w.r.t. the file F : Rs(i) = PRFs(idF , i).
For each block �Fi, 0 ≤ i ≤ n − 1, compute

σi :=
〈

�α, �Fi

〉
+ Rs0(i) = α · Poly �Fi

(α) + Rs0(i) mod p (1)

ti := ρ
〈

�β, �Fi

〉
+ γRs0(i) + Rs1(i) mod p (2)

The general information of F is ParamF := (idF , n).
UpdVK(vpk, vsk, {ti}i∈[0,n−1]) → (vpk′, vsk′, {t′i}i∈[0,n−1]) Parse vpk as (h0, . . . ,

hm) and vsk as (ρ, γ, s1). Verify the integrity of all tags {ti} (We will discuss
how to do this verification later), and abort if the verification fails. Choose at
random γ′ ∈R Z

∗
p and choose a random seed s′

1 for pseudorandom function R.

For each j ∈ [0,m], compute h′
j := hγ′

j = g(ρ·γ′)·βj ∈ G. For each i ∈ [0, n − 1],
compute a new authentication tag

t′i :=γ′ (ti − Rs1(i)) + Rs′
1
(i) mod p.

= γ′ · ρ
〈

�β, �Fi

〉
+ (γ′ · γ) Rs0(i) + Rs′

1
(i) mod p

The new verification public key is vpk′ := (h′
0, . . . , h

′
m) and the new verifica-

tion secret key is vsk′ := (γ′ · ρ, γ′ · γ, s′
1).

〈P(pk, vpk, { �Fi, σi, ti}i∈[0,n−1]),V(vsk, vpk, pk, ParamF)〉 → (b, Context, Evidence)

V1: Verifier parses ParamF as (idF , n). Verifier chooses a random subset C =
{i1, i2, . . . , ic} ⊂ [0, n − 1] of size c, where i1 < i2 < . . . < ic. Choose at random
w, ξ ∈R Z

∗
p, and compute wiι

:= wι mod p for each ι ∈ [1, c]. Verifier sends
(idF , {(i, wi) : i ∈ C}, ξ) to the prover to initiate a proof session.

2 Possibly, the input has been encoded by the data owner using some error erasure
code.

3 With such a customized function R, the input idF will become implicit and this
will make our expression short.

Lightweight Delegatable Proofs of Storage 335

P1: Prover finds the file and tags {(�Fi, σi, ti)}i corresponding to idF . Prover
computes �F ∈ Z

m
p , and σ̄, t̄ ∈ Zp as below.

�F :=

(∑
i∈C

wi
�Fi

)
mod p; (3)

σ̄ :=

(∑
i∈C

wiσi

)
mod p; (4)

t̄ :=

(∑
i∈C

witi

)
mod p. (5)

Evaluate polynomial Poly�F (x) at point x = ξ to obtain z := Poly�F (ξ)
mod p. Divide the polynomial (in variable x) Poly�F (x) − Poly�F (ξ) with (x − ξ)
using polynomial long division, and denote the coefficient vector of resulting
quotient polynomial as �v = (v0, . . . vm−2), that is, Poly�v(x) ≡ Poly�F (x)−Poly�F (ξ)

x−ξ

mod p. (Note : (x − ξ) can divide polynomial Poly�F (x) − Poly�F (ξ) perfectly,
since the latter polynomial evaluates to 0 at point x = ξ.)

Compute (ψα, ψβ , φα) ∈ G
3 as below

ψα :=
m−1∏
j=0

g
�F [j]
j =

m−1∏
j=0

(
gαj

)�F [j]

= gPoly�F (α); (6)

ψβ :=
m−1∏
j=0

h
�F [j]
j+1 =

m−1∏
j=0

(
gρ·βj+1

)�F [j]
= gρ〈�β, �F〉; (7)

φα :=
m−2∏
j=0

g
vj

j =
m−2∏
j=0

(
gαj

)vj

= gPoly�v(α). (8)

Prover sends (z, φα, σ̄, t̄, ψα, ψβ) to the verifier.

V2: Let Context := (ξ, {(i, wi) : i ∈ C}) and Evidence := (z, φα, σ̄). Verifier
sets b := 1 if the following equalities hold and sets b := 0 otherwise.

e(ψα, g) ?= e(φα, gα/gξ) · e(g, g)z (9)(
e(ψα, gα)
e (g, gσ̄)

)γ
?=

e(ψβ , g)

e

(
g, gt̄ · g

− ∑

i∈C

wiRs1 (i)
) (10)

Output (b, Context, Evidence).
OwnerVerify(sk, pk, b, Context, Evidence, ParamF)) → (b0, b1)
Parse Context as (ξ, {(i, wi) : i ∈ C}) and parse Evidence as (z, φα, σ̄). Verifier

336 J. Xu et al.

will set b0 := 1 if the following equality hold; otherwise set b0 := 0.

(
e(φα, gα/gξ)e(g, g)z

)α ?= e(g, gσ̄) · e(g, g)

(

− ∑

i∈C

wiRs0 (i)

)

(11)

If ODA’s decision b equals to b0, then set b1 := 1; otherwise set b1 := 0.
Output (b0, b1).

The completeness of the above scheme is proved in the full paper [46].

4.3 Discussion

How to verify the integrity of all tag values {ti} in algorithm UpdVK? A straight-
forward method is that: The data owner keeps tack a hash (e.g. SHA256) value
of t0‖t1 . . . ‖tn−1 in local storage, and updates this hash value when executing
UpdVK.

How to reduce the size of challenge {(i, wi) : i ∈ C}? Dodis et al. [15]’s result
can be used to represent a challenge {(i, wi) : i ∈ C} compactly as below:
Choose the subset C using Goldreich [18]’s (δ, ε)-hitter4, where the subset C
can be represented compactly with only log n + 3 log(1/ε) bits. Assume n < 240

(sufficient for practical file size) and let ε = 2−80. Then C can be represented
with 280 bits. Recall that {wi : i ∈ C} is derived from some single value w ∈ Z

∗
p.

4.4 Experiment Result

We implement a prototype of our scheme in C language and using GMP5 and
PBC6 library. We run the prototype in a Laptop PC with a 2.5 GHz Intel Core
2 Duo mobile CPU (model T9300, released in 2008). Our test files are randomly
generated and of size from 128 MB to 1 GB. We achieve a throughput of data
preprocessing at speed slightly larger than 10 megabytes per second, with λ =
1024.

In contrast, Atenesis et al. [3,4] achieves throughput of data preprocess-
ing at speed 0.05 megabytes per second with a 3.0 GHz desktop CPU [4].
Wang et al. [38] achieves throughput of data pre-processing at speed 9.0KB/s
and 17.2KB/s with an Intel Core 2 1.86 GHz workstation CPU, when a data
block is a vector of dimension m = 1 and m = 10, respectively. According to
the pre-processing complexity of [38] shown in Table 1, the theoretical optimal
throughput speed of [38] is twice of the speed for dimension m = 1, which can
be approached only when m tends to +∞.

Therefore, the data pre-processing in our scheme is 200 times faster than
Atenesis et al. [3,4], and 500 times faster than Wang et al. [38], using a single

4 Goldreich [18]’s (δ, ε)-hitter guarantees that, for any subset W ⊂ [0, n − 1] with size
|W | ≥ (1 − δ)n, Pr[C ∩ W �= ∅] ≥ 1 − ε. Readers may refer to [15] for more details.

5 GNU Multiple Precision Arithmetic Library: https://gmplib.org/.
6 The Pairing-Based Cryptography Library: http://crypto.stanford.edu/pbc/.

https://gmplib.org/
http://crypto.stanford.edu/pbc/

Lightweight Delegatable Proofs of Storage 337

CPU core. We remark that, all of these schemes (ours and [3,4,38]) and some
others can be speedup by N times using N CPU cores in parallel. However,
typical cloud user who runs the data pre-processing task, might have CPU cores
number ≤ 4.

5 Security Analysis

5.1 Security Formulation

We will define soundness security in two layers. Intuitively, if a cloud storage
server can pass auditor’s verification, then there exists an efficient extractor
algorithm, which can output the challenged data blocks. Furthermore, if a cloud
storage server with knowledge of verification secret key can pass data owner’s
verification, then there exists an efficient extractor algorithm, which can output
the challenged data blocks. If the data file is erasure encoded in advance, the
whole data file could be decoded from sufficiently amount of challenged data
blocks.

5.1.1 Definition of Soundness w.r.t Verification of Auditor
Based on the existing Provable Data Possession formulation [4] and Proofs of
Retrievability formulation [22,30], we define DPOS soundness security game
Gamesound between a probabilistic polynomial time (PPT) adversary A (i.e. dis-
honest prover/cloud storage server) and a PPT challenger C w.r.t. a DPOS
scheme E = (KeyGen, Tag, UpdVK, 〈P,V〉, OwnerVerify) as below.

Setup: The challenger C runs the key generating algorithm KeyGen(1λ) to obtain
two pair of public-private keys (pk, sk) and (vpk, vsk). The challenger C gives
the public key (pk, vpk) to the adversary A and keeps the private key (sk, vsk)
securely.

Learning: The adversary A adaptively makes polynomially many queries, where
each query is one of the following:

• Store-Query(F): Given a data file F chosen by A, the challenger C runs
tagging algorithm (ParamF , {(σi, ti)}) ← Tag(sk, vsk, F), where ParamF =
(idF , n), and sends the data file F, authentication tags {(σi, ti)}, public keys
(pk, vpk), and file parameter ParamF , to A.

• Verify-Query(idF): Given a file identifier idF chosen by A, if idF is not the
(partial) output of some previous Store-Query that A has made, ignore this
query. Otherwise, the challenger C initiates a proof session with A w.r.t. the
data file F associated to the identifier idF in this way: The adversary C, who
runs the verifier algorithm V(vsk, vpk, pk, ParamF), interacts with the adver-
sary A, who replaces the prover algorithm P with any PPT algorithm of its
choice, and obtains an output (b, Context, Evidence), where b ∈ {1, 0}. The
challenger runs the algorithm OwnerVerify(b, Context, Evidence) to obtain
output (b0, b1) ∈ {0, 1}2. The challenger sends the two decision bits (b, b0)
to the adversary as feedback.

338 J. Xu et al.

• RevokeVK-Query: To respond to this query, the challenger runs the verifica-
tion key update algorithm to obtain a new pair of verification keys (vpk′, vsk′,
{t′i}) := UpdVK(vpk, vsk, {ti}), and sends the revoked verification secret key
vsk and the new verification public key vpk′ and new authentication tags {t′i}
to the adversary A, and keeps vsk′ private.

Commit: Adversary A outputs and commits on (id∗, Memo, P̃), where each of
them is described as below:

• a file identifier id∗ among all file identifiers it obtains from C by making
Store-Queries in Learning phase;

• a bit-string Memo;
• a description of PPT prover algorithm P̃ (e.g. an executable binary file).

Challenge: The challenger randomly chooses a subset C∗ ⊂ [0, nF ∗ −1] of size
c < λ0.9, where F∗ denotes the data file associated to identifier id∗, and nF ∗ is
the number of blocks in file F ∗.

Extract: Let E P̃(Memo)(vsk, vpk, pk, ParamF ∗ , id∗,C∗) denote a knowledge-
extractor algorithm with oracle access to prover algorithm P̃(Memo). More
precisely, the extractor algorithm E will revoke the verifier algorithm
V(vsk, vpk, pk, ParamF ∗) to interact with P̃(Memo), and observes all communi-
cation between the prover and verifier. It is worthy pointing out that: (1) the
extractor E can feed input (including random coins) to the verifier V, and cannot
access the internal states (e.g. random coins) of the prover P̃(Memo), unless the
prover P̃ sends its internal states to verifier; (2) the extractor E can rewind the
algorithm P̃, as in formulation of Shacham and Waters [30,31]. The goal of this
knowledge extractor is to output data blocks {(i, F′

i) : i ∈ C∗}.
The adversary A wins this DPOS soundness security game GameSound, if the

verifier algorithm V(vsk, vpk, pk, ParamF ∗) accepts the prover algorithm P̃(Memo)
with some noticeable probability 1/λτ for some positive integer τ , where the
sampling set is fixed as C∗. More precisely,

Pr

[
〈P̃(Memo),V(vsk, vpk, pk, ParamF ∗)〉 = (1, . . .)

∣∣ Sampling

set is C∗

]
≥ 1/λτ . (12)

The challenger C wins this game, if these exists PPT knowledge extractor
algorithm E such that the extracted blocks {(i, F′

i) : i ∈ C∗} are identical to the
original {(i, Fi) : i ∈ C∗} with overwhelming high probability. That is,

Pr
[
E P̃(Memo)(vsk, vpk, pk, ParamF ∗ , id∗,C∗) = {(i, Fi) : i ∈ C∗}

]
≥ 1 − negl(λ). (13)

Definition 4 (Soundness-1). A DPOS scheme is sound against dishonest
cloud storage server w.r.t. auditor, if for any PPT adversary A, A wins the
above DPOS security game GameSound implies that the challenger C wins the
same security game.

Lightweight Delegatable Proofs of Storage 339

5.1.2 Definition of Soundness w.r.t Verification of Owner
We define Game2sound by modifying the DPOS soundness security game
Gamesound as below: (1) In the Setup phase, the verification private key vsk
is given to the adversary A; (2) in the Extract phase, the knowledge extractor
has oracle access to OwnerVerify(sk, . . .), additionally.

Definition 5 (Soundness-2). A DPOS scheme is sound against dishonest
cloud storage server w.r.t. owner, if for any PPT adversary A, A wins the above
DPOS security game Game2sound, i.e.

Pr

[
OwnerVerify(sk, pk, 〈P̃(Memo),V(vsk, vpk, pk, ParamF ∗)〉)
= (1, . . .)

∣∣∣∣
Sampling

set is C∗

]

≥ 1/λτ , for some positive integer constant τ, (14)

implies that the challenger C wins the same security game, i.e. there exists PPT
knowledge extractor algorithm E such that

Pr
[
E P̃(Memo),OwnerVerify(sk,...)(vsk, vpk, pk, ParamF ∗ , id∗,C∗) = {(i, Fi) : i ∈ C∗}

]

≥ 1 − negl(λ) (15)

Remarks
• The two events “adversary A wins” and “challenger C wins” are not mutually
exclusive.

• The above knowledge extractor formulates the notion that “data owner
is capable to recover data file efficiently (i.e. in polynomial time)
from the cloud storage server”, if the cloud storage sever can pass verifi-
cation with noticeable probability and its behavior will not change any more.
The knowledge extractor might also serve as the contingency plan7 (or last
resort) to recover data file, when downloaded file from cloud is always corrupt
but the cloud server can always pass the verification with high probability.

• Unlike POR [30,31], our formulation separates “error correcting code” out
from POS scheme, since error correcting code is orthogonal to our design of
homomorphic authentication tag function. If required, error correcting code
can be straightforwardly combined with our DPOS scheme, and the analysis
of such combination is almost identical to previous works.

5.2 Security Claim

Definition 6. (m-Bilinear Strong Diffie-Hellman Assumption). Let e :
G × G → GT be a bilinear map where G and GT are both multiplicative
cyclic groups of prime order p. Let g be a randomly chosen generator of
group G. Let ς ∈R Z

∗
p be chosen at random. Given as input a (m + 1)-tuple

7 Cloud server’s cooperation might be required.

340 J. Xu et al.

T = (g, gς , gς2 . . . , gςm

) ∈ G
m+1, for any PPT adversary A, the following prob-

ability is negligible

Pr
[
d = e(g, g)1/(ς+c) where (c, d) = A(T)

]
≤ negl(log p).

Theorem 1. Suppose m-BSDH Assumption hold, and PRF is a secure pseudo-
random function. The DPOS scheme constructed in Sect. 4 is sound w.r.t. audi-
tor, according to Definition 4 (Proof is given in the full paper [46]).

Theorem 2. Suppose m-BSDH Assumption hold, and PRF is a secure pseudo-
random function. The DPOS scheme constructed in Sect. 4 is sound w.r.t. data
owner, according to Definition 5 (Proof is given in the full paper [46]).

6 Conclusion

We proposed a novel and efficient POS scheme. On one side, the proposed scheme
is as efficient as privately verifiable POS scheme, especially very efficient in
authentication tag generation. On the other side, the proposed scheme supports
third party auditor and can revoke an auditor at any time, close to the function-
ality of publicly verifiable POS scheme. Compared to existing publicly verifiable
POS scheme, our scheme improves the authentication tag generation speed by
more than 100 times. How to prevent data leakage to ODA during proof process
and how to enable dynamic operations (e.g. inserting/deleting a data block) in
our scheme are in future work.

References

1. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation. Cryptology ePrint Archive, Report 2014/779 (2014). http://
eprint.iacr.org/

2. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced
proofs of retrievability. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2014, pp. 831–843 (2014)

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson,
Z., Song, D.: Remote data checking using provable data possession. ACM Tran.
Inf. Sys. Sec. TISSEC 2011 14(1), 12:1–12:34 (2011)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: ACM CCS 2007, pp. 598–609.
ACM (2007)

5. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009)

6. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: SecureComm 2008, pp. 9:1–9:10. ACM (2008)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tology 17(4), 297–319 (2004)

http://eprint.iacr.org/
http://eprint.iacr.org/

Lightweight Delegatable Proofs of Storage 341

8. Bowers, K.D., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer
for cloud storage. In: ACM CCS 2009, pp. 187–198. ACM (2009)

9. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: CCSW 2009, pp. 43–54. ACM (2009)

10. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279–295. Springer, Heidelberg (2013)

11. Chang, E.-C., Xu, J.: Remote integrity check with dishonest storage server. In:
Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 223–237.
Springer, Heidelberg (2008)

12. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourc-
ing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

13. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: MR-PDP: multiple-replica prov-
able data possession. In: ICDCS 2008, pp. 411–420. IEEE (2008)

14. Deswarte, Y., Quisquater, J.J., Säıdane, A.: Remote integrity checking: how to
trust files stored on untrusted servers. In: Jajodia, S., Strous, L. (eds.) IICIS 2003.
IFIP, vol. 140, pp. 1–11. Springer, Heidelberg (2004)

15. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

16. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: ACM CCS 2009, pp. 213–222. ACM (2009)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, FOCS 2013, pp. 40–49 (2013)

18. Goldreich, O.: A sample of samplers: a computational perspective on sampling. In:
Goldreich, O. (ed.) Studies in Complexity and Cryptography. LNCS, vol. 6650, pp.
302–332. Springer, Heidelberg (2011)

19. Guan, C., Ren, K., Zhang, F., Kerschbaum, F., Yu, J.: A symmetric-key based
proofs of retrievability supporting public verification. In: Proceedings of 20th Euro-
pean Symposium on Research in Computer Security, ESORICS 2015, pp. 203–223
(2015). www.fkerschbaum.org/esorics15b.pdf

20. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking
protocol with data dynamics and public verifiability. In:TKDE 2011, vol. 23(9),
pp. 1432–1437 (2011)

21. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

22. Juels, A., Kaliski, B.S.,J.: PORs: Proofs of retrievability for large files. In: ACM
CCS 2007, pp. 584–597. ACM (2007)

23. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: ASIACRYPT 2010, pp. 177–194 (2010)

24. Naor, M., Rothblum, G.N.: The complexity of online memory checking. J. ACM,
56(1) (2009)

25. Ren, Y., Shen, J., Wang, J., Fang, L.: Outsourced data tagging via authority and
delegable auditing for cloud storage. In: 49th Annual IEEE International Carnahan
Conference on Security Technology, ICCST 2015, pp. 131–134. IEEE (2015)

26. Ren, Y., Shen, J., Wang, J., Han, J., Lee, S.: Mutual verifiable provable data
auditing in public cloud storage. J. Internet Technol. 16(2), 317–324 (2015)

www.fkerschbaum.org/esorics15b.pdf

342 J. Xu et al.

27. Ren, Y., Xu, J., Wang, J., Kim, J.U.: Designated-verifier provable data possession
in public cloud storage. Int. J. Secur. Appl. 7(6), 11–20 (2013)

28. Schwarz, T.J.E., Miller, E.L.: Store, forget, and check: using algebraic signatures
to check remotely administered storage. In: ICDCS 2006. IEEE (2006)

29. Sebé, F., Domingo-Ferrer, J., Mart́ınez-Ballesté, A., Deswarte, Y., Quisquater, J.J.:
Efficient remote data possession checking in critical information infrastructures. In:
TKDE 2008, vol. 20, no. 8, pp. 1034–1038 (2008)

30. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

31. Shacham, H., Waters, B.: Compact proofs of retrievability. J. Cryptology 26(3),
442–483 (2013)

32. Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to keep online
storage services honest. In: HotOS 2007. USENIX Association (2007)

33. Shah, M.A., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction
of digital contents. Cryptology ePrint Archive, Report 2008/186 (2008). http://
eprint.iacr.org/2008/186

34. Shen, S.-T., Tzeng, W.-G.: Delegable provable data possession for remote data in
the clouds. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS,
vol. 7043, pp. 93–111. Springer, Heidelberg (2011)

35. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS 2013, pp. 325–336. ACM (2013)

36. Wang, B., Li, B., Li, H.: Oruta: Privacy-preserving public auditing for shared data
in the cloud. In: IEEE Cloud 2012, pp. 295–302. IEEE (2012)

37. Wang, B., Li, B., Li, H.: Public auditing for shared data with efficient user revo-
cation in the cloud. In: INFOCOM 2013, pp. 2904–2912. IEEE (2013)

38. Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2013)

39. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data
storage services. IEEE Network Mag. 24(4), 19–24 (2010)

40. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Towards secure and dependable
storate services in cloud computing. IEEE Trans. Serv. Comput. 5(2), 220–232
(2012)

41. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring data storage security in cloud
computing. In: Proceedings of IWQoS 2009, pp. 1–9. IEEE (2009)

42. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for
data storage security in cloud computing. In: INFOCOM 2010, pp. 525–533. IEEE
(2010)

43. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

44. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. TPDS 22(5), 847–859 (2011)

45. Xu, J., Chang, E.C.: Towards efficient proofs of retrievability. In: ACM Symposium
on Information, Computer and Communications Security, AsiaCCS 2012 (2012)

46. Xu, J., Yang, A., Zhou, J., Wong, D.S.: Lightweight and privacy-preserving del-
egatable proofs of storage. Cryptology ePrint Archive, Report 2014/395 (2014).
http://eprint.iacr.org/2014/395

47. Xu, J., Zhou, J.: Leakage resilient proofs of ownership in cloud storage, revisited.
In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 97–115. Springer, Heidelberg (2014)

http://eprint.iacr.org/2008/186
http://eprint.iacr.org/2008/186
http://eprint.iacr.org/2014/395

Lightweight Delegatable Proofs of Storage 343

48. Yang, K., Jia, X.: Data storage auditing service in cloud computing: challenges,
methods and opportunities. World Wide Web 15(4), 409–428 (2012)

49. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. TPDS 24(9), 1717–1726 (2013)

50. Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant
communication cost in cloud. In: Proceedings of the 2013 International Workshop
on Security in Cloud Computing, Cloud Computing 2013, pp. 19–26. ACM (2013)

51. Zeng, K.: Publicly verifiable remote data integrity. In: Chen, L., Ryan, M.D., Wang,
G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 419–434. Springer, Heidelberg (2008)

52. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for
integrity verification in multicloud storage. TPDS 23(12), 2231–2244 (2012)

53. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H., Yau, S.S.: Dynamic audit services
for integrity verification of outsourced storages in clouds. In: Proceedings of SAC
2011, pp. 1550–1557. ACM (2011)

	Lightweight Delegatable Proofs of Storage
	1 Introduction
	1.1 Drawbacks of Publicly Verifiable Proofs of Storage
	1.2 Existing Approaches to Mitigate Drawbacks
	1.3 Our Approach
	1.4 Contributions

	2 Related Work
	3 Formulation
	3.1 System Model
	3.2 Trust Model

	4 Our Proposed Scheme
	4.1 Preliminaries
	4.2 Construction of the Proposed DPOS Scheme
	4.3 Discussion
	4.4 Experiment Result

	5 Security Analysis
	5.1 Security Formulation
	5.2 Security Claim

	6 Conclusion
	References

