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Abstract. With the rise of practical Secure Multi-party Computation
(MPC) protocols, compilers have been developed that create Boolean
or Arithmetic circuits for MPC from functionality descriptions in a
high-level language. Previous compilers focused on the creation of size-
minimal circuits. However, many MPC protocols, such as GMW and
SPDZ, have a round complexity that is dependent on the circuit’s depth.
When deploying these protocols in real world network settings, with net-
work latencies in the range of tens or hundreds of milliseconds, the round
complexity quickly becomes a significant performance bottleneck.

In this work, we present ShallowCC, a compiler extension that cre-
ates depth minimized Boolean circuits from ANSI-C. We first introduce
novel optimized building blocks that are up to 50% shallower than previ-
ous constructions. Second, we present multiple high- and low-level depth
minimization techniques and implement these in the existing CBMC-
GC compiler. Our experiments show significant depth reductions over
hand-optimized constructions (for some applications up to 2.5×), while
maintaining a circuit size that is competitive with size-minimizing com-
pilers. Evaluating exemplary functionalities in a GMW framework, we
show that depth reductions lead to significant speed-ups in any real-
world network setting. For an exemplary biometric matching application
we report a 400× speed-up in comparison with a circuit generated from
a size-minimizing compiler.

1 Introduction

In the thirty years since Yao’s seminal paper [33], Secure Multiparty Computa-
tion (MPC) has transitioned from purely theoretic construction to a practical
tool. In MPC, two or more parties jointly evaluate a function over their inputs in
such a way that each party keeps its input hidden from the other parties. Thus,
MPC provides a generic way to construct Privacy-Enhancing Technologies, which
protect sensitive data during processing steps in untrusted environments. In the
last decade, many new protocols and optimizations made MPC practical for var-
ious applications. Nevertheless, MPC is still multiple orders of magnitude slower
than classic computation.
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The performance of most MPC protocols usually depends on the complexity
of either a Boolean or an Arithmetic circuit representing the functionality to be
computed. Unfortunately, the manual construction of efficient circuits is a com-
plex, error-prone, and time-consuming task. Therefore, multiple compilers, for
example CBMC-GC [17], Frigate [26], KSS [22], or the SecreC Compiler [4], have
been developed that compile a functionality described in a high-level language
into circuits satisfying the requirements of MPC protocols.

The creation of circuits from a high-level functionality shares similarities with
hardware synthesis. Yet, hardware synthesis tools differ in two factors. First, no
layout or space considerations have to be made when designing circuits for MPC.
Second, the costs for different types of gates differ significantly. For example, in
classic logic synthesis, Boolean NAND gates are favored over XOR gates due to
their placement costs. However, in many MPC protocols the evaluation costs of
all non-linear gates (e.g., AND, NAND and OR) are equivalent to each other,
while the evaluation of linear gates (e.g., XOR) is essentially free [14]. Therefore,
previous works on MPC compilers mainly focussed on producing circuits with a
minimal number of non-linear gates.

Nevertheless, many practically relevant MPC protocols, such as BGW [3],
GMW [14], Sharemind [4], SPDZ [9] and TinyOT [28] have a round complexity
that is proportional to the circuit depth. Hence, for these MPC protocols it is
crucial to also consider the circuit depth as a major optimization goal, because
every layer in the circuit increases the protocol’s runtime by the round trip
time (RTT) between the computing parties. This is of special importance, as
latency is the only computational resource that has reached its physical bound-
ary. (For computational power and bandwidth, parallel resources can always be
added.) Thus, asymptotically it is much more vital to minimize the depth of cir-
cuits, rather than speeding-up the computational efficiency. To illustrate these
thoughts, the performance of a state-of-the-art implementation of the GMW
protocol [14], such as ABY [11], shows that more than 10 million non-linear
gates per second can be computed on a single core of a commodity CPU. At
the same time, the network latency between Asia and Europe1 is in the range of
a hundred milliseconds. In this setting, the evaluation time of any circuit with
less than 100,000 parallel gates per circuit level will increase by at least one
order of magnitude. Therefore, it is worthwhile to investigate optimization and
compilation techniques for the automatic creation of low depth Boolean circuits.

Even though this work focusses on depth-minimized Boolean circuits, MPC
protocols using Arithmetic circuits or FHE schemes can also profit from the
ideas presented here, as they require Boolean circuits for all control flow opera-
tions. Moreover, we note that a shallower and broader circuit allows for better
parallelization in MPC protocols with constant round complexity, for example
in Parallel Yao’s Garbled Circuits [6].

1 Even though, MPC is often benchmarked in a LAN setting, the WAN setting is the
more natural deployment model of MPC.
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Contribution. In this work, we present ShallowCC, a compiler that takes
ANSI-C as input and automatically generates low depth Boolean circuits, opti-
mized for MPC protocols that favor a minimal number of non-linear gates.
Our approach for the generation of depth minimized circuits is threefold. First,
we present and investigate minimization techniques that operate on the source
code level. This involves the detection of sequential reductions, which can be
regrouped in a tree based manner. We refer to reductions as the aggregation of
multiple programming variables into a single result variable, e.g., minima com-
putation over an array. We also present techniques to detect consecutive arith-
metic operations, which can be instantiated more efficiently by a dedicated cir-
cuit rather than a composition of multiple individual arithmetic building blocks.
Second, we present depth and size optimized constructions of major building
blocks, e.g., adder and multiplexer, required for the synthesis of larger circuits.
These hand-optimized building blocks have a depth that is significantly smaller
than depth-minimized blocks presented in recent works [10,30]. An overview of
significant improvements is given in Table 1. Third, we adapt multiple low level
optimization methods that minimize circuit depth on the gate level. Finally, we
contribute an implementation of our ideas as an extension to the open-source
CBMC-GC compiler.

Table 1. Depth of Building Blocks. Comparison of the depth of the here presented
building blocks with the previously known best constructions.

Operation Previous work [30] This work

n-bit Addition 2 log2(n) + 1 log2(n) + 1

n-bit Multiplication 3 log2(n) + 4 2 log2(n) + 3

m:1 Multiplexer log2(m) �log2(�log2(m + 1)�)�

Comparing with the hand optimized computations, e.g., computation of the
Manhattan distance [10], we report depth reductions between 30 % and 60 %.
Comparing with previous compilers, we report circuits, e.g., a privacy preserving
biometric matching functionality, that are up 400 times shallower. Evaluating
the depth minimized circuits with the GMW protocol [14], we observe speed-ups
of the online protocol run time that are proportional to the depth savings, even
for RRTs below 10ms. For example, we observe a speed-up of 400 times for the
aforementioned biometric matching functionality.

Outline. Next, we discuss related work. An introduction into circuit design is
given in Sect. 3. In Sect. 4 we present ShallowCC and its minimization techniques.
An evaluation of ShallowCC is given in Sect. 5.

2 Related Work

Along with the early development of practical frameworks for MPC, circuit com-
pilers have been developed, mainly because the manual creation of circuits for
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privacy preserving applications requires expertise in hardware synthesis and can
be an error prone task with circuits scaling to billions of gates. Here, we first dis-
cuss compilers for the creation of Boolean circuits mainly tailored towards Yao’s
Garbled Circuits, before discussing compilers for arithmetic circuits. Moreover,
an overview of optimized circuit libraries is given.

Boolean circuit compilers. The development of compilers for MPC started with
the Fairplay framework by Malkhi et al. [25]. Fairplay compiles a domain spe-
cific hardware description language (SFDL) into a gate list for the use in Yao’s
Garbled Circuits. Henecka et al. [16] presented the TASTY compiler with a
domain specific language (DSL) that supports basic data types and arithmetic
operations to allow the efficient combination of Garbled Circuits with additively
homomorphic encryption. The PAL compiler by Mood et al. [27] also relies on
Fairplay’s SFDL input format, but aims at low-memory devices as the compi-
lation target. The KSS compiler by Kreuter et al. [22] is the first compiler that
shows scalability up to a billion of gates. KSS compiles circuits from a domain
specific hardware language and employs advanced optimization methods, e.g.,
constant propagation or dead gate elimination. ObliVM by Liu et al. [23] is a
framework for Java that enables the automatized combination of oblivious data
structures with MPC. Songhori et al. [31] presented Tiny Garble, which uses
commercial hardware synthesis tools to compile circuits from VHDL. One the
one hand, this approach allows to use a broad range of existing functionalities
in hardware synthesis, but also shows the least degree of abstraction, by requir-
ing the developer to have experience in hardware design. Zahur and Evans [35]
presented a compilation approach, named Obliv-C, that compiles a DSL into
executable C code, thus, combining compiler and execution environment. Very
recently, Mood et al. [26] presented the Frigate compiler, which aims at very fast
and extensively tested compilation of another DSL.

The CBMC-GC compiler by Holzer et al. [17] is the first compiler that cre-
ates Boolean circuits for MPC from ANSI-C. CBMC-GC utilizes the Bounded
Model Checker CBMC, originally used for the verification of C code, to reliably
compile a large subset of C to circuits. ParCC, presented by Buescher et al. [6],
is a source-to-source compiler, which extends CBMC-GC by the capability to
compile parallel circuits. The PCF compiler by Kreuter et al. [21] is compiles C
using the intermediate representation of the portable LCC compiler.

Mood et al. [26] give an overview on many of the aforementioned compilers
and benchmark their performance. The authors indicate limited robustness of
many existing compilers, as most have been developed for research purposes.
We observe that all compilers apply various optimization methods, yet all aim
at the creation of size and not depth minimal circuits.

Arithmetic circuit compilers. Multiple compilers that aim at the creation of cir-
cuits for use in secret sharing based MPC have been developed. Early compilers
are the FairplayMP compiler by Ben-David et al. [2] and the VIFF compiler by
Damgard et al. [8], which both compile a DSL. The Sharemind framework by
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Bogdanov et al. [4] is nowadays the most advanced compiler for MPC. It com-
piles a DSL, implements a broad range of functionalities and supports multiple
MPC protocols during runtime. The Picco compiler by Zhang et al. [36] compiles
ANSI-C into interpretable arithmetic circuits, yet has not been open sourced.

Optimized circuit libraries. Kolesnikov and Schneider [19,20] presented first size
optimized low-level building blocks, e.g., adder and multiplexer, for their use in
Yao’s Garbled Circuits. Zahur and Evans [34] presented optimized circuit struc-
tures for more advanced building blocks, such as stacks and queues. Schneider
and Zohner [30] identified the need of low depth circuits for a fair comparison
between GMW und Yao’s Garbled Circuits and presented multiple depth mini-
mized building blocks. Most recently, Demmler et al. [10] presented a library of
low depth circuits exported from a commercial hardware synthesis tool. In this
work, we compare our results with these hand optimized circuits.

3 Preliminaries in Digital Circuit Design for MPC

Digital circuit design, also known as logic synthesis, deals with the construc-
tion and optimization of digital circuits. Common optimization goals are the
reduction of the placement costs and the signal delay under several physical
constraints. In circuit design for MPC, however, many of the classical design
criteria (e.g., signal amplification) can be omitted, because the created circuits
are evaluated ‘virtually’ in software. In this work, we investigate the creation of
Boolean circuits based on gates with two input wires, as these provide the most
general circuit description. In the following paragraphs, we describe the used
notation, as well as some basic concepts applied in logic synthesis.

Notation. We use snX to notate the total number of non-linear gates of a circuit,
also referred to as size, and dnX to denote the circuit’s depth in the number of
non-linear gates. Furthermore, we denote bit strings in capital letters, e.g. X,
and denote their negation with X. We refer to single bit at position i within a
bit string with Xi. The Least-Significant Bit (LSB) is X0. Moreover, we denote
the Boolean XOR gate with ⊕, AND with · and OR with +. When useful, we
abbreviate the AND gate A · B with AB.

Half- and Full-Adder. Arithmetic building blocks are constructed of smaller
building blocks, namely Half-Adders (HA) and Full-Adders (FA). A Half-Adder
is a combinatorial circuit that takes two bits A and B and computes their sum
S = A⊕B and carry bit Cout = A·B. A Full-Adder allows an additional carry-in
bit Cin as input. The sum is computed by XOR-ing all inputs S = A⊕B ⊕Cin,
the carry-out bit can be computed by Cout = (A ⊕ Cin)(B ⊕ Cin) ⊕ Cin [20].
Both, the HA and FA have size snX = 1 and depth dnX = 1.
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Carry-Save Adder. In the early 1960s [12], Carry-Save Addition was introduced
to compute the sum of k numbers in logarithmic depth. The main component of
a Carry-Save Addition is the 3:2 Carry-Save Adder (CSA). A 3:2 CSA reduces
the sum of three numbers A+B +C to the sum of two numbers X +Y in small
constant depth [29]. A CSA for three n-bit values A,B and C can be instantiated
by n parallel FAs. This instantiation has a depth of one and allows to compute
the partial sums X and Y for k numbers with depth dnXCSA(k) = �log2(k)−1� [30].

Parallel Prefix Circuit. A parallel prefix circuit is used in depth minimizing
adders and computes n outputs O1, . . . , On from n inputs X1, . . . , Xn for an
arbitrary associative two-input operator ◦ as follows [15]:

O1 = X1, O2 = X1 ◦ X2, . . . , On = X1 ◦ X2 · · · ◦ Xn.

All outputs can then be computed with at most logarithmic depth when applying
the operator ◦ in a tree structure over all inputs, e.g., O4 = (X1◦X2)◦(X3◦X4).

Two’s complement. The two’s complement is the common representation of
signed numbers in hardware. In the two’s complement, negative numbers are
represented by flipping all bits and adding one. In the following sections, we
assume a two’s complement representation, when referring to negative numbers.

4 Creation of Low Depth Circuits

In this section, we present the design of our compiler extension ShallowCC as
well as multiple depth minimization techniques. ShallowCC is built on top of
CBMC-GC, which, even though being the first compiler for ANSI-C, creates
circuits that are still competitive in size [26]. CBMC-GC is open sourced, well
documented and shows great reliability due to is origin in model checking. More-
over, it implements powerful minimization techniques on the gate level that make
it an optimal candidate to implement the ideas presented in this section.

ShallowCC follows CBMC-GC’s compilation approach and adopts them for
depth minimization as illustrated in Fig. 1. Adaptations and extensions are
marked in gray. The compiler reads ANSI-C code with a special naming conven-
tion for input arguments and output variables (see [17] for code examples). First,

Fig. 1. ShallowCC’s compilation chain from ANSI-C to Boolean circuits.
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unsigned max_abs(int a[], unsigned len) {
unsigned i, max = abs(a[0]);
for(i = 1; i < len; i++)

if(abs(a[i]) > max)
max = abs(a[i]);

return max;
}

Listing 1. Exemplary function that computes the maximum norm.

the code is preprocessed to detect and transform reduction statements on the
source code level (see Sect. 4.1). In the second and third step all bounded loops
and recursions are unrolled using symbolic execution and the resulting code is
transformed into Single Static Assignment (SSA) form. In the fourth step, the
SSA form is used to detect and annotate successive composition of arithmetic
statements (see Sect. 4.1). Afterwards, all statements are instantiated with hand-
optimized building blocks (see Sect. 4.2), before a final gate-level minimization
takes place (see Sect. 4.3).

4.1 Code Level Minimization Techniques

In the following paragraphs we discuss two techniques that operate on the source
code level to decrease the circuit depth.

Reduction Statements. We refer to a reduction as the compression of multiple
programming variables into a single result variable, e.g., the sum of an array.
Consider the code example in Listing 1. This code computes the maximum norm
of a vector. It iterates over an integer array, computes the absolute value of
every element and then reduces all elements to a single value, namely their
maximum. A straight forward translation of the maximum computation leads to
a circuit consisting of len−1 sequentially aligned comparators and multiplexers,
as illustrated in Fig. 2a. However, the same functionality can be implemented
with logarithmic depth when using a tree structure, as illustrated in Fig. 2b.
Thus, when optimizing circuits for depth, it is worthwhile to rewrite sequential
reductions. To relieve the programmer from this task, ShallowCC automatically
replaces sequential reductions found in loop statements by tree-based reductions.

Since detecting reductions in loop statements is a common task in automa-
tized parallelization, we adapt the recent work on parallel circuits by Buescher
and Katzenbeisser [6]. The authors use the parallelization framework Par4all [1]
to detect parallelism on source code level. As a side product, Par4all also iden-
tifies and annotates sequential reductions. We extend the techniques presented
in [6] to parse these reduction annotations and to rewrite the code during the
preprocessing phase with clang (source-to-source compilation). For this, we first
identify the loop range and reduced variable to instantiate a code template that
computes the reduction in a tree structure. This optimization improves the depth
of reductions over m elements from O(m) to O(logm). To give an example, for
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a minimum computation of a 32-bit integer array with 100 elements, we observe
a depth reduction from 592 to 42 non-linear gates, cf. Sect. 5.3.

(a) Sequential circuit (b) Tree circuit

Fig. 2. Maximimum search circuit, consisting of comparators and multiplexers.

Carry-Save Networks (CSNs). CSNs are efficient circuit constructions for mul-
tiple successive arithmetic operations that outperform their individual composi-
tion in size and depth. Consider the following lines of code as an example:

unsigned a, b, c, d;
unsigned t = a + b;
unsigned sum = t + c + d;

A straight forward compilation, as in CBMC-GC, leads to a circuit consisting
of three binary adders: sum = ADD(ADD(ADD(a,b), c), d). However, if it is
possible to identify that a sum of four independent operands is computed, a CSA
with four inputs can be initiated instead: sum = CSA(a,b,c,d). This reduces the
circuit’s depth in this example from 18 to 7 non-linear gates.

Detecting these operations on the gate level is feasible, for example with the
help of pattern matching, yet impractically costly considering that circuits reach
sizes in the range of billions of gates. Therefore, ShallowCC aims at detecting
these successive statements before their translation to the gate level. We do this
by utilizing the capabilities of the bounded model checker CBMC [7] that Shal-
lowCC is built upon. CBMC compiles C code into the SSA form, where each
variable is written only once. The SSA form allows efficient data flow analyses
and as such, also the search for successive arithmetic operations. Our detec-
tion algorithm consists of two parts. First, a breadth-first search from output
to input variables is initiated. Whenever an arithmetic assignment is found, a
second backtracking algorithm is initiated to identify all preceding (possibly
nested) arithmetic operations. This second algorithm stops whenever a guarded
or non-arithmetic statement is found. Once all preceding inputs are identified,
the initial assignment can be replaced by a CSN. After every replacement, the
search algorithm continues its search towards the input variables. We note that
this greedy replacement approach is depth minimizing, yet not necessarily size
optimal, since intermediate results in nested statements may be computed mul-
tiple times. A trade-off between size and depth is possible by only instantiating
CSNs for non-nested arithmetic statements.

Quantifying the improvements, assuming that the addition of two numbers
requires a circuit of depth dnXAdd, we observe that by sequential composition m > 2
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numbers can be added with depth (m − 1) · dnXAdd. When using a tree-based
structure the same sum can be computed with a depth of �log2(m)� · dnXAdd.
However, when using a CSA, m numbers can be added with a depth of only
�log2(m)−1�+dnXAdd. Furthermore, multiplications and additions can be merged
in a single CSN, as every multiplication internally consists of additions of partial
products, cf. Sect. 4.2. For the exemplary computation of a 5×5 matrix multi-
plication, we observe an improvement in depth of more than 60 %, cf. Sect. 5.3.

4.2 Optimized Building Blocks

Optimized building blocks are an essential part when designing complex circuits.
They facilitate efficient compilation, as they can be highly optimized once and
subsequently instantiated at practically no cost during compilation. In the fol-
lowing paragraphs, we present new depth and size optimized building blocks
constructed from Boolean gates for basic arithmetic and control flow operations.

Adder. An n-bit adder takes two bit strings A and B of length n, representing
two (signed) integers, as input and returns their sum as an output bit string S of
length n+1. The standard adder is the Ripple Carry Adder (RCA) that consists
of a successive composition of n FAs. This leads to a linear circuit size and depth
snXRCA = dnXRCA = O(n). Parallel Prefix Adders (PPAs) are widely used in logic
synthesis to achieve faster addition under size trade-offs by using a tree based
prefix network with logarithmic depth. PPAs have been investigated for their use
in MPC [10,30]. Surprisingly, and to the best of our knowledge, none of these
constructions challenged the textbook design of PPAs, which never considered
the ‘free’ XOR cost model. In the full version of this paper2, we prove that it is
possible to replace one of the two non-linear gates by an XOR gate in every layer
of the a PPA. Applying this design to the Sklansky adder, which shows the least
depths of all PPAs (see taxonomy of Harris [15]), we achieve a construction with
a depth of dnXSk (n) = �log2(n)�+1 and a size of snXSk = n�log2(n)� for an input bit
length of n and output bit length of n+1. In Table 2 a depth and size comparison
of the standard Ripple-Carry adder, the Ladner-Fischer adder, as proposed in
[30], the here optimized Sklansky adder, and an alternative to the Sklansky
adder, namely the Brent-Kung adder [15] is given for different bit-widths. We
observe that the RCA provides the least size and the Sklansky adder the least
depth. The Brent-Kung adder provides a trade-off between size and depth. Both
of our optimized constructions significantly outperform the previous best known
depth-minimized construction in size and depth.

Subtractor. A subtractor can be implemented with one additional non-linear
gate by using the two’s complement representation a − b = a + b + 1, with b
being the negated binary representation [19]. The addition of negative numbers
in the Two’s complement is equivalent to an addition of positive numbers. Hence,
the subtractor profits to the same degree from the optimized addition.

2 Full version available at http://www.seceng.de/people/buescher/.

http://www.seceng.de/people/buescher/
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Table 2. Adders. Comparison of circuit size snX and depth dnX of the standard RCA,
the previously best known depth-optimized adder [30] and our newly optimized Brent-
Kung and Sklansky adder.

depth dnX size snX

Bit-width n 16 32 64 n 16 32 64

Ripple-Carry n − 1 15 31 63 n − 1 15 31 63

Ladner-Fischer [10,30] 2�log(n)� + 1 9 11 13 1.25n�log(n)� + 2n 113 241 577

Brent-Kung-opt 2�log(n)� − 1 7 9 11 3n 48 96 192

Sklansky-opt �log(n)� + 1 5 6 7 n�log(n)� 64 160 384

Multiplier. A multiplier takes two input strings of length n as input and returns
their product in form of an output bit string of length 2n. The standard approach
for multipliers is the ‘school’ method. Here n partial products of length n are
computed and then added. This approach leads to a quadratic size snXMUL,s =
2n2 − n and linear depth dnXMUL,s = 2n − 1, cf. [30].

A faster addition of the partial products can be achieved when using Carry-
Save Adders (CSAs, cf. Sect. 3). Such a tree based multiplier consists of three
steps: First, the computation of all n×n partial products, then their aggregation
in a tree structure using CSAs, before the final sum is computed using a two-
input adder. The first step is computed with a constant depth of dnXPP = 1, as
only one single AND gate is required. For the last step, two bit strings of length
2n−1 have to be added. Using our Sklanksy adder, this addition can be realized
in dnXSk (n) = �log2(2n−1)�+1. The second phase allows many different designs,
as the CSAs can arbitrarily be composed. The fastest composition is the Wallace
tree [32], which leads to a depth of dnXCSA(n) = log2(n) for MPC. Combing all
three steps, a multiplication can be realized with a depth of dnXWa(n) = dnXPP +
dCSA(n) + dnXSk (2n − 1) = 2 log2 n + 3.

In Table 3 we present a comparison of the multipliers discussed above with
the depth optimized one presented in [30]. Compared with this implementation,
we are able reduce the depth by at least a third for any bit-width.

Table 3. Multipliers. Comparison of circuit depth d and size s of the school method,
the multiplier given in [30] and our optimized Wallace construction.

depth dnX size snX

Bit-width n 16 32 64 n 16 32 64

Standard 2n − 1 45 93 189 n2 − n 496 2016 8128

MulCSA [30] 3�log2(n)� + 4 16 19 22 ≈ 2n2 + 1.25n log2(n) 578 2218 8610

Wallace-opt 2�log2(n)� + 3 11 13 15 ≈ 2n2 + n log2(n) 512 2058 8226
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Multiplexer. A multiplexer (MUX) is the most important building block for the
control and data flow of any MPC application. MUXs are used to represent
conditionals and dynamic array access. A 2:1 n-bit MUX consists of two input
bit strings D0 and D1 of length n and a control input bit C. The control input
decides which of the two input bit strings is propagated to the output bit string
O of the same bit length. Kolesnikov and Schneider [20] presented a construction
of a 2:1 MUX that only requires one single non-linear gate for every pair of input
bits by computing the output as O = (D0 ⊕ D1)C ⊕ D0. This leads to a circuit
size of snXMUX(n) = n and depth of dnXMUX(n) = 1. A 2:1 MUX can be extended to
a m:1 MUX that selects between m input strings D0,D1, . . . , Dm using log2(m)
control bits C=C0, C1, . . . Clog(m) by tree based composition of 2:1 MUXs leading
to a circuit of size snXMUX tree(m,n) = (m− 1) · snXMUX(n) with logarithmic depth
dnXMUX tree(m,n) = log2(m) [30].

We propose a further depth reduction by a logarithmic factor when construct-
ing the multiplexer in disjunctive normal form (DNF) over all combinations of
choices. Every conjunction of the DNF encodes a single choice together with
the associated data wire. For MPC, this construction leads to a very low depth,
because the disjunctive ORs can be replaced by XORs, as all choices are mutually
exclusive. For example, a 4:1 MUX is constructed by:

O = D0C0C1 ⊕ D1C0C1 ⊕ D2C0C1 ⊕ D3C0C1.

Thus, the depth of a m:1 MUX can be reduced to the depth of one conjunc-
tion dnXMUX DNFd(m,n) = �log2(�log2(m)� + 1)�. Unfortunately, a näıve imple-
mentation of a n-bit m:1 MUXDNFd, as described above, increases the size to
snXMUX DNFd(m,n) = mn·log(m). Since this size increase can be quite significant
for larger m, we propose a second construction, referred to as MUXDNFs. The
idea is first to compute every choice conjunction, before AND-gating them with
the data inputs, leading to a depth of dnXMUX DNFs(m,n) = �log2(�log2(m)�)�+1.
Now, every conjunction can be computed size efficiently, by avoiding the
duplicated computations of choice combinations, e.g., the choices C0C1C2 and
C0C1C2 require both the computation of C1C2, which can be merged. This
reduces the size to:

snXMUX DNFs(m,n) = m +
m

20
+

m

21
+ · · · +

m

2m−2
+ mn < 2m + mn.

In Table 4 a comparison of the three MUXs is given for a different number of
inputs m and a typical bit-width of 32 bits. In summary, we improved the depth
of MUXs by a logarithmic factor with a moderate increase in size.

4.3 Gate Level Minimization Techniques

Minimizing the circuit on the gate level is the last step in ShallowCC’s compi-
lation chain. We first give a high level description of CBMC-GC’s optimization
flow, before discussing the adaptations made for ShallowCC.
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Table 4. Multiplexers. Exemplary comparison of circuit depth d and size s a of m:1
multiplexers for a different number of inputs m of bit-width n = 32.

depth dnX size snX

Input choices m 8 128 1024 m 8 128 1024

MUXTree �log(m)� 3 7 10 (m − 1) · n 244 4,064 31,968

MUXDNFd �log2(�log2(m) + 1�)� 2 3 4 mn · �log(m)� 768 28,672 320,000

MUXDNFs �log2(�log2(m)�)� + 1 3 4 5 2m+mn 272 1,088 34,000

Finding a minimal circuit for a given functionality is known to be ΣP
2 com-

plete [5]. Therefore, CBMC-GC follows an heuristic approach when minimiz-
ing circuits: First, structural hashing is applied to identify and remove dupli-
cated sub circuits. Then, a fixed-point optimization algorithm is initiated (the
algorithm runs until no further improvements are made), which itself consists of
two alternating phases. In the first phase, a template based circuit rewriting is
executed, which applies Boolean theorems to reduce the circuit size. For example,
the Idempotent law X +X = X forms a template, namely an OR gate with the
same inputs can safely be removed. In the second phase SAT sweeping is applied,
which identifies unused gates with the help of a SAT solver. For ShallowCC, we
left the structural hashing and SAT sweeping unmodified, as both help to reduce
the circuit complexity. Instead, we adapt the template based rewriting phase.

The circuit rewriting in CBMC-GC only considers patterns that are size
decreasing and have a depth of at most two binary gates. For depth reduction,
as required in ShallowCC, however, it is useful to also consider deeper circuit
structures, as well as patterns that are size preserving but depth decreasing. For
example, sequential structures, X = A + (B + (C + (D + E)) can be replaced
by tree based structures X = ((A + B) + C) + (D + E) with no change in
circuit size. Therefore, in ShallowCC we extend the rewriting phase by several
depth minimizing patterns, which are not necessarily size decreasing. In total 21
patterns changed, resulting in more than 70 patterns that are searched for (see
full version of this paper for a list of example patterns). Furthermore, we extend
the formerly fixed-depth pattern matching algorithm by a recursive search to
deeper sequential structures, as in the example above. To apply the new patterns
in an efficient manner, we modify CBMC-GC’s fixed point algorithm such that
the algorithm only terminates if no further size and depth improvements are
made or a user defined time limit is reached. Moreover, for performance reasons,
the rewriting first only applies fixed depth patterns, before applying the search
for deeper sequential structures.

Quantifying the improvements of individual patterns is almost impossible.
This is because the heuristic approach commonly allows multiple patterns to
be applied at the same time and every replacement has an influence on future
applicability of further patterns. Nevertheless, the whole set of patterns that we
identified is very effective, as circuits before and after gate level minimization
differ up to a factor of 20× in depth, cf. Sect. 5.3.
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5 Evaluation

The evaluation of ShallowCC in split in three parts. First, we compare
ShallowCC with existing depth and size minimized circuits from recent works.
Then, we exemplarily evaluate the different optimization techniques of Shal-
lowCC to illustrate their effectiveness. Finally, we show that the depth mini-
mized circuits, even under size trade-offs, significantly reduce the online time
of the GMW protocol for different network configurations. We begin with a
discussion of the benchmarked functionalities.

5.1 Functionalities

For comparison purposes, we focus on functionalities that have been used before
to benchmark MPC. The evaluated functionalities include basic building blocks
as well as more complex applications, such as biometric matching.

Arithmetic building blocks and floating point operations. Due to their impor-
tance in almost every computational problem, we benchmark arithmetic build-
ing blocks individually. For multiplication we follow the example of [26] and
distinguish results for output bit strings of length n and of length 2n (overflow
free) for n-bit input strings. Floating point calculations are necessary for all
applications where numerical precision is required, e.g., privacy preserving sta-
tistics. We abstain from implementing hand-optimizing floating point circuits,
but instead rely on ShallowCC’s capabilities to compile a IEEE-754 compliment
software floating point implementation written in C.

Distances. Various distances are used in privacy preserving protocols. The
Hamming distance between two bit strings is the number of pairwise differences
in every bit position. Due to its application in biometrics, the Hamming dis-
tance has often been used for benchmarking MPC compilers, e.g., [17,22,26,31].
The Hamming distance can be parametrized by the bit length of the input
strings. The Manhattan distance distM = |x1 −x2|+ |y1 − y2| between to points
a = (x1, y1) and b = (x2, y2) is the distance along a two dimensional space, when
only allowing horizontal or vertical moves. The Euclidian distance between two
points is defined as distE =

√
(x1 − x2)2 + (y1 − y2)2. Due to the complexity

of the square root function, it is common in MPC to benchmark the squared
Euclidian distance [30].

Matrix-vector/matrix multiplication. Algebraic operations such a matrix mul-
tiplications are building blocks for many privacy-preserving applications and
have repeatedly been used before to benchmark MPC [10,17,21]. Being a purely
arithmetic task, its a good showcase to illustrate the automatic translation of
arithmetic operations into CSNs with very low depth.
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Oblivious arrays. Oblivious data structures are a major building block for the
implementation of privacy preserving algorithms. The most general data struc-
ture is the oblivious array that hides the accessed index. Here, we only benchmark
the array read operation, as its circuit is more complex and thus, interesting than
the write operation [18].

Biometric matching. In biometric matching a party matches one biometric sam-
ple against the other’s party database of biometric templates. Example scenarios
are face-recognition or fingerprint-matching [13]. One of the main concepts is the
computation of a distance, e.g., Euclidean, between the sample and all database
entries. Once all distances have been computed, the minimal distance determines
the best match. For the following experiments, we fix the dimension of a sample
to d = 4, as it has been used before in MPC benchmarking [6,11].

5.2 Circuit Comparison

We implemented all the aforementioned functionalities in C and compiled them
with ShallowCC on an Intel Xeon E5-2620-v2 CPU with a minimization time
limit of 10 min. To illustrate the used sources codes, we refer the reader to the full
version of this paper. The resulting circuit dimensions for different parameters
and bit-widths are given in Table 5. Furthermore, the circuit size, when compiled
with the size minimizing Frigate compiler and CBMC-GC v0.93 is given, as well
as a comparison with the depth-minimized circuit constructions of [10,30]. The
results for Frigate, [10,30] are taken from the publications.

Comparing the depth of the circuits compiled by ShallowCC with the hand
minimized circuits of [10,30] we observe a depth reduction at least 30 % for most
functionalities. The only exception are the floating point operations, which do not
reach the same depth as given in [10]. This is because floating point operations
mostly consist of bit operations, which can significantly be hand optimized on a
gate level, but are hard to optimize when complied from a high-level implemen-
tation in C. When comparing circuit sizes, we observe that ShallowCC is com-
piling circuits that are competitive in size to the circuits compiled from the size
minimizing compilers. A negative exception is the addition, which shows a signif-
icant trade off between depth and size. However, the instantiation of CSNs allows
ShallowCC to compensate these trade-offs in applications with multiple additions,
e.g., the matrix multiplication. In Sect. 5.4 we analyze these trade-offs in more
detail. In summary, ShallowCC is compiling ANSI-C code to Boolean circuits that
outperform hand crafted circuits in depth, with moderate increases in size.

5.3 Evaluation of the Optimizations Techniques

In Table 6 an evaluation of the different optimization techniques for various exam-
ple functionalities is given. For every functionality the same source code is com-
piled twice, once with the specified optimization technique enabled and once with-
out. Obviously, not all optimizations apply to all functionalities, therefore, we only
investigate a selection of functionalities that profit from the different optimization
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Table 5. Comparison of circuit size snX and depth dnX compiled by the size minimiz-
ing Frigate [26], CBMC-GC v0.93 [17] compiler, the best, manually depth minimized
circuits given in [10,30] and the circuits compiled by ShallowCC. Improvements are
computed in comparison with the previous work [10,30]. The ‘-’ indicates that no
results were given. Marked in bold face are cases with significant depth reductions.

size minimized depth minimized improv

Frigate CBMC-GC Prev. [10,30] ShallowCC

Circuit n snX snX dnX snX dnX snX dnX dnX

Building Blocks

Add n → n 32 31 31 31 232 11 159 5 54%

Sub n → n 32 31 61 31 232 11 159 5 54%

Mul n → 2n 32 2,082 4,600 67 2,218 19 2,520 15 21%

Mul n → n 64 4,035 4,782 67 - - 4,350 16 -

Arithmetics

Div 32 1,437 2,787 1,087 7,079 207 5,030 192 7%

Matrix 5x5 32 128,252 127,225 42 - - 128,225 17 -

FloatAdd 32 - 2,289 164 1,820 59 2,437 62 -5 %

FloatMul 32 - 3,499 134 3,016 47 3,833 54 -14 %

Distances

Hamming-160 1 719 371 9 - - 281 7 -

Hamming-1600 1 4,691 7,521 31 - - 1,021 12 -

2D-Euclidian 16 - 826 47 1,171 29 1,343 19 34%

2D-Euclidian 32 - 3,210 95 3,605 34 5,244 23 32%

2D-Manhatten 16 - 187 31 296 19 275 13 31%

2D-Manhatten 32 - 395 63 741 23 689 16 30%

Privacy Preserving Protocols

BioMatch-32 16 - 88,385 1,101 - - 90,616 55 -

BioMatch-1024 16 - 2.9M 35,821 - - 2.9M 90 -

Ob.Array-32 8 - 803 66 248 5 538 3 40%

Ob.Array-1024 32 - 100,251 2,055 32,736 10 65,844 4 60%

techniques. The CSN detection shows its strengths for arithmetic functionalities.
For example, the 5x5 matrix multiplication shows a depth reduction of 60 %, when
optimizations are enabled. This is because the computation of a single vector ele-
ment can be grouped into one CSN. The detection of reductions is a very specific
optimization, yet, when applicable, the depth saving can be significant. When com-
puting the minima of 100 integers, a depth reduction of 92 % is visible. Note that
in this test the circuit size itself is unchanged, as only the order of multiplexers is
changed. Gate level minimization is the most important optimization technique for
all functionalities, which do not use all bits available in every program variable. In
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Table 6. Comparison of circuit dimensions when compiled by ShallowCC with different
optimization techniques enabled or disabled.

w/o optimization w/ optimization Improvement

Circuit n size snX depth dnX size snX depth dnX size snX depth dnX

Optimization: Carry-Save Networks CSNs

Matrix 5x5 32 143,850 42 128,225 17 11% 60%

4D-EuclidianDst 16 2,993 40 2,459 20 18% 50%

Optimization: Reduction

Minima-100 16 5,742 594 5,742 42 0% 92%

BioMatch-1024 16 2,9M 7,181 2,9M 90 0% 98%

Optimization: Gate level minimization

Hamming-160 1 5,389 77 281 7 95% 88%

FloatAdd 32 10,054 194 2,431 74 75% 61%

these cases constant propagation applies, which leads to significant reductions in
size anddepth, as exemplary shown for thefloatingpoint addition and computation
of the Hamming distance. In general, when applicable, the optimization methods
significantly improve the compiled circuits of ShallowCC.

5.4 Protocol Runtime

To show that depth minimization improves the online time of MPC protocols,
we evaluate a selection of circuits in the ABY framework [11]. ABY provides a
state-of-the-art two-party implementation of the GMW protocol [14] secure in
the semi-honest model. We extended the ABY framework by an adapter to parse
ShallowCC’s circuit format. For our experiments, we connected two machines,
which are equipped with an AMD FX 8350 CPU and 16 GB of RAM, running
Ubuntu 15.10 over a 1 Gbit ethernet connection in a LAN. To simulate different
network environments we made used of the Linux network emulator netem.

In this experiment the online protocol runtimes of size and depth minimized
circuits for different RTTs are compared. We omit timings of the pre-processing
setup phase, as this pre-computation can take place independently of the eval-
uated circuits and with any degree of parallelism. We ran this experiment for
different RTTs, starting with zero delay up to a simulated RTT of 80 ms.

The first functionality that we investigate is the biometric matching applica-
tion with a database of 1024 entries. Here, we compare the circuits generated by
CBMC-GC and ShallowCC. The resulting circuit dimensions are given in Table 5.
The results, which are averaged over 10 runs, are given inFig. 3a.Weobserve speed-
ups of ShallowCC’s circuit over CBMC-GC’s circuit of a factor between 2 and 400,
when increasing the RTT from ∼1 ms to 80 ms. A further comparison of size and
depth optimized circuits is given in the full version of this paper.

The second functionality that we evaluate is the array read (MUX), which
allows to analyze a size-depth trade-off. We compiled the read access to an array
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Fig. 3. GMW protocol runtime of depth and size minimized functionalities. (a) com-
pares the BioMatch functionality compiled with CBMC-GC and ShallowCC. (b) com-
pares the depth-minimzed DNF and size-minimzed tree 1024:1 multiplexer, for a single
and parallel execution. The resulting run times are plotted for different RTTs. We
observe that the depth optimized circuits significantly outperform the size optimized
circuits for any RTT > 1ms.

with 1024× 32 bit integers. We compare the tree based MUX, as proposed in
[30] with depth dnX = 10 and size snX = 32, 736 with our depth optimized
MUXDNFd, which has a depth of dnX = 4 and size snX = 65, 844 after gate
level minimization. Each circuit is evaluated with ABY individually, as well as
100 times in parallel. This allows to also investigate whether single instruction
multiple data (SIMD) parallelism, which is favored in GMW [11], has a signifi-
cant influence on the results. The resulting online runtimes for both circuits are
illustrated in Fig. 3b. All data points are averaged over 100 runs. We observe that
for almost every network configuration beyond 1 ms RTT, the depth optimized
circuits outperform their size optimized counterparts by a factor of two. The rea-
son for the factor of two is, that the GMW protocol requires one communication
round for the input sharing as well as one round for the output sharing, which
leads to 6 communication rounds in total for the MUXDNFd and 12 rounds for
the tree MUX. Moreover, we observe that here applied data parallelism shows
no significant effect on the speed-up gained through depth reduction.

In conclusion, the experiments support our introductory statement that
depth minimization is of uttermost importance to gain further speed-ups in
round-based MPC.

6 Conclusion

In this work we presented ShallowCC, the first depth-minimizing compiler that
compiles a high-level language to Boolean circuits for MPC. We proposed and
implemented multiple optimization techniques and presented newly optimized
building blocks. ShallowCC is capable of compiling circuits that are up to 2.5
times shallower than hand optimized circuits and up to 400 times shallower
than circuits compiled from size optimizing compilers, while still maintaining a
competitive circuit size.
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We note that ShallowCC is currently missing the support of an interpreted or
mixed-mode language, which allows the efficient evaluation of very large appli-
cations. However, we are convinced that the combination of a mixed-mode inter-
preter, e.g., [21,24,26,35], with ShallowCC is mostly an engineering task rather
than a research challenge and therefore leave it for future work.
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