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Abstract. This paper presents an anonymous certification (AC)
scheme, built over an attribute based signature (ABS). After identifying
properties and core building blocks of anonymous certification schemes,
we identify ABS limitations to fulfill AC properties, and we propose
a new system model along with a concrete mathematical construction
based on standard assumptions and the random oracle model. Our solu-
tion has several advantages. First, it provides a data minimization cryp-
tographic scheme, permitting the user to reveal only required informa-
tion to any service provider. Second, it ensures unlinkability between the
different authentication sessions, while preserving the anonymity of the
user. Third, the derivation of certified attributes by the issuing authority
relies on a non interactive protocol which provides an interesting com-
munication overhead.

Keywords: User privacy · Anonymous certification · Attribute-based
signatures

1 Introduction

Anonymous Credentials (AC) were first introduced by David Chaum [9] in 1982,
and fully formalized by Camenisch and Lysyanskaya [4] in 2001. These schemes
are considered to be an important building block in privacy-preserving identity
management systems, as they permit users to prove ownership of credentials to
service providers while not being traced in the system. That is, after he gets
credentials over some of his attributes from some trusted issuing authorities,
the user can derive proofs for successive presentations to service providers. The
AC properties include that the service providers are not able to link a single
received proof to another or to any information relative to the owner, even in
case of collusion between providers and with the credential issuer.

Up to now, two main AC solutions emerged from industry, the Idemix scheme
[15] from IBM based on the Camenish-Lysyanskaya (CL) signatures [4,5], which
is a close variant of group signatures, and the U-Prove scheme [20] from Microsoft
which relies on the Brands’ blind signature [2].
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Interest for AC comes from their ability to strictly support the data min-
imization principle [17], which expects that data collection should be propor-
tional and not excessive compared to the purpose of the collection. This interest
is today magnified as this principle is at the core of the future European General
Data Protection Regulation [11] and also the U.S. National Strategy for Trusted
Identities in Cyberspace (NSTIC) [14].

This paper proposes a new AC scheme based on the Attribute Based Sig-
natures (ABS). Originally, the ABS is designed for the user to sign a message
with fine grained control over identifying information, and it does not support
the properties required for AC. As such, after a clear identification of missing
properties, an abstract scheme HABS is presented followed by a concrete con-
struction detailing how these access-policy based signatures can efficiently serve
AC objectives. Our scheme has several advantages over industrial AC solutions.
First, the issuance procedure is much more efficient, as there is no need for a
heavy interactive protocol between the user and the issuer. The issuer can gen-
erate a credential based on the user’s public key only, while Idemix and U-Prove
schemes require the user to introduce a random part of the secret key each time
a new credential is certified as they rely on group and blind signatures. Second,
our scheme supports a flexible selective disclosure mechanism at no extra com-
putation cost, which is inherited from the expressiveness of ABS for defining
access policies.

Paper Organization – Section 2 introduces Anonymous Credential sys-
tems (AC) along with the actors, procedures and security requirements. Section 3
defines the Attribute based Signatures (ABS), and provides a generic analysis
of ABS properties thus highlighting the missing properties for the ABS to align
to the AC requirements. Section 5 presents a concrete construction of our novel
AC system, and Sect. 6 gives a detailed security analysis with an extension of
the scheme to support multiple issuers. Finally, theoretical comparisons with
existing systems are discussed in Sect. 7 and conclusions are given in Sect. 8.

2 Anonymous Credentials

Anonymous Credentials (AC) also known as privacy preserving attribute cre-
dentials refer to some well identified entities and procedures and need to achieve
some security requirements.

Entities – An anonymous credential system involves several entities. Some
entities, such as the user, the verifier and issuer are mandatory, while other
entities, such as the revocation authority and the inspector are optional [3].

The user is the central entity, whose interest is to get privacy-preserving
access to services, offered by service providers, known as verifiers. Each veri-
fier enforces an access control policy to its resources and services based on the
credentials owned by the users and the information selected and included in
presentation tokens. For this purpose, each user has first to obtain credentials
from the issuer(s). Then, he selects the appropriate information from the cre-
dentials and shows the selected information to the requesting verifier, under a
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presentation token. Note that the verifier access control policy is referred to as
presentation policy. Both the user and the verifier have to obtain the most recent
revocation information from the revocation authority to generate, respectively
verify, presentation tokens. The revocation authority has to revoke issued cre-
dentials and maintain the list of valid credentials in the system. When revoked,
a credential can no longer be used to derive presentation tokens. The inspector
is a trusted entity, which has the technical capabilities to remove the anonymity
of a user when needed.

Procedures – An AC system is defined by the following algorithms:

– Setup: this algorithm takes as input a security parameter ξ (security level)
and outputs the public parameters params and the public-private key pair of
the issuer (pkis, skis).

– UserKG: this algorithm takes as input j ∈ N and outputs the key pair
(pku, sku) of the user j.

– Obtain ↔ Issue: the Obtain ↔ Issue presents the issuance procedure. The
Issue algorithm performed by the issuer takes as input the public parameters
params, the private key of the issuer pkis, the public key of the user sku

and the set of attributes {ai}N
i=1, where N is the number of attributes. The

Obtain algorithm executed by the user takes as input the secret key of the
user sku and the public key of the issuer pkis. At the end of this phase, the
user receives from the issuer a credential C.

– Show ↔ Verify: the Show ↔ Verify is the presentation procedure between
the user and the verifier. With respect to the presentation policy, the Show

algorithm takes as input the user’s secret key sku, the issuer’s public key pkis,
the set of required attributes {ai}N ′

i=1 and a credential C, and it outputs a
presentation token. Verify is a public algorithm performed by the verifier; it
takes as input the public key of the issuer pkis, the set of attributes {ai}N ′

i=1,
and the presentation token. At the end of this presentation phase, the Verify

outputs a bit b ∈ {0, 1} for success of failure of the verification.

Security Requirements – Anonymous credential systems have to fulfill the
following security properties:

correctness – a honest user must always succeed in proving validity of proofs
to the verifier in an anonymous way.
anonymity – the user must remain anonymous among a set of users during
the presentation procedure to the verifier.
unforgeability – a user not owning an appropriate legitimate credential is not
able to generate a valid presentation token.
unlinkability – this property is essential for user privacy support and is closely
related to the anonymity property. Unlinkability is divided into two proper-
ties issue-show unlinkability and multi-show unlinkability as follows: (i) the
issue-show unlinkability ensures that any information gathered during creden-
tial issuing cannot be used later to link the presentation token to the original
credential, (ii) the multi-show unlinkability guarantees that several presentation
tokens derived from the same credential and transmitted over several sessions
can not be linked by the verifier.
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Additionally, privacy preserving attribute based credentials have to ensure
several functional features, namely revocation, inspection and selective disclo-
sure. The selective disclosure property refers to the ability provided to the user
to present to the verifier partial information extracted or derived from his cre-
dential, for instance, to prove he is older than 18 to purchase liquors, while not
revealing his birth date.

3 Attribute Based Signatures for Anonymous Credentials

This section introduces Attribute based Signature schemes (ABS) with their
associated algorithms and their security properties. Then, an analysis shows that
ABS is missing some properties to serve as a building block for AC support.

3.1 Attribute-Based Signatures (ABS)

Attribute-based Signatures (ABS) [19] is a flexible primitive that enables a user
to sign a message with fine grained control over identifying information. In ABS,
the user possesses a set of attributes and one secret signing key per attribute
which is obtained from a trusted authority. The user can sign a message with
respect to a predicate satisfied by his attributes. In commonly known settings,
the different parties include a Signature Trustee (ST ), the Attribute Author-
ity (AA), and potentially several signers and verifiers. The ST acts as a global
entity that generates authentic global systems parameters, while the AA issues
the signing keys for the set of attributes of the users (signers). The role of ST and
AA can be merged into the same entity. ABS supports the following property
which is fundamental for support of privacy. AA, although knowing the sign-
ing keys and the attributes of the users, is unable to identify which attributes
have been used in a given valid signature, and thus he is unable to assign the
signature to his originating user and/or to link several signatures as originating
from the same user. In the last few years, multiple ABS schemes emerged in the
cryptographic literature, considering different design directions. In a nutshell,
(i) the attribute value can be a binary-bit string [13,18,19,21,22], or has a par-
ticular data structure [23], (ii) access structures may support threshold policies
[13,18,22], monotonic policies [19,23] or non-monotonic policies [21], and (iii)
the capacity of attributes’ private keys issuance can be provided by a single
authority [19,22,23], or a group of authorities [19,21].

Let us explain the general ABS signing procedure in the simple case with one
single AA authority. First, the AA derives the private keys {sk1, · · · , skN}, with
respect to the attribute set identifying the requesting signer, denoted by S =
{a1, · · · , aN}, where N is the number of attributes. The private keys’ generation
procedure is performed using the AA’s master key MK and some related public
parameters, both generated during the setup phase. Then, for signing a message
m sent by the verifier along with a signing predicate Υ , the user needs his private
keys and a set of attributes satisfying the predicate Υ . Finally, the verifier is
able to verify that some user who holds a set of attributes satisfying the signing
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predicate has signed the message. An ABS scheme is defined by the following
algorithms:

– ABS.setup – this algorithm is performed by (ST ). It takes as input the secu-
rity parameter ξ and outputs the global public parameters params, considered
as an auxiliary input to all the following algorithms, and the master key MK
of AA.

– ABS.keygen – this algorithm executed by AA takes as input his master key
MK and a set of attributes S ⊂ S (where S = {ai}N

i=1, N is the number of
attributes and S is the attribute universe). It outputs a signing key skS1.

– ABS.sign – this algorithm takes as input the private key skS , a message m
and a signing predicate Υ , such as Υ (S) = 1 (S satisfies Υ ). This algorithm
outputs a signature σ (or an error message ⊥).

– ABS.verif – this algorithm takes as input the received signature σ, the sign-
ing predicate Υ and the message m. It outputs a bit b ∈ {0, 1}, where 1 denotes
accept ; i.e., the verifier successfully checks the signature, with respect to the
signing predicate. Otherwise, 0 means reject.

3.2 Security Properties of Attribute Based Signatures

First, an ABS scheme has to satisfy the correctness property (Definition 1)

Definition 1. Correctness – An ABS scheme is correct, if for all (params,
MK) ← ABS. setup(ξ), all messages m, all attribute sets S, all signing keys
skS ← ABS.keygen(S,MK), all claiming predicates Υ such as Υ (S) = 1 and
all signatures σ ← ABS.sign(skS ,m, Υ ), we have ABS.verif(σ,m, Υ ) = 1.

In addition, based on Maji et al. work [19], we provide the two following formal
definitions that capture security properties of ABS schemes.

Definition 2. Perfect Privacy – An ABS scheme is perfectly private, if for
all (params,MK) ← ABS.setup(ξ), all attribute sets S1, S2, all secret signing
keys sk1 ← ABS.keygen(S1,MK), sk2 ← ABS.keygen(S2,MK), all messages
m and all claiming predicates Υ such as Υ (S1) = Υ (S2) = 1, the distributions
ABS.sign(sk1,m, Υ ) and ABS.sign(sk2,m, Υ ) are indistiguishable.

In a nutshell, if the perfect privacy property holds, then a signature does not
leak which set of attributes or private signing key were originally used.

Definition 3. Unforgeability – An ABS scheme is unforgeable if the adver-
sary A can not win the following game:

– setup phase: the challenger C chooses a large security parameter ξ and runs
setup. C keeps secret the master key MK and sends params generated from
ABS.setup to the adversary A.

1 For ease of presentation, we denote the signing key as a monolithic entity, but, in
many existing schemes, the signing key consists of separate elements for each single
attribute in S.
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– query phase: the adversary A can perform a polynomially bounded number of
queries on S and (m,Υ ) to first the private key generation oracle and second
the signing oracle.

– forgery phase: A outputs a signature σ∗ on messages m∗ with respect to Υ ∗.

The adversary A wins the game if σ∗ is a valid signature on messages m∗ for a
predicate Υ ∗, the couple (m∗, Υ ∗) has not been queried to the signing oracle and
no attribute set S∗ satisfying Υ ∗ has been submitted to the private key generation
oracle.

This unforgeability property also includes the collusion among users trying to
override their rights by combining their complementary attributes to generate a
signature satisfying a given predicate Υ . It also covers the non-frameability case
when a user also aims to override his rights but on his own.

3.3 Bridging the Gap Between ABS and AC

As far as we know, ABS is still considered as being incompatible with AC pur-
pose of anonymity [21], mostly because ABS assumes that AAs are fully trusted
authorities as they know the secret keys of each user. Moreover, in case of mul-
tiple AAs, as needed in AC systems, the issued credentials can be linked by the
AAs as they are all based on the same public key.

Let us give a simple example to illustrate how ABS could be adapted to
AC purpose. A student (acting as user) obtains a certified credential (i.e. stu-
dent card) by the University (which plays the role of the issuer) over the set
of his attributes S = {a1 := Name; a2 := Bob, a3 := City, a4 := Paris, a5 :=
Studies, a6 := InformationSecurity}. The whole set of attributes is commit-
ted to a single value using the public key of the user, and it is signed with the
private key of the issuer, to generate the resulting credential, denoted by C.

Later, the student can, for example, prove that he is student living in Paris,
without revealing his name nor his studies’ major. For this purpose, we consider
the signing predicate Υ = (Studies ∨ Teaches) ∧ (City ∧ (Paris ∨ Lille)).
The user whose attributes satisfy the predicate can use his credential C to suc-
cessfully extract the appropriate keys relative to the requested attributes a3,
a4 and a5. The student thus remains anonymous among the group of students
living in Paris, and is able to prove the requested features because the signature
of the University over the student’s attributes is valid. This example brings first
elements for adaptation of ABS to AC purpose, but additional work is necessary.

Additional Requirements For ABS – Let us analyse first the formal
security model proposed in the litterature for ABS to satisfy the required AC
properties of anonymity and unforgeability (Sect. 2). The first model is proposed
by Shahandashti and Safavi-Naini [22], and gives main procedures and basic secu-
rity properties, such as correctness, unforgeability and signer-attribute privacy.
Later, Maji et al. [19] and El Kaafarani et al. [10] introduce and formalize the per-
fect privacy property which requires that a signature reveals neither the identity
of the user nor the set of attributes used for the signing procedure. These models
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do not entirely match our needs for the design of secure AC scheme. More pre-
cisely, the following requirements need to be addressed:

– Traceability of signatures: by essence, an ABS scheme supports the
anonymity of the user. As a consequence, there is a need to introduce a new
procedure Inspec to remove anonymity, and identify the user originating an
ABS signature. To prevent issuers to trace users, this algorithm should be
carried out by a tracing authority, equipped with a secret key and referred to
as inspector. Such a feature is important in settings where accountability and
abuse prevention are required.

– Unlinkability between issuers: in ABS schemes, when a user requests
multiple authorities to issue credentials with respect to his attributes, these
authorities can link issued credentials to one user through its public key. To
satisfy the unlinkability property of AC schemes, a novel ABS issuance pro-
cedure has to be designed.

– Replaying sessions: to counteract ABS signature replay attacks, the verifier
has to generate for each authentication session, a new message which can might
depend on the session data, such as the verifier’s identity and the current time.

4 Our New Anonymous Certification Scheme

This section gives a high-level presentation of our new AC scheme based on ABS
with an overview of the procedures and algorithms. Then the considered security
model with formalized security properties are defined.

4.1 System Model

Our new privacy-preserving attribute based signature HABS relies on three pro-
cedures based on the following seven algorithms that might involve several users
(i.e.; signers). The verification and inspection procedures involve only public
data. In the following, we denote by HABS our new AC scheme and by ABS
the ABS basic functions as defined in Sect. 3.

HABS.Setup – this algorithm runs the ABS.setup algorithm. It takes as
input the security parameter ξ and outputs the global public parameters params.
This algorithm also derives a pair of public and private keys (pkins, skins) for the
tracing authority referred to as the inspector. In the following, public parameters
params are assumed to include the public key of the inspector, and all the
algorithms have default input params.

HABS.KeyGen – this algorithm takes as input the global parameters
params and outputs the pair of public and private keys either for users and
for the issuer. The public and private keys are noted respectively (pku, sku)j for
user j and (pkis, skis) for the issuer.

HABS.Obtain ↔ HABS.Issue – the credential issuing procedure corre-
sponds to the ABS.keygen algorithm. The HABS.Issue algorithm executed by
the issuer takes as input the public key of the user pku, a set of attributes S ⊂ S
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(where S = {ai}N
i=1, N is the number of attributes and S is referred to as the

attribute universe), the private key of the issuer skis and the public key of the
inspector pkins. It outputs a signed commitment C over the set of attributes S.

The HABS.Obtain algorithm is executed by the user and corresponds to
the collection of the certified credentials from the issuer. This is up to the user
to verify the correctness of the received signed commitment over his attributes.
In case of verification, the HABS.Obtain algorithm takes as input the signed
commitment C, the private key of the user sku, the public key of the issuer pkis

and eventually the public key of the inspector pkins. It outputs a bit b ∈ {0, 1}.
HABS.Show ↔ HABS.Verify – the presentation procedure includes the

ABS.sign and ABS.verif algorithms of the ABS signature. This procedure
enables the verifier to check that a user has previously obtained credentials on
some attributes from a certified (i.e.; authentic) issuer and that he is autho-
rized to access a service with respect to some access policy. As such, the verifier
has first to send a random value m (which corresponds to the message m in
ABS.sign) to the user. To counteract replay attacks (Sect. 3.3), each authentica-
tion session is personalized with this random value which can be for instance the
verifier’s identity concatenated with his clock value. Second, the user signs the
received random value, based on his credential. In a nutshell, the user first selects
the sub-set of his attributes that satisfies the signing predicate Υ (Υ (S ′) = 1) and
he signs the received value m. Note that an attribute based signature can gen-
erally be considered as a non-interactive proof of knowledge based on the Fiat-
Shamir heuristic [12]. That is, instead of sending his attributes to the verifier, the
user only has to prove he gets from a certified issuer some attributes satisfying
the access policy. The user finally sends his signature Σ to the verifier who checks
the resulting signature by verifying whether ABS.verif(pkis, Σ, Υ,m) = 1.

The HABS.Show algorithm takes as input the randomized message m, a
signing predicate Υ , the private key of the user sku, the credential C and a sub-
set of his attributes S ′, such as Υ (S ′) = 1. This algorithm outputs a signature
Σ (or an error message ⊥).

The HABS.Verify algorithm takes as input the received signature Σ, the
public key of the issuer(s) pki, the signing predicate Υ and the message m. It
outputs a bit b ∈ {0, 1}, where 1 denotes accept for a successful verification of
the signature, and 0 means reject.

HABS.Inspec – our scheme supports the inspection procedure performed
by a separate and trusted entity referred to as the inspector. It relies on two
algorithms namely HABS.trace and HABS.judge needed to identify the user
and give a proof of judgment.

The HABS.trace algorithm takes as input the secret key of the inspector
skins, the issuer(s) public key(s) pkis and the signature Σ. It outputs the index
j of the user that has signed the message m with respect to the predicate Υ . It
also outputs a proof �.

The HABS.judge algorithm takes as input the public key(s) of the issuer(s)
pkis, the signature Σ, the user index j and the proof �. It outputs b ∈ {0, 1},
where 1 means that � is a valid proof proving that user j originating the signa-
ture Σ.
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4.2 Security Model

We consider two realistic threat models for proving security and privacy prop-
erties of our attribute based credential construction. We first point out the case
of honest but curious verifiers and issuers. That is, both the verifiers and issuers
are honest as they provide proper inputs or outputs, at each step of the protocol,
properly performing any calculations expected from them, but they are curious
in the sense that they attempt to gain extra information from the protocol.
As such, we consider the honest but curious threat model against the privacy
requirement with respect to the anonymity and unlinkability properties.

Second, we consider the case of malicious users trying to override their rights.
That is, malicious users may attempt to deviate from the protocol or to provide
invalid inputs. As such, we consider the malicious user security model mainly
against the unforgeability requirement, as presented in Sect. 4.2.1.

4.2.1 Unforgeability
The unforgeability property means that unless the private key of the issuer
(resp. the user) is known, it is not possible to forge a valid credential – in case
of Issue (resp. the presentation token of the user – in case of Show). This
property also covers non frameability and ensures that even if users collude,
they cannot frame a user who did not generate a valid presentation token. We
thus define unforgeability based on three security games between an adversary
A and a challenger C, that simulates the system procedures to interact with the
adversary.

Definition 4. Unforgeability – We say that HABS satisfies the unforgeability
property, if for every PPT adversary A, there exists a negligible function ε such
that:

Pr[ExpA
unforg(1ξ) = 1] ≤ ε(ξ)

where ExpA
unforg is the security experiment against the unforgeability property,

with respect to MC-Game, MU-Game and Col-Game introduced hereafter.

On the one hand, MC-Game, formally defined hereafter, enables to capture the
behaviour of malicious users trying to forge a valid credential. That is, during
the first phase, Phase I , the challenger C runs the HABS.Setup algorithm,
gives the public parameters params to the adversary A and proceeds as follows:

– Keygen: the challenger C runs the HABS.KeyGen algorithm, in order to get
the key pairs of the issuer, the inspector, and a user (u). The key pair of the
user (pku, sku) is sent to the adversary.

– Issue-Query : the adversary A can request C, as many times as he wants, for
getting the credential result Ci (for session i) obtained from the HABS.Issue
algorithm applied over the public key pku, and a set of attributes Si.

Then, in Phase II , C requests the adversary to provide a valid credential
over a set of attributes S (such that S has not been output during the pre-
vious Issue-Query phase). Thus, A runs ForgeCred and tries to compute a valid
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credential C∗. The adversary A wins the game if he provides a valid credential.
That is, the HABS.Obtain(C∗, sku, pkis) algorithm returns an accept.

On the other hand, MU-Game and Col-Game security games enable to cap-
ture the behaviour of a malicious user, trying a forgery of the presentation token,
either on his own (i.e.; MU-Game) or by colluding with other legitimate users
(i.e.; Col-Game).

First, the MU-Game is formally defined as follows: during Phase I , the chal-
lenger C runs the HABS.Setup algorithm, gives the public parameters params
to the adversary A and proceeds as follows:

– Keygen: the challenger C runs the HABS.KeyGen algorithm, in order to get
the key pairs of the issuer, the inspector, and a user (u). The key pair of the
user (pku, sku) is sent to the adversary.

– Issue: the challenger C runs the HABS.Issue algorithm over the public key
pku, and a set of attributes S. He sends to the adversary A the set of attributes
S, the credential C and a predicate Υ such that Υ (S) = 1.

– Show-Query : the adversary A can request as many times as he wants the
HABS.Show over the predicate Υ , the private key of the user sku, a randomly
generated message mi (for session i), and a sub-set of his attributes S ′ where
Υ (S ′) = 1. Each request i results in a signature Σi.

Then, in Phase II , the challenger C requests the adversary to provide a valid
signature over a randomized message m (such that m has not been output during
the previous Show-Query phase). Thus, the adversary A executes ForgeSig and
tries to compute a valid signature Σ∗.

Second, the Col-Game, considered as a sub-case of the MU-Game, is formally
defined as follows: the challenger C first runs the HABS.Setup algorithm, gives
the public parameters params to the adversary A and proceeds such as:

– Keygen: the challenger C runs the HABS.KeyGen algorithm, in order to get
the key pairs of the issuer, the inspector, and two users u1 and u2. Both key
pairs obtained (pku1 , sku1) and (pku2 , sku2) are sent to the adversary A.

– Issue: C runs the HABS.Issue algorithm over the public key pkuk
(k ∈ {1, 2}),

and a set of attributes Sk where S1 and S2 are disjoint and non empty. He
sends to A the set of attributes Sk, the obtained credential Ck, a random m
and a predicate Υ for which Υ (Sk) 
= 1, but Υ (S1 ∪ S2) = 1.

– Show-Query : A can request as many times as he wants the HABS.Show
algorithm over the private key skuk

, the message m, a sub-set of his attributes
S ′

k and a predicate Υi where Υi(S ′
k) = 1 to get back a signature Σik.

During the second phase, C requests the adversary to provide a signature over
message m and predicate Υ . As such, A tries to compute a valid signature σ∗.

We say that the AC scheme is unforgeable if the probability that the
HABS.Verify procedure in the MU-Game and Col-Game returns accept is
negligible.



Attribute-Based Signatures for Supporting Anonymous Certification 289

4.2.2 Privacy
The privacy property covers the anonymity, the issue-show and multi-show
requirements, as defined in Sect. 2. In this section, we define three realistic
privacy games – PP-Game, MS-Game and IS-Game – based on an adversary
A and a challenger C where A has only access to public data, except in one
game where he has access to credentials. Thus, A cannot run on his own the
HABS.Obtain ↔ Issue, or HABS.Show ↔ Verify algorithms, but has to
request the results of these algorithms to the challenger C which is responsible
for simulating the system procedures.

Definition 5. Privacy – We say that HABS satisfies the privacy property, if
for every PPT adversary A, there exists a negligible function ε such that:

Pr[ExpA
priv(1ξ) = 1] =

1
2

± ε(ξ)

where ExpA
priv is the security experiment against the privacy property, with

respect to PP-Game, MS-Game and IS-Game introduced hereafter.

We formally define our three games as follows: during the first phase, Phase I ,
C runs the HABS.Setup algorithm, gives the global public parameters params
to A and proceeds as follows:

– Keygen: the challenger C runs the HABS.KeyGen algorithm to get the pair
of keys (pkis, skis) and (pkuj

, skuj
) (j is for user uj , j ∈ {1, 2}). C sends the

public key of the issuer pkis to the adversary A.
– Issue: the challenger C runs the HABS.Issue algorithm over the public key

pkuj
(j ∈ {1, 2}), and a set of attributes S (S=S1=S2). C gets the credential

Cj , and only sends the set of attributes Sj to A.
– Show-Query : A can request C as many times as he wants, for getting the result

of HABS.Show algorithm applied on user uj (only index j is given to C), with
respect to some message mjk, predicate Υjk and set of attributes S ′

jk selected
by A (where S ′

jk ⊂ Sj). A gets back the presentation token Σjk.

Afterwards, during Phase II , A can select one of the following games:

– PP-Game – for proving the anonymity property. A selects j ∈ {1, 2}, and
generates a message m, a predicate Υ and a subset of attributes Sjk (k ∈
{1, 2}) such that Sjk ⊂ Sj , Sj1 
= Sj2, Υ (Sjk) = 1, and the triplet (m, Υ , Sjk)
has never been output during the Show-Query phase. A then sends m, Υ and
Sjk to C which chooses a random bit b ∈ {1, 2}, runs HABS.Show over m, Υ ,
attributes Sjb, and skuj

. C sends back to A the obtained presentation token
Σjb. The adversary A wins the game if he is able to guess the value of b, i.e.
the set of attributes Sjb used to derive the presentation token.

– MS-Game – for proving the multi-show property. The adversary A selects
j ∈ {1, 2} and generates a message m, a predicate Υ and a subset of attributes
S ′, such that S ′ ⊂ S, Υ (S ′) = 1. Note that the triplet (m, Υ , S ′) has never
been output during the Show-Query phase. A then sends m, Υ , and S ′ to
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the challenger C which chooses a random bit b ∈ {1, 2}, runs HABS.Show
over (m, Υ ), the attributes’ set S ′ and private key skub

. C sends back the
presentation token Σb to A. The adversary A wins the game if he is able to
guess the value of b, i.e. the user ub having generated the presentation token.

– IS-Game – for proving the issue-show property. The adversary A generates a
message m, a predicate Υ such that Υ (S) = 1, such as the triplet (m, Υ , S) has
never been output during the Show-Query phase. A then sends m, Υ and S
to the challenger C which chooses a random bit b ∈ {1, 2}, runs HABS.Show
for user ub over m, Υ , S, and skub

. C sends back to A Σb and credentials C1

and C2. The adversary A wins the game if he is able to guess the value of b,
i.e. to which credential Cb the presentation token refers to.

4.2.3 Anonymity Removal
Our HABS system should fulfill the inspection property meaning that the trace
algorithm is able to return the right identity of the actual user, for each verified
tuple (m,Υ,Σ, pkis). As the unforgeability Subsect. 4.2.1 already takes care of
subcases of anonymity removal, this section focuses only on the IA-Game leading
an adversary A to successfully pass the HABS.Show ↔ Verify procedure,
while the inspector is unable to trace the identity of the signature originator.

The IA-Game is formally defined as follows: during the first phase, Phase I ,
the challenger C runs the HABS.Setup and HABS.KeyGen algorithms to get
the key pairs of the issuer, the inspector and a user u1 indexed as 1. It gives
the public parameters params and the key pair (pku1 , sku1) to the adversary A
with a predicate Υ , and a random message m.

– Keygen: the adversary A runs the HABS.KeyGen algorithm, in order to get
the key pair (pku1 , sku1).

– Issue: the adversary A requests C for getting the result of HABS.Issue algo-
rithm over the public key pku1 and a set of attributes S such as Υ (S) = 1. He
gets back the credential C.

– Show-Query : A can request as many times as he wants the HABS.Show over
the predicate Υ , the private key sku1 , the message m, and a sub-set of his
attributes Si where Υ (Si) = 1. Each request i results in a signature Σi.

Then, during Phase II , C requests the adversary to provide a valid but untrace-
able signature over message m and predicate Υ . As such, A runs ForgeProof
and the adversary A tries to compute a signature Σ∗, such as HABS.Verify

(m,Υ,Σ, pkis) = 1 and HABS.trace(Σ, skins) = ⊥ or k (k 
= 1).
We say that the AC scheme is resistant to inspection abuse attack if the

probability that the HABS.Inspec procedure in the IA-Game returns accept is
negligible.

5 Concrete Construction

In this section, we give a concrete attribute based signature scheme that ful-
fills the features introduced in Sect. 3 and that can be used to design a secure
anonymous credential system.
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5.1 Mathematical Background

We first introduce the access structure in Sect. 5.1.1. Then, in Sect. 5.1.2, we
present the bilinear maps. Finally, we introduce security assumptions.

5.1.1 Access Structures
Definition 6 (Access Structure [1]). Let P = {P1, P2, · · · , Pn} be a set of
parties, and a collection A ⊆ 2{P1,P2,··· ,Pn} is called monotone if ∀B,C ⊆
2{P1,P2,··· ,Pn} : if B ∈ A and B ⊆ C then C ∈ A. An access structure is a collec-
tion A of non-empty subsets of {P1, P2, · · · , Pn} ; i.e. A ⊆ 2{P1,P2,··· ,Pn} \ {∅}.
The sets in A are called authorized sets, and the sets not in A are called unau-
thorized sets.

We note that in recent ABS schemes, the parties are considered as the attributes.

Definition 7 (Linear Secret Sharing Schemes (LSSS) [1]). A secret shar-
ing scheme Π over a set P = {P1, P2, · · · , Pn} is called linear (over Zp) if:

1. the share for each party forms a vector over Zp;
2. there exists a matrix M with l rows called the sharing generating matrix for

Π. For each i ∈ [1, l], we let the function ρ define the party labeling the row i of
the matrix M as ρ(i). When we consider the column vector v = (v1, · · · , vk)T ,
where v1 = s ∈ Zp is the secret to be shared, and vt ∈ Zp, where t ∈ [2, k]
are chosen randomly, then M ·v is the vector of l shares of s according to Π.
The share λi = (M · v)i belongs to the party ρ(i).

Suppose that Π is an LSSS for the access structure A. Let S be an authorized
set, such as S ∈ A, and I ⊆ {1, 2, ·, l} is defined as I = {i : ρ(i) ∈ S}. If {λi}i∈I

are valid shares of a secret s according to Π, there exist constants {wi ∈ Zp}i∈I ,
that can be computed in a polynomial time, such as

∑
i∈I λiwi = s [1].

We note that any monotonic boolean formula can be converted into LSSS
representation. Generally, boolean formulas are used to describe the access pol-
icy, and equivalent LSSS matrix is used to sign and verify the signature. We
must note that the labeled matrix in Definition 7 is also called monotone span
program [16].

Definition 8 (Monotone Span Programs (MSP) [16,19]). A Monotone
Span Program (MSP) is the tuple (K,M, ρ, t), where K is a field, M is a l × c
matrix (l is the number of rows and c is the numbers of columns), ρ : [l] → [n]
is the labeling function and t is the target vector. The size of the MSP is the
number l of rows.

As ρ is the function labeling each row i of M to a party Pρ(i), each party can
be considered as associated to one or more rows. For any set of parties S ⊆ P,
the sub-matrix consisting of rows associated to parties in S is denoted MS.

The span of a matrix M , denoted span(M) is the subspace generated by the
rows of M , i.e.; all vectors of the form v · M . An MSP is said to compute an
access structure A if:

S ∈ A iff t ∈ span(MS)
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In other words:
A(S) = 1 ⇐⇒ ∃v ∈ K

1×l : vM = t

5.1.2 Bilinear Maps
Let G1, G2, and GT be three cyclic groups of prime order p. Let g1, g2 be
generators of respectively G1 and G2. A bilinear map ê is a map ê : G1×G2 → GT

satisfying the following properties: (i) bilinearity: for all g1 ∈ G1, g2 ∈ G2, (ii)
non-degeneracy: ê(g1, g2) 
= 1 and (iii) there is an efficient algorithm to compute
ê(g1, g2) for any g1 ∈ G1 and g2 ∈ G1.

5.1.3 Complexity Assumptions
For our construction, we consider the following complexity assumptions:

– q-Diffie Hellman Exponent Problem (q-DHE) – Let G be a group of
a prime order p, and g is a generator of G. The q-DHE problem is, given
a tuple of elements (g, g1, · · · , gq, gq+2, · · · , g2q), such that gi = gαi

, where

i ∈ {1, · · · , q, q + 2, · · · , 2q} and α
R←− Zp, there is no efficient probabilistic

algorithm AqDHE that can compute the missing group element gq+1 = gαq+1
.

– Computational Diffie Hellman Assumption (CDH) – Let G be a
group of a prime order p, and g is a generator of G. The CDH problem is,
given the tuple of elements (g, ga, gb), where {a, b} R←− Zp, there is no efficient
probabilistic algorithm ACDH that computes gab.

5.2 Overview

In this section, we review the procedures and algorithms of HABS. Our proposal
is composed of seven algorithms defined as follows:

– Setup: this algorithm takes as input the security parameter ξ and outputs
the public parameters params. As presented in Sect. 4.1, we suppose that the
public parameters includes the public key of the inspector and are considered
as an auxiliary input to all HABS algorithms
Global Public Parameters params – the Setup algorithm first generates an
asymmetric bilinear group environment such as (p,G1,G2,GT , ê) where ê is
an asymmetric pairing function such as ê : G1×G2 → GT . Random generators
g1, {ui}i∈[1,U ] ∈ G1 (i.e.; U is the maximum number of attributes supported
by the span program) and g2 ∈ G2 are also generated, together with α ∈ Zp.
Let h1 := g1

α ∈ G1 and h2 := g2
−α ∈ G2. Let H be a cryptographic hash

function. The global parameters of our system are as follows:

params = {G1,G2,GT , ê, p, g1, {ui}i∈[1,U ], g2, h1, h2,H}

We note that the secret key of the inspector is skins = α.
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– KeyGen – this algorithm outputs a pair of private and public keys for
each participating entity. In our proposal, each entity (i.e.; issuer and user)
has a pair of private and public keys. That is, the user has a pair of
keys (sku, pku) where sku is randomly chosen in Zp and pku is the couple
(Xu, Yu) = (g1sku , ê(g1, g2)sku). The issuer has a pair of secret and public keys
(skis, pkis). The issuer secret key skis is the couple defined as skis = (sis, xis)
where sis is randomly chosen in Zp and xis = g1

sis . The issuer public key pkis

is the couple (Xis, Yis) = (ê(g1, g2)sis , h2
sis).

– Issue: this algorithm is performed by the issuer in order to issue the credential
to the user with respect to a pre-shared set of attributes S ⊂ S (S is referred
to as the attribute universe). The set of attributes S is defined as follows:
S = {a1, a2, · · · , aN}, where N is the number of attributes.
The Issue algorithm takes as input the public key of the user pku, a set
of attributes S and the private key of the issuer skis. It outputs the cre-
dential C defined as C = (C1, C2, C3, {C4,i}i∈[1,N ]) = (xis · [Xu

H(S)−1
] ·

h1
r, g1

−r, g2
r, {ui

r}i∈[1,N ]), where H(S) = H(a1)H(a2) · · · H(aN ), r is an inte-
ger randomly selected by the issuer and ui

r presents the secret key associated
to the attribute ai, where i ∈ [1, N ].

– Obtain: this algorithm is executed by the user. It takes as input the credential
C, the public key of the user pku, the public key of the issuer pkis and the set
of attributes S. The correctness of the obtained credential is given by Eq. 1,
as follows:

ê(C1, g2)
?= Xis · ê(XH(S)−1

u , g2) · ê(h1, C3) (1)

– Show: this algorithm is performed by the user, in order to authenticate with
the verifier. That is, when the user wants to access a service, he sends a
request to the verifier. As such, the verifier sends his presentation policy. The
presentation policy is given by a randomized message m, a predicate Υ and
the set of attributes that have to be revealed. The user has to sign the message
m with respect to the predicate Υ satisfying a sub-set of his attributes S. As
presented in Sect. 3, the message m should be different for each authentication
session.

In the following, we denote by SR, the set of attributes revealed to the
verifier, and SH the set of non-revealed attributes, such as S = SR ∪ SH .

Let the signing predicate Υ can be represented by an LSSS access structure
(M,ρ), i,e; M is an l×k matrix, and ρ is an injective function that maps each
row of the matrix M to an attribute. The Show algorithm takes in input the
user secret key sku, the credential C, the attribute set S, the message m and
the predicate Υ such that Υ (S) = 1. The showing process is as follows:

1. The user should first blind his credential C in the following way: the user
first selects at random an integer r′ ∈ Zp and sets C ′

1 = C1 · h1
r′

= xis ·
Xu

H(S)−1 ·h1
r ·h1

r′
= xis ·Xu

H(S)−1 ·h1
r+r′

, C ′
2 = C2 ·g1−r′

= g1
−(r+r′)

and C ′
3 = C3 · g2

r′
= g2

r+r′
.

Then, the user blinds the secret value associated to each attribute required
in the access policy such that: ∀ai ∈ S, u′

i = ui
r · ui

r′
= ui

r+r′
. Thus,
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the new blinded credential C ′ presents the tuple (C ′
1, C

′
2, C

′
3, C

′
4,i) = (xis ·

Xu
H(S)−1 · h1

r+r′
, g1

−(r+r′), g2
r+r′

, ui
r+r′

).
2. As the user’s attributes S satisfies Υ , the user can find a vector v =

(v1, · · · , vl) that satisfies vM = (1, 0, · · · , 0) according to Definition 8.
3. For each attribute ai, where i ∈ [1, l], the user first computes ωi = C ′

3
vi .

Then, he calculates B =
∏l

i=1(u
′
ρ(i))

vi .
4. Afterwards, the user selects a random rm and computes the couple

(σ1, σ2) = (C ′
1 · B · g1

rmm, g1
rm).

We note that the user may not have the secret value of each attribute
mentioned in Υ . But, in this case, vi = 0 and thus the value is not needed.

5. Finally, the user computes an accumulator on non-revealed attributes,

using his secret key such as A = g2
skuH(SH )−1

rm . Then, he outputs a pre-
sentation token Σ, which mainly includes the signature of the message m
with respect to the predicate Υ such that Σ = (Ω, σ1, σ2, C

′
1, C

′
2, A,SR).

We note that Ω = {ω1, · · · , ωl} is the set of committed elements’ values
of the vector v, based on the credential’s item C ′

3.
– Verify: this algorithm is performed by the verifier. It takes as input the

public key of the issuer pkis, the presentation token Σ, the set of revealed
attributes SR, the message m and the signing predicate Υ corresponding to
(Ml×k, ρ). It outputs a bit b ∈ {0, 1}. The verifier proceeds as follows:
First, the verifier checks the received set of revealed attributes SR, and com-
putes an accumulator AR such as AR = σ2

H(SR)−1
.

Then, the verifier chooses at random k − 1 values from Zp, denoted by
μ2, · · · , μk respectively and sets the vector µ = (1, μ2, · · · , μk).
Consequently, the verifier calculates τi =

∑k
j=1 μjMi,j where Mi,j is an ele-

ment of the matrix M . Finally, the verifier checks the correctness of the
received presentation token (Eq. 2):

ê(σ1, g2)
?= Xisê(AR, A)ê(C ′

2, h2)
l∏

i=1

ê(uρ(i)h1
τi , ωi)ê(σ2, g2

m) (2)

– Inspec: this algorithm is performed by the inspector, the authority in pos-
session of the secret skins. The inspector can decrypt Elgamal ciphertext
(C ′

1, C
′
2) to retrieve �∗ = C ′

1 ·C ′
2
α. Then, the inspector uses the issuer table in

order to retrieve an entry (uj
∗, pkj , Yuj

H(S)−1
), such that ê(�∗, g2) · [Xis]−1 =

ê(Xu
H(S)−1

, g2). The proof of validity of such an inspection procedure is done
by proving that the decryption is correctly done, using the knowledge of skins

(Eq. 3).
ê(�∗, g2) · Xis

−1 ?= ê(Xu
−H(S), g2) (3)

6 Security Analysis

In this section, we first prove that HABS provides the security requirements
defined in Sect. 4.2. Then, we discuss an extension to support multiple issuers.
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6.1 Security of the Main Scheme

The security of our main scheme HABS relies on the following Theorems:

Theorem 1. Correctness – HABS is correct if for all (params) ←
Setup(ξ), all pair of public and private keys {(pkis, skis), (pku, sku)} ←
KeyGen(params), all attribute sets S, all credentials C ← Issue (S, skis, pku),
all claiming predicates Υ such as Υ (S) = 1, all presentation tokens Σ ←
Show (C, sku,m, Υ ) and all proofs � ← trace(skins, σ, pkis), we have Obtain

(C, sku, pkis,S) = 1, Verif (Σ,m, Υ, pkis) = 1 and judge(�) = 1.

Theorem 2. Unforgeability – HABS satisfies the unforgeability requirement,
under the CDH, q-DHE and DLP assumptions.

Theorem 3. Privacy – HABS achieves the privacy requirement, with respect
to the anonymity and unlinkability properties.

Theorem 4. Anonymity Removal – Our attribute based credential system
HABS achieves the inspection feature, with respect to IA-Game.

For detailed security proofs, please refer to http://www-public.tem-tsp.eu/
∼laurenm/ABS-AC/securityanalysis.pdf

6.2 Homomorphism to Support Multiple Issuers

As presented in Sect. 3.3, when a user requests multiple authorities to issue cre-
dentials with respect to his attributes, the different sessions are linked through
the user’s public key. To satisfy the unlinkability property of AC schemes between
several issuance sessions, a novel ABS issuance procedure has to be designed,
leading us to extend our proposal to support pseudonym systems and public key
masking during the issuance procedure, presented hereafter. Also our construc-
tion is demonstrated to support an homomorphism property helpful for defining
a new HABS.agg algorithm, and a modified HABS.verify algorithm.

Assumptions – Extra assumptions are requested for the support of multiple
issuers: (i) all the issuing authorities AAj share the same public parameters
params, but have distinct key pairs (skisj

, pkisj
), (ii) the public parameters

params include the secrets ui relative to the attributes that might be certified by
diverse issuers, (iii) the user is provided with one pseudonym nymj per authority,
and enables the user to authenticate to the issuers with different identities. For
consistency among obtained credentials (i.e. C1), each pseudonym nymj should
rely on the private key of the user and the related issuing authority AAj and the
HABS.issue should be extended with works of Chase and Chow [7] and Chase
et al. [8] for masking the public key of the user.

Homomorphism Construction – For simplicity reasons, the reasoning
next is limited to two issuers ISi and ISj , but it can be easily extended to n
(different) issuer(s), where n ≥ 2. Let us then assume that a user receives two
signed sets of attributes from two different attribute authorities ISi and ISj .

http://www-public.tem-tsp.eu/~lauren_m/ABS-AC/securityanalysis.pdf
http://www-public.tem-tsp.eu/~lauren_m/ABS-AC/securityanalysis.pdf
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The user receives Ci = HABS.Issue (skis
(i),Si) and Cj = HABS.Issue

(skis
(j),Sj), from ISi and ISj , respectively. The sets of attributes are repre-

sented by Si = {ai,1, · · · , ai,ni
} and Sj = {aj,1, · · · , aj,nj

}, where nk is the
number of attributes in the set Sk and k ∈ {i, j}.

The idea is to aggregate credentials Ci and Cj to form a new CR covering
the attributes S = Si ∪ Sj . We define the agg algorithm as follows:

agg – this algorithm takes as input two credentials Ci and Cj corresponding
to the sets of attributes Si and Sj respectively, and the public keys of issuers
pkis

i and pkis
j . It outputs a resulting signed commitment CR, where CR is a

signature over the union of the two sets of attributes Si and Sj . We note that
the agg algorithm has to fulfill the correctness and homomorphism properties.

Recall that the credential Ck, obtained from the issuer ISk, is denoted by Ck =
(C1, C2, C3, {Cl,4}l∈[1,nl])

(k) = (xisk
[Xu

H(Sk)
−1

]h1
rk , g1

−rk , g2
rk , {ul

rk}l∈[1,N ]),
where k ∈ {i, j} and nl is the number of certified attributes by the issuer ISk.

Let us define the following theorem defining the aggregation algorithm:

Theorem 5. Let us consider the algorithms HABS.Issue, HABS.Obtain,
HABS.Show and HABS.Verify defined in Sect. 5.2. Let HABS.agg be the
aggregation algorithm such as:

agg(C(i), C(j),Si,Sj , pkis
i, pkis

j) = HABS.Issue(pku,Si ∪Sj), a.skisi
+ b.skisj

)
(4)

where a and b are two integers that might be computed by the user based on the
union set Si ∪ Sj.

That theorem and homomorphism property come directly from the following
Lemma 1 which expresses H(Si ∪ Sj) based on H(Si) and H(Sj) in order to
write C{1,Si∪Sj} with respect to C1

(i) and C1
(j).

Lemma 1. Given the hash function H and for every sets of attributes Si and Sj,
there exist two integers a and b, such that H(Si ∪ Sj)

−1 = aH(Si)−1+bH(Sj)−1.

Proof. Referring to the Bezout’s lemma, the gcd satisfies the following property:

gcd(H(Si),H(Sj)) = bH(Si) + aH(Sj) (5)

where a and b are two non zero integers (a and b are called Bezout coefficients).
In addition, the gcd and lcm satisfy Eq. 6 such that

gcd(H(Si),H(Sj)) ∗ lcm(H(Si),H(Sj)) = H(Si)H(Sj) (6)

As such, using Eq. 6, we have:

lcm(H(Si),H(Sj))
−1 =

gcd(H(Si),H(Sj))

H(Si)H(Sj)
=

bH(Si) + aH(Sj)

H(Si)H(Sj)
= bH(Sj)

−1+aH(Si)
−1

(7)
On the other side, we write H(Si ∪ Sj) as follows:

H(Si∪Sj)=
∏

ak∈Si∪Sj

H(ak)= lcm(
∏

ak∈Si

H(ak),
∏

ak∈Sj

H(ak))= lcm(H(Si),H(Sj))

(8)
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6.3 Proof of Homomorphism

In order to prove the homomorphism property with respect to the union opera-
tor, we first express [C1

(i)]a · [C1
(j)]b, denoted by RS, as a function of Si ∪ Sj ,

skisi and skisj , as follows:

RS = [xisi · [Xu
H(Si)

−1
] · h1

ri ]a · [xisj · [Xu
H(Sj)

−1
] · h1

rj ]b

= g1
a.sisi+b.sisj · [Xu

aH(Si)
−1+bH(Sj)

−1
] · h1

a.ri+b.rj

= g1
a.sisi+b.sisj · [Xu

H(Si∪Sj)
−1

] · h1
a.ri+b.rj

Similarly, we can write the elements of the resulting credential CR, such
that CR = (C1,Si∪Sj

, C2,Si∪Sj
, C3,Si∪Sj

, {Cl,4,Si∪Sj
}l∈[1,N ]), where C1,Si∪Sj

=
[C1

(i)]a · [C1
(j)]b = xisi

a · xisj
b · [Xu

H(Si∪Sj)] · h1
a.ri+b.rj , C2,Si∪Sj

= [C2
(i)]a ·

[C2
(j)]b = g1

−(a.ri+b.rj) C3,Si∪Sj
= [C3

(i)]a · [C3
(j)]b = g2

a.ri+b.rj and
{Cl,4,Si∪Sj

}l∈[1,N ] = {ul
a.ri+b.rj}l∈[1,N ], (i.e.; N is the maximum number of

attributes).

The form of the aggregated credential C1,Si∪Sj
, C2,Si∪Sj

, C3,Si∪Sj
,

{Cl,4,Si∪Sj
}l∈[1,N ] is similar to the individual credentials like Ci, thus leading to

the aggregated presentation token ΣR by applying exactly the same HABSShow
algorithm. The obtained ΣR is as follows: ΣR = (ΩR, σ1,R, σ2,R, C ′

1,R, C ′
2,R,

A,SR).

6.4 Proof of Correctness

We show how the verifier can rely on the aggregated presentation token ΣR,
to authenticate the user (u), with respect to his access policy Υ , such as
Υ (Si ∪ Sj) = 1, where Sk presents the set of attributes certified by the issuer
ISk, k ∈ {i, j}. Using the properties of the pairing function ê, we can easily
prove the correctness of Eq. 9:

ê(σ1,R, g2)
?
= Xisi

aXisj
bê(AR, A)ê(C′

2,R, h2)
l∏

i=1

ê(uρ(i)h1
τi , ωi)ê(σ2,R, g2

m) (9)

where a and b are two integers as defined in Lemma 1.
By equivalence to Eq. 2, we can consider that D = a.ri + b.rj + r′ presents

the quantity R = r + r′. Thus, for proving the correctness of Eq. 9, let us denote
by � the quantity ê(σ1,R, g2):

� = ê(xisi
axisj

b · Xu
H(Si∪Sj) · h1

D ·
l∏

i=1

(uρ(i))
Dvi · g1rmm, g2)

= ê(xisi , g2)
a ·ê(xisj , g2)

b ·ê(Xu
H(Si∪Sj), g2) · ê(h1

D, g2) · ê(g1rmm, g2) · ê(
l∏

i=1

uρ(i)
Dvi , g2)

= Xisi
a · Xisj

b · ê(g1H(SR)−1
, [g2

sku ]H(SH )−1
) · ê(C′

2,R, h2) · ê(σ2, g2
m) ·

l∏

i=1

ê(uρ(i), ωi)

= Xisi
aXisj

bê(AR, A)ê(C′
2,R, h2)

l∏

i=1

ê(uρ(i)h1
τi , ωi)ê(σ2,R, g2

m)
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Table 1. Comparisons between HABS and the related works

Scheme Keys (N attributes per credential) Issuance procedure

Groups params Credential size User Issuer Bw

[15] Zn : RSA: 1024 O(N) O(1) � 2600 + 1024 O(N): Zn

[20] p = 1024 : q = 128 O(N) O(1) 3 · |Gq| + 128 O(N): Gq O(1)

[6] Fp : |G1| � 170 O(1) O(N) (2N + 2) · (|G1| + |Zp|) O(1) O(N) : G1

HABS Fp : |G1| � 170 O(N) O(N) (N + 3) · |G1| O(1) O(N) : G1

Presentation Procedure

User Verifier Bw. User Verifier Bw. User Verifier Bw.

single-use single-use l-out-of-N K-use N attributes

attributes

[15] O(N): Zn O(1) O(N) O(N − l) O(N): Zn O(1)

[20] O(N) O(N) O(l) O(N) O(KN): Zq O(KN)

[6] O(1) 2 · O(N) O(N) O(1) 2 · O(N) O(l) O(N) 2 · O(N) O(N)

HABS O(k)∗ O(k)∗ O(k)∗

This proves the correctness of our HABS.Verify, while considering a multi-
issuers setting according to the agg algorithm.

7 Comparison

In this section, we give a quantitative comparison between related works and
our anonymous credential system based on attribute based signatures HABS.
That is, we give in Table 1 several elements of comparison between our con-
struction and most closely related anonymous credential systems, with respect
to processing and communication overhead.

The first column underlines the algebraic structure for each AC system. It
may be an RSA environment [15], Zn with a subgroup of order q [20], or bilinear
groups ê(G1,G2) over a base field Fp [6].

We denote by N the maximum number of attributes issued by an author-
ity into a single credential. The bandwidth, for issuing and showing protocols,
presents the exchanged quantity of data during protocols’ running.

The credential size presents the size of public keys or a certificate. The mem-
ory consumption for credentials is given with asymptotic complexity and some
concrete size in bits. Table 1 also details the processing complexity at the issuer,
user and verifier sides, while considering the number of operations in the under-
lying algebraic structures. As presented before, Table 1 shows that our HABS
is a direct signature, and thus the issuance procedure is rather interesting, com-
pared to IBM Identity Mixer [15] and U-Prove [20] solutions. The [6] construction
presents also a direct sanitizable signature applications for anonymous creden-
tial systems. However, HABS presents an interesting overhead, for the showing
protocol, compared to existing solutions. That is, the computation and commu-
nication overhead depends only on attributes required for satisfying the access
policy of the verifier, referred to as k in Table 1, whereas we denote by K the set
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of attributes that have to be disclosed with respect to presentation policy of the
verifier. In addition, our attribute-based construction HABS bring multiple-use
credentials, likely as [6,15] with an interesting processing overhead, compared to
the UProve’s technology which is a single-use credentials’ solution.

8 Conclusion

In this paper, we proposed a new way to design anonymous credential systems,
based on the use of attribute based signatures. Our anonymous certification
system HABS enables a user to anonymously authenticate with a verifier, while
providing only required information for the service provider, with respect to
its presentation policy. Indeed, HABS supports a flexible selective disclosure
mechanism with no-extra processing cost, which is directly inherited from the
expressiveness of attribute based signatures for defining access policies.

Additionally, our proposal is deliberately designed to ensure unlinkability
between the different sessions while preserving the anonymity of the user. An
extension of HABS is also detailed to preserve users’ privacy with ensuring
the unlinkability between multiple issuers. Finally, a quantitative comparison of
HABS with most closely-related technologies shows the interesting processing
and communication cost of our construction, especially due to the application
of direct attribute based signatures for the issuing protocol.
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