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Abstract. Timed Intruder Models have been proposed for the
verification of Cyber-Physical Security Protocols (CPSP) amending the
traditional Dolev-Yao intruder to obey the physical restrictions of the
environment. Since to learn a message, a Timed Intruder needs to wait
for a message to arrive, mounting an attack may depend on where Timed
Intruders are. It may well be the case that in the presence of a great num-
ber of intruders there is no attack, but there is an attack in the presence
of a small number of well placed intruders. Therefore, a major challenge
for the automated verification of CPSP is to determine how many Timed
Intruders to use and where should they be placed. This paper answers
this question by showing it is enough to use the same number of Timed
Intruders as the number of participants. We also report on some prelim-
inary experimental results in discovering attacks in CPSP.

1 Introduction

The Dolev-Yao intruder model is one of the cornerstones for the success of pro-
tocol verification being used in most verification tools. The protocol security
literature contains a number of properties about the Dolev-Yao intruder, many
of them vital for automated verification. For instance, it has been shown that
protocol security verification is complete when considering only a single Dolev-
Yao intruder in the following sense: if there is an attack in the presence of one or
more (colluding) Dolev-Yao intruders, then the same attack with a single Dolev-
Yao intruder is possible [4]. Such result greatly simplifies the implementation of
tools as it is enough to use only one Dolev-Yao intruder.

However, for the important class of Cyber-Physical Security Protocols
(CPSP), the Dolev-Yao intruder model is not suitable. CSPS normally rely on
the physical properties of the environment where sessions are carried out to
establish some physical properties. For example, Distance Bounding Protocols
are used to infer an upper-bound on the distance between two players V , the
verifier, and P , the prover. It works as follows:

V −→ P : m
P −→ V : m′
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Fig. 1. The dots are protocol participants and the crosses are intruders.

The verifier sends a challenge m remembering the time t1, when this message is
sent. The prover responds to the challenge, m′, and by measuring the round-trip
time of the challenge response round, the verifier can compute (using assump-
tions on the transmission channel used) an upper bound on the distance to the
prover.

It is easy to check that the Dolev-Yao intruder is not suitable for CPSP ver-
ification, as the Dolev-Yao intruder does not obey the physical properties of the
system. As the Dolev-Yao intruder controls the network, he can receive the chal-
lenge m and instantaneously respond m′ to the verifier’s challenge. There have
been, therefore, proposals to amend the Dolev-Yao intruder model to CSPS [3,16]
in the form of Timed Dolev-Yao models. These have been used to prove general
decidability of important properties of CSPS [3,15] and prove the security of
protocols using theorem provers.

In contrast with the traditional Dolev-Yao intruder, who is the whole net-
work, a timed intruder is placed at some location and in order to learn a message,
must wait until the message arrives to that location. A consequence of this is
that a greater number of colluding intruders may not do as much damage as a
smaller number of intruders that are better placed. For example, consider Fig. 1.
With a distribution of intruders shown to the left, there may not be an attack as
it might take too long for intercepting and forwarding messages among intrud-
ers (illustrated by the dashed lines), while there may be an attack with the
distribution of intruders shown to the right.

The main contribution of this paper is to answer the question: How many
intruders are enough for verification and where should they be placed? We prove
that it is enough to consider one intruder per protocol participant, thus bounding
the number of timed intruders. This result greatly simplifies automated CSPS
verification as the specifier no longer has to guess how many timed intruders to
consider and where to place them.

Our second contribution is a general specification language, which extends
strand spaces [25] by allowing for the symbolic representation of time. Instead of
instantiating time variables and time constraints with explicit values, the seman-
tics of our language accumulates symbolic time constraints. An execution using
symbolic time constraints corresponds to a set of possible concrete executions,
considerably reducing state-space. We implemented a prototype of our language
in Maude [8] with SMT support. Our preliminary experiments show that it is
possible to find attacks traversing few states. While we do not claim (yet) to
have a complete tool, our first results are promising.
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This paper is structured as follows: Sect. 2 specifies the syntax of our pro-
tocol specification language and its semantics extending Strand Spaces [25]. We
introduce the Timed Intruder Model in Sect. 3. Section 4 contains the definition
of the Timed Intruder Completeness problem and a solution to it. We revisit
some examples in Sect. 5 briefly commenting on our prototype implementation.
Finally we conclude by reviewing related and future work in Sect. 6.

2 A Specification Language for Cyber-Physical Security
Protocols

We start first by specifying the syntax of our CPSP specification language with
symbolic time variables and symbolic time constraints. We exemplify the spec-
ification of protocols using our language. Then, we formalize the operational
semantics of our language by extending Strand Spaces [25] to include time
variables.

2.1 Syntax

Message Expressions. We assume a message signature Σ of constants, and func-
tion symbols. Constants include nonces, symmetric keys and player names. The
set of messages is constructed as usual using constants, variables and at least
the following function symbols:

sk(p) Denoting the secret key of the player p;
pk(p) Denoting the public key of the player p;
enc(m, k) Encryption function denoting the encryption of m using key k;
{m1,m2, . . . ,mn} Tuple function denoting a list of messages m1,m2, . . . ,mn;

where c1, c2, . . . range over constants, n1, . . . , nn range over nonces, k1, k2, . . .
range over symmetric keys, p1, p2 . . . range over player names, v1, v2, . . . range
over variables, and m1,m2, . . . range over messages. For example, the message
enc({v1, enc(c, k)}, pk(p)) denotes the encryption using the public key of p of the
pair of messages v1 (not instantiated) and enc(c, k). We define (pk(p))−1 = sk(p)
and k−1 = k if k is a symmetric key. We also write interchangeably the singleton
tuple {m} and m.

For a given scenario with some protocol session instances, we are going to
distinguish the players that are participating in the protocol sessions, e.g., as ver-
ifiers and as provers, which we call protocol participants (briefly participants),
from the Timed Intruders which are not participating explicitly in the proto-
col sessions in the given scenario, but are simply manipulating messages and
possibly interacting with the participants. The symbols p1, p2 . . . will range over
participant names while ti1, ti2, . . . will range over the names of such Timed
Intruders.
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Time Expressions. We also assume a time signature Ξ which is disjoint to the
message alphabet Σ. It contains:

r1, r2, . . . A set of numbers;
tt1, tt2, . . . , A set of time variables including the special variablecur;
+, −, ×, /, floor, ceiling, . . . A set of arithmetic symbols and other function symbols.

Time Expressions are constructed inductively by applying arithmetic sym-
bols to time expressions. For example ceiling((2+ tt+cur)/10) is a Time Expres-
sion. The symbols tr1, tr2, . . . range over Time Expressions. We do not constrain
the set of numbers and function symbols in Ξ. However, in practice, we allow
only the symbols supported by the SMT solver used. All examples in this paper
will contain SMT supported symbols (or equivalent). Finally, the time variable
cur will be a keyword in our protocol specification language denoting the current
global time.

Definition 1 (Symbolic Time Constraints). Let Ξ be a time signature. The
set of symbolic time constraints is constructed using time expressions. Let tr1, tr2
be time expressions, then

tr1 = tr2, tr1 ≥ tr2 tr1 > tr2, tr1 < tr2, and tr1 ≤ tr2

are Symbolic Time Constraints.

For example, cur+10 < floor(tt−5) is a Time Constraint. The symbols tc1, tc2, . . .
will range over Time Constraints.

Finally, we let b1, b2, . . ., range over boolean expressions, which include timed
comparison constraints. We also allow for checking whether two messages m1

and m2 can be unified, e.g., {v1, v2} :=: {p1, k1} evaluates to true as they can
be unified by the substitution {v1 �→ p1, v2 �→ k1}.

Definition 2 (Timed Protocols). The set of Timed Protocols, PL, is com-
posed of Timed Protocol Roles, pl, which are constructed by using commands as
specified by the following grammar, where b is a boolean expression:

pl := nil Empty Protocol
| (new v), pl Fresh Constant
| (+m), pl Message Output
| (+m # tc), pl Timed Message Output
| (−m), pl Message Input
| (−m # tc), pl Timed Message Input
| (if b then pl1 else pl2) Conditional
| (if b # tc then pl1 else pl2) Timed Conditional

We explain some examples intuitively before we formalize the semantics of
our language in the following section. We will elide nil whenever it is clear from
the context.
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Example 1. The following program specifies the verifier of a (very simple) dis-
tance bounding protocol:

(new v), (+v # tt = cur), (−v # cur ≤ tt + 4)

It creates a fresh constant and sends it to the prover, remembering the current
global time by assigning it to the time variable tt. Finally, when it receives the
response v it checks whether the current time is less than tt + 4.

Example 2. Timed conditionals can be used to specify the duration of opera-
tions, such as checking whether some message is of a given form. In practice,
the duration of these operations can be measured empirically to obtain a finer
analysis of the protocol [6].

For example, consider the following protocol role:

(new v), (+v), (−{venc, vmac} # tt0 = cur),
if (vmac :=: enc(venc, kM )) # tt1 = tt0 + ttMac

then (if (venc :=: enc(v, kE)) # tt2 = tt1 + ttEnc)
then (+done # cur = tt2) else (+error # cur = tt2))

else (+error # cur = tt1)

This role creates a fresh value v and sends it. Then it is expecting a pair of two
messages vmac and venc, remembering at time variable tt0 when this message
is received. It then checks whether the first component vmac is of the form
enc(venc, kM )), i.e., it is the correct MAC. This operation takes ttmac time units.
The time variable tt1 is equal to the time tt0 + ttmac, i.e., the time when the
message was received plus the MAC check duration. If the MAC is not correct,
an error message is sent exactly at time tt1. Otherwise, if the first component,
vMAC , is as expected, the role checks whether the second component, venc, is
an encryption of the form enc(v, kE)), which takes (a longer) time ttenc. If so it
sends the done message, otherwise the error message, both at time tt2 which is
tt1 + ttenc.

We will need to identify a particular command in a Timed Protocol Role. We
use a string of the form i1.i2.i3. . . . .in, called position and denoted by ī, where
each ij ∈ {1, 2} to specify a path in the control flow of the Timed Protocol. For
example, 1.1.1.1.2 in Example 2 leads to (+error # cur = tt1). We denote by
PS(pl) the set of strings representing the paths in the Timed Protocol Role pl.

2.2 Timed Strand Spaces and Bundles

We formalize the semantics of Timed Protocols by extending Strand Spaces and
Bundles [25] to include time constraints and a network topology.

Network Topology. Messages take time to travel between agents, both honest
players and intruders. The network model is specified by representing the time a
message needs to travel from any agent a to any agent b, specified by td(a, b) using
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a function that takes two names and returns a number. Typically, td(a, a) = 0,
that is the time for a message sent from a player to reach himself is 0, but we
do not need to enforce this. We also assume the following axiom for all players
a, a1, . . . , an, a′ (with 1 ≤ n):

td(a, a′) ≤ td(a, a1) + td(a1, a2) + · · · + td(an, a′) (1)

That is, it is faster for a message to travel directly from a to a′, then to first
travel through a1, . . . , an. This is similar to the usual triangle inequality in basic
geometry.

A given scenario with some protocol session instances includes the proto-
col participants (or simply participants), P = {p1, . . . , pn} and a set of Timed
Intruders I = {ti1, . . . , tim}, who may be manipulating messages. The Network
Topology is composed by two disjoint functions td = tdP �tdI defined as follows:

td(a, b) =
{
tdP(a, b) if a, b ∈ P
tdI(a, b) otherwise

Thus, tdP specifies the time messages take to travel among participants, while
tdI specifies the time messages take to travel between Timed Intruders, between
a Timed Intruder and a participant and between a participant and a Timed
Intruder.

Remark 1. Here we are assuming that two agents share a single transmission
channel. We leave to future work how to incorporate different transmission chan-
nels. One way to do so is to add another parameter to td, which would imply
the addition of more axioms. If multiple transmission channels are allowed, then
it may well be the case that Eq. 1 does not hold as some participants might use
much faster transmission channels. While we leave a more careful analysis of such
cases to future work, we strongly believe that our completeness theorem (Theo-
rem 1) still holds (see Remark 2) as one can assume that intruders communicate
among themselves using the fastest available transmission medium.

The following definitions extend Strands and Bundles to include time vari-
ables capturing the semantics of Timed Protocols. A Timed Protocol Role is
ground if it does not contain variables.

Definition 3. A Timed Strand Space is a set Π and a trace mapping tr : Π −→
P ×GPL, where P is the set of player names {p1, . . . , pn} and GPL is the set of
Ground Timed Protocol Roles. We denote by tr(s)1 the player name and tr(s)2
the Timed Protocol Role of a strand s ∈ Π.

For the remainder we fix a Timed Strand Space [Π, tr].

Definition 4. The Timed Strand Space Graph, G = 〈N ,⇒ ∪ →〉, has nodes N
and edges ⇒ and → as defined below.

1. A node n is a tuple 〈p, s, ī〉@tt with s ∈ Π, p = tr(s)1, ī ∈ PS(tr(s)2) is a
string identifying a command in the Timed Protocol, and tt is a time variable
timestamping the node n. The set of nodes is denoted by N ;
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2. If n = 〈p, s, ī〉@tt, we denote by term(n), the command at position ī in tr(s)2;
3. If n1 = 〈p, s, ī〉@tt1 and n2 = 〈p, s, ī.j〉@tt2 are in N , then there is an edge

n1 ⇒ n2;
4. For two nodes n1, n2 ∈ N , there is an edge n1 → n2 if and only if term(n1) is

of the form +m or +m # tc1 and term(n2) is of the form −m or −m # tc2;
5. If a node n ∈ N , term(n) = new c, then c originates on n, that is, all nodes

n′ such that term(n′) contains c are such that n (⇒ ∪ →)∗ n′, where (·)∗ is
the reflexive and transitive closure operator.

Definition 5. Let td be a Network Topology and let C = 〈NC ,→C ∪ ⇒C〉 be a
subgraph of G = 〈N ,⇒ ∪ →〉. The Timed Constraint Set of C over td, denoted
by T C(C, td), is the smallest set of Time Constraints specified as follows:

1. If n = 〈p, s, ī〉@tt ∈ NC, such that term(n) is of the form ±m # tc or
if b # tc, then tc′ ∈ T C(C, td) where tc′ is the Time Constraint obtained by
replacing cur by tt;

2. If 〈p, s, ī〉@tt1 ⇒C 〈p, s, ī.j〉@tt2, then tt2 ≥ tt1 ∈ T C(C, td);
3. If 〈p1, s1, ī1〉@tt1 →C 〈p2, s2, ī2〉@tt2, then tt2 ≥ tt1 + td(p1, p2) ∈ T C(C, td).

Intuitively, the ⇒ specifies the sequence of actions carried out by a protocol
session participant, while the → specifies the interactions between protocol sess-
sion participants. However, not all timed strand space graph will correspond to
possible executions. Thus, we introduce Timed Bundle which is a subset of the
Timed Strand space graph, playing a similar role of Bundles for Strand Spaces.

Definition 6. Let td be a Network Topology. Let →C⊆→ and ⇒C⊆⇒ and sup-
pose C = 〈NC ,→C ∪ ⇒C〉 is a sub-graph of 〈N ,⇒ ∪ →〉. C is a Timed Bundle
over td if:

1. C is finite and acyclic;
2. n2 ∈ NC is Message Input or a Timed Message Input, then there is a unique

n1 ∈ NC such that n1 →C n2;
3. n2 ∈ NC and n1 ⇒ n2, then n1 ∈ NC, and n1 ⇒C n2;
4. n = 〈p, s, ī〉 is a node such that term(n) is of the form if b or if b # tc and

b is evaluated to true, then n ⇒C 〈p, s, ī.1〉 and n �C 〈p, s, ī.2〉; otherwise
n ⇒C 〈p, s, ī.2〉 and n �C 〈p, s, ī.1〉;

5. the Timed Constraint Set of C over td is satisfiable, i.e., there is a substitution
σ, called model of T C(C, td), replacing all time variables in T C(C, td) by Real
numbers so that all inequalities in T C(C, td) are true.

Example 3. The following is a graphical representation for a Timed Bundle using
the Distance Bounding Protocol described in Example 1:
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It involves two participants p1 and p2 which simply exchange a fresh value c.1 Its
Timed Constraint Set should be satisfiable for the assumed Network Topology
specified by the function td:

{
tt5 ≥ tt4, tt3 ≥ tt2, tt2 ≥ tt1, tt = tt2, tt4 ≥ tt2 + td(p1, p2), tt3 ≥ tt5 + td(p2, p1), tt3 ≤ tt + 4

}

Notice that the use of the time symbols in this representation means that this
single object specifies a possibly infinite collection of executions of the Dis-
tance Bounding Protocol, where the time symbols are instantiated by concrete
timestamps taken from the set of non-negative Real numbers R

+. This com-
pact representation greatly reduces the state space during automated protocol
verification. In our prototype implementation, we use an SMT solver to check
whether the set of Time Constraints is satisfiable or not.

Finally, consider the following specification (new v), (−v). This specification
creates a fresh constant and then expects v as input. Since this is a fresh constant
and is never sent, it will never be received. The condition (5) in Definition 4
captures this restriction, as it disallows an → edge to 〈p, (−v)〉

3 Timed Intruder Model

The Timed Intruder Model is similar to the usual Dolev-Yao Intruder Model
in the sense that it can compose, decompose, encrypt and decrypt messages
provided it has the right keys. However, unlike the Dolev-Yao intruder, a Timed
Intruder is constrained by the physical properties of the systems, namely, an
intruder is not able to learn any message instantaneously, instead, must wait
until the message arrives.

A Timed Intruder Set is a set of intruder names I = {ti1, . . . , tin} a set of
initially known keys KP , which contain all public keys, all private keys of all
the intruders, all symmetric keys initially shared between intruders and hon-
est players, and may contain “lost keys” that an intruder learned previously
by, for instance, succeeding in some cryptoanalysis. Recall that Timed Intrud-
ers are situated at locations specified by the Network Topology. For instance,
td(p1, ti1) = tdI(p1, ti1) = 4 denotes that the timed needed for a message to
travel from participant p1 to intruder ti1 is 4.

Definition 7. An intruder trace is one of the following, where ti is a Timed
Intruder Name, tt, tt1, tt2, tt3 are time variables, and m,m1, . . . ,mn,m′

1, . . . ,m
′
p

are messages:

– Text Message: 〈ti,+t〉@tt, where t is a text constant;
– Flushing: 〈ti,−m〉@tt;

1 For readability we display graph nodes using the player’s id paired with the node
term, rather than using the strand identifier and trace position.
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– Forward: 〈ti,−m,+m〉@(tt1, tt2) denoting the strand 〈ti,−m〉@tt1 ⇒ 〈ti,+m〉
@tt2;

– Concatenation: 〈ti,−{m1, . . . ,mn},−{m′
1, . . . ,m

′
p},+{m1, . . . ,mn,m′

1, . . . ,
m′

p}〉@(tt1, tt2, tt3) denoting the strand
〈ti,−{m1, . . . ,mn}〉@tt1 ⇒ 〈ti,−{m′

1, . . . ,m
′
p}〉@tt2 ⇒ 〈ti,+{m1, . . . ,mn,m′

1, . . . ,m
′
p}〉@tt3

– Decomposing: 〈ti,−{m1, . . . ,mn},+{m1, . . . ,mi},+{mi+1, . . . ,mn}〉@(tt1, tt2,
tt3) denoting the strand
〈ti,−{m1, . . . ,mi,mi+1, . . . ,mn}〉@tt1 ⇒ 〈ti,+{m1, . . . ,mi}〉@tt2 ⇒ 〈ti,+{mi+1, . . . ,mn}〉@tt3

– Key: 〈ti,+k〉@tt if k ∈ KP ;
– Encryption: 〈ti,−k,−m,+enc(m, k)〉@(tt1, tt2, tt3) denoting the strand

〈ti,−k〉@tt1 ⇒ 〈ti,−m〉@tt2 ⇒ 〈ti,+enc(m, k)〉@tt3
– Decryption: 〈ti,−k−1,−enc(m, k),+m〉@(tt1, tt2, tt3).

〈ti,−k−1〉@tt1 ⇒ 〈ti,−enc(m, k)〉@tt2 ⇒ 〈ti,+m〉@tt3

As with the the usual Dolev-Yao intruder model as, e.g., in [25], the Timed
Intruder can send text messages and known keys, receive a message, replay a
message, concatenate and decompose messages, and finally encrypt and decrypt
messages. There are, however, two differences with respect to the usual Dolev-
Yao intruder model as defined in [25]. Each node of the trace is associated with
an intruder name ti and a time variable tt. These are necessary for extracting
the Time Constraints of a Strand Graph (as described in Definition 5), specifying
the physical restrictions of the Timed Intruder.

As the time when timed intruders receive and manipulate messages cannot
be measured by the protocol participants, they do not have control over the
time variables of timed intruder strands. The following assumption captures this
intuition:

Time Variable Disjointness Assumption. For any Bundle B, the set of time
variables appearing in protocol participant strands in B is disjoint from the set
of time variables appearing in timed intruder strands in B.

Example 4. Let us return to the distance bounding protocol described in
Example 1. The following is an attack, where two colluding intruders ti1, who is
close to p1, and ti2, who is close to p2, collude by sharing a fast channel to fool
p1 into thinking that p2 is closer than he actually is.

The intruders ti1 and ti2 simply forward messages between each other and the
players p1 and p2. However, this is a Bundle only if the following Time Constraint
Set is satisfiable:
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⎧
⎨

⎩

tt2 ≥ tt1, tt = tt2, tt6 ≥ tt2 + td(p1, ti1), tt7 ≥ tt6, tt8 ≥ tt7 + td(ti1, ti2), tt9 ≥ tt8,

tt4 ≥ tt9 + td(ti1, p2), tt5 ≥ tt4, tt10 ≥ tt5 + td(p2, ti1), tt11 ≥ tt10, tt12 ≥ tt11 + td(ti2, ti1),

tt13 ≥ tt12, tt3 ≥ tt13 + td(ti1, p1), tt3 ≤ tt2 + 4

⎫
⎬

⎭

This set of constraints represents a set of concrete executions, where the Timed
Intruders ti1 and ti2 collude. There is a concrete execution only if the set of Time
Constraints is satisfiable, which depends on the Network Topology, that is, on
the function td.

4 Timed Intruder Completeness

Standard Security Protocol Verification is already very challenging. However,
automated verification has been very successful in discovering new attacks. A
good part of this success is due to the Dolev-Yao intruder model, which greatly
simplifies the design of verification tools. Tools can rely on the important result
that just a single Dolev-Yao intruder is enough, in the sense that if there is an
attack in the presence of multiple (colluding) Dolev-Yao intruders, then there is
also an attack in the presence of a single Dolev-Yao intruder [4].

Unfortunately, for Cyber-Physical Security Protocols, it is not the case that a
single Timed Intruder is enough for verification. Consider the attack illustrated
in Example 4. There may be a great number of Timed Intruders, but none of
them situated between p1 and p2, as illustrated by Fig. 1. In such a scenario
there might not be an attack as the round time to receive and return a message
between such a display of intruders may never be less than the distance bound
(4). On the other hand, two strategically placed Timed Intruders, as in the
second picture in Fig. 1, may lead to an attack.

Clearly there is an unbounded number of choices based on deciding:

– How many Timed Intruders are there?
– Where are these Timed Intruders located?

This is similar to the challenge in usual security protocol verification of deter-
mining how many protocol sessions running in parallel should the scenario have,
which is undecidable [20]. Fortunately, we are able to prove a completeness result
which answers the two questions above. In order to formalize the completeness
statement, we introduce some notation.

Definition 8. Let B be a Timed Bundle over the Network Topology td involving
the participants P = {p1, . . . , pn} and the Timed Intruders I = {ti1, . . . , tin}.
The graph B restricted to participants P, written BP , is the graph 〈N P

B , (⇒P
B

∪ →P
B )〉 specified as follows:

– N P
B contains only the nodes in B belonging to a participant in P, i.e., of the

form 〈p, s, ī〉 where p ∈ P;
– For two nodes n1, n2 in N P

B , if n1 ⇒ n2 in B, then n1 ⇒P
B n2;
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– If n is a node in N P
B whose term is a message receive, −m or −m # tc, and n′

is a maximal element of the set of predecessors of n in N P
B under the relation

(⇒ ∪ →)∗;→ then n′ →P
B n. We let P(n,B) denote this set of predecessors.

Intuitively, a Bundle restricted to the set of participants specifies the events
observable by the participants without including the moves corresponding to
the timed intruders. It includes all the edges of the original bundle connecting
two nodes of N P

B . The “maximal predecessor” in N P
B is the first element of N P

B
encountered when following edges in the predecessor direction. It is maximal in
the partial order on nodes induced by the edges of the bundle. Thus the terms of
nodes in P(n,B) contain all the terms used by the intruders to derive the term
at node n.

The Bundle shown in Example 4 restricted to the participants {p1, p2} is

The edge 〈p1,+c # tt = cur〉@tt2 → 〈p2,−c〉@tt4 in this figure simply specifies
that using the message, c, sent by p1, the timed intruders were able to send the
message c to the participant p2.

For another example, consider the following Bundle, where timed intruder
ti uses his key k ∈ KP and the messages c1 and c2 to compose the message
enc({c1, c2}, k) to p3:

The corresponding bundle restricted to the participants p1, p2 and p3 is:

It captures the fact that the messages sent by p1 and p2 are used to generate the
message received by p3 without explicitly showing how intruders manipulated
these messages.

Notice that unlike bundles, a receive node in a restricted bundle may have
multiple incoming edges, reflecting the possibility of processing by multiple
intruders.

The next two lemmas follow directly from the definition of Bundles and
restricted Bundles.
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Lemma 1. Let p = n �1 n1 �2 n2 �3 · · · �j−1 nj �j n′ be a path from n in
P(n′,B) to n′, where �i is either → or ⇒ for 1 ≤ i ≤ j. Then p is necessarily
of the form:

〈p, snd〉@tt → 〈ti1, s1〉@tt1 �2 〈ti2, s2〉@tt2 �2 · · · �j−1 〈tij , sj〉@ttj → 〈p′, rcv〉@tt′

where snd is a message send (+m) or a timed message send (+m # tc), rcv is a
message receive (−m) or a timed message receive (−m # tc), and for 1 ≤ i ≤ j,
〈tii, si〉 are timed intruder strands.

Lemma 2. Let T (B, td) be the Time Constraint Set of B for a given Network
Topology td. Let p be a path in B as described in Lemma1 of the form:

〈p, snd〉@tt → 〈ti1, s1〉@tt1 �1 〈ti2, s2〉@tt2 �2 · · · �j−1 〈tij , sj〉@ttj → 〈p′, rcv〉@tt′

Then any satisfying model of T (B, td) will also satisfy the constraint:

tt′ ≥ tt + td(p, ti1) + td(ti1, ti2) + · · · + td(tij−1, tij) + td(tij , p′).

The following specifies the equivalence of two Bundles.

Definition 9. Let P be a set of participants and I, I ′ be two possibly equal
sets of Timed Intruders. Let td1 = tdP � tdI and td2 = tdP � tdI′ be Network
Topologies. Then we say that a Timed Bundle B1 over td1 is equivalent to a
Timed Bundle B2 over td2, written B1

∼=td2
td1

B2, if their Bundles restricted to P
are (syntactically) identical, i.e., BP

1 = BP
2 .

2

Intuitively, the condition BP
1 = BP

2 specifies that for the honest participants
the two Bundles are equivalent, although they may have different timed intruders
in different locations manipulating messages in different ways. Thus, if such a
B1 constitutes an attack, then B2 also constitutes an attack.

Timed Intruder Completeness Problem:

Let P = {p1, . . . , pn} be a set of participants and I = {ti1, . . . , tim} be a
set of timed intruders. Let tdP be a Network Topology of the participants.
Is there a subset I ′ ⊆ I and tdI′ such that for any tdI and any Bundle
B1 over td1 = tdP � tdI , there is a Bundle B2 over td2 = tdP � tdI′ such
that B1

∼=td2
td1

B2?

In other words, given a particular scenario with P participants and a Network
Topology for these participants tdP , is there a Network Topology td′

I involving a
collection of Timed Intruders I ′ that can be used to carry out the same observ-
able events for any other Network Topology tdI with a possibly larger number
of Timed Intruders?

If such an I ′ and tdI′ exists then an automated verification tool does not
have to guess how many timed intruders there are, and where they are located,
but simply can use I ′ and tdI′ .
2 It is possible to relax this definition so that they are identical modulo time variable

names, but this is not needed here.
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4.1 Completeness Proof

We are given a set of participants P = {p1, . . . , pn}, a set of Timed Intruders
I = {ti1, . . . , tim}, and a Network Topology tdP specifying the time messages
take to travel between participants.

A Solution for the Timed Intruder Completeness Problem: For our solution, we
assume that there are as many timed intruders as participants. If this is not the
case, we can safely add more dummy timed intruders. We associate with each
participant pi one Timed Intruder tipi . Thus:

I ′ = {tip1 , . . . , tipn}.

Moreover, we assume that the time a message takes to travel between pi to
tii is 0 (or negligible). Moreover, the time for a message to travel between two
Timed Intruders tipi and tipj is the same as the time it takes to travel between
their corresponding participants pi and pj . Thus:

tdI′(pi, tipi) = tdI′(tipi , pi) = 0 for all pi ∈ P;
tdI′(tipi , tipj ) = tdP(pi, pj) for all pi, pj ∈ P.

The Timed Intruders in I ′ collude in the following form: whenever a Timed
Intruder tpi learns a message m sent by pi, it broadcasts this message m to the
remaining Timed Intruders in I ′ \ {tipi}. For example, the Strand for when p1
sends a message is then as follows:

Notice that the message m reaches to a Timed Intruder tipi at time tti which is
subject to the Time Constraints tti ≥ tt′1+tdP(p1, pi) and tt′1 ≥ tt1+td(p1, tip1),
which reduces to tt′1 ≥ tt1 as td(p1, tip1) = 0. Thus, tti ≥ tt1 + tdP(p1, pi).
Moreover, if the Timed Intruder tipi forwards this message to the participant
pi, then this message will be received at a time tt′i ≥ tt1 + tdP(p1, pi), that is,
as if the message had traveled directly from p1 to pi without passing through
intruders tip1 and tipi

Proof. We will now show that the I ′ and tdI′ defined above provide a solution
for the Timed Intruder Completeness Problem. For this, assume given a tdI and
a Bundle B1 over td1 = tdP � tdI .

We will construct a Bundle B2 over td2 = tdP � tdI′ such that B1
∼=td2

td1
B2.

We do so by transforming B1 into B2.
Let the following be a sub-graph of B1 restricted to P:
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where for all 1 ≤ i ≤ n, sndi is a Message Output (+mi) or a Timed Message
Output (+mi # tc), rcv is a Message Input (−m) or a Timed Message Input
(−m # tc).

Let p be an arbitrary path from node 〈pi, sndi〉@tti to 〈p, rcv〉@tt path in
B1. From Lemma 1, p has the shape:

〈pi, sndi〉@tti → 〈ti1, s1〉@tt1 �1 〈ti2, s2〉@tt2 �2 · · · �j−1 〈tij , sj〉@ttj → 〈p′, rcv〉@tt

Moreover, from Lemma 2, any model satisfying B1 will also satisfy the constraint:

tt ≥ tti + td(pi, ti1) + td(ti1, ti2) + · · · + td(tij−1, tij) + td(tij , p). (2)

Given our assumption on the Network Topology (Eq. 1), we also have that

td(pi, p) ≤ td(p, ti1) + td(ti1, ti2) + · · · + td(tij−1, tij) + td(tij , p)

That is, the time it takes to travel directly from pi to p is less than or equal to
the time it takes to travel from pi to p via the timed intruders ti1, . . . , tij .

From our solution, we obtain for the sub-graph shown above the following
subgraph where all the messages m1, . . . ,mn are broadcast to all Timed Intruders
including the Timed Intruder tip:

where the intruder tip receives the messages m1, . . . ,mn. Notice that for 1 ≤ i ≤
n, we have that tt′′i ≥ tti + td(pi, p). At this point the intruder tip has all the
information he needs to compose the message m. Moreover, he can do so without
losing time. Thus he is able to deliver the message m to p at time tt satisfying
the constraints:

tt ≥ tt1 + td(p1, p) tt ≥ tt2 + td(p2, p) · · · tt ≥ ttn + td(pn, p). (3)

As any model of the Time Constraints Set of B1 satisfies Eq. 2, the same assign-
ment for tt1, . . . , ttn, tt will also satisfy the time constraints in Eq. 3. Moreover, if
any of snd1, . . . , sndn is a Timed Output (pi,+mi # tci) or rcv is a Timed Input
(p,−m # tc) the same assignment will also satisfy tci and tc because protocol
participant strands and timed intruder strands do not share time variable (Time
Variable Disjointness Assumption).

By repeating this procedure for each sub-graph in B1 restricted to P as shown
above, we are able to construct B2 using tdI′ where the only timed intruder
strands are those of the intruders I ′ leading to the following result.

Theorem 1. Let P be participant names and I be Timed Intruders, such that
|I| ≥ |P|. Let I ′ and tdI′ be as described above. Then I ′ and tdI′ solve the
Timed Intruder Completeness Problem.
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Remark 2. It should be possible to extend our completeness result for cases
with different transmission channels (See Remark 1). For this, our solution would
assume that the intruders communicate with the fastest transmission speed avail-
able. This is enough to prove Eq. 2 without relying on Eq. 1. We leave a more
careful analysis to future work.

Remark 3. Our solution of placing a timed intruder close to each participant
might be unrealistic for some scenarios, e.g., when a participant, A, is guaranteed
to be alone due to some physical barrier which ensures that intruders are at least
d units away. We speculate that by instead of placing a single intruder for A, we
would need n intruders, where n is the number of participants. Each intruder
would be placed d units away from A in the direction of each other participant.
This should be enough to prove a corresponding completeness theorem. We leave
this interesting problem to future work.

5 Examples and Preliminary Experimental Results

We illustrate with some examples that our solution is able to identify attacks on
CPSP. We are using the terminology of attacks described in [10].

External Distance Fraud. Assume two honest participants p1 (Verifier) and p2
(Prover). They exchange some information, normally to authenticate p2, for
example [24], using a standard Needham-Schroeder-Lowe protocol session [17],
and then carry-out a distance bounding protocol session. The following Timed
Strand captures the attack where the intruder tip1 fools player p1 that p2 is closer
than he actually is by completing the distance bounding challenge:

Notice that the timed intruder tip1 is able to complete the distance bound-
ing session as he is very close to the verifier p1. This is captured by the Time
Constraint Set of this Bundle. Moreover, here we assume that they exchange a
nonce, but if we allow equational theories specifying, for example xor operations
⊕ as done in [13], a similar Timed Bundle would be obtained.

Attack-in-Between-Ticks. The In-Between-Ticks attack [15] is an instance of
a Lone Distance Fraud attack [10], where the prover is dishonest but is not
colluding with other Timed Intruders. This attack exploits the fact that real
verifiers are running on a processor with a slow clock speed. When the verifier
receives the response from the prover, he is only able to record the time of receival
in the following clock cycle. This is captured by using the Time Constraint
(floor(cur) + 1) as illustrated by the following Timed Strand:
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It is possible to show that the Time Constraint Set of this Timed Strand,
T , is satisifiable although the distance between p1 and p2 is greater than the
distance bound 4. That is, it is possible to show that the set T ∪ {td(p1, p2) >
4, td(p2, p1) > 4} is satisfiable.

Distance Hijacking. In our technical report [21], we show the Timed Bundle with
the Distance Hijacking attack described in [24] on the protocol that combines the
traditional Needham-Schroeder-Lowe protocol and a distance bounding session.

5.1 Prototype Implementation

We developed a prototype implementation, which can be found at [22], of this
strategy in a version of Maude [8] integrated with the SMT solver CVC4 [2].
Our preliminary results seem quite promising.

In addition to symbolic time constraints we implemented a symbolic con-
straint solver in order to tackle the state-space explosion due to the fact that a
timed intruder can generate an unbounded number of messages. It works along
the same lines as in usual implementations of such constraint solvers used by
tools assuming the standard Dolev-Yao intruder by not instantiating messages
generated by the intruder, but rather using symbolic constraints.

Our prototype used and implements mechanisms for the main contributions
of this paper:

– Network Topology as a Constraint Set: While here we assume that the
Network Topology is given by a function td which completely determines the
time messages take to travel between agents, our implementation allows the
user to specify the Network Topology as a set of constraints. For example,
the constraint td(p1, p2) > 4 specifies the set of Network Topologies where
the time it takes for a message to travel from p1 to p2 is greater than 4.
This reduces even further the decision choices needed when specifying some
scenario as one does not need to consider grounded Network Topologies.

– Time Variables and Time Constraints: As described here, we use time
variables and keep track of the Time Constraints of the constructed Timed
Strand, which is initially empty. Whenever a command in our protocol lan-
guage is executed, we add the corresponding constraint to the set of constraints
following Definition 5. We then call the SMT solver to check whether the set
of constraints is satisfiable. If it is not, then search on this branch of the search
tree is aborted.
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– Timed Intruders: Our prototype also implements the solution described in
Sect. 4.1 for the configuration of timed intruders. This greatly simplifies the
number of decisions needed when specifying a verification scenario. Whenever
a message is sent by a participant, his corresponding timed intruder broadcasts
this message to all other Timed Intruders. A timed intruder is only able to
learn such a message when enough time has elapsed. This is implemented also
using the SMT solver and adding appropriate time constraints.

Table 1 summarizes some preliminary experimental results.

Table 1. Preliminary experimental results

Scenario Size of protocols No of states Search time

External Distance Fraud 5 12 31ms

Attack-in-Between-Ticks 5 70 55ms

Simplified Paywave 14 3224 8s

Paywave 22 20807 78s

NSL + Distance Bounding � 15 86 108ms

The External Distance Fraud and Attack-in-Between-Ticks are as described
above. The number of states traversed is quite small for finding these. The dis-
tance bounding protocol scheme is used by many other protocols, such as the
protocol described in [24] (NSL + Distance Bounding) and the lack of its use
leads to an attack on the Paywave protocol [6]. We implemented these to check
how our tool scales to larger protocols. We implemented a simplified version of
the Paywave protocol omitting some of the steps taken and only concentrating
on the core part of the protocol. Our tool was able to find the attack in 8s tra-
versing around 3.2k states. Finally, we implemented the whole Paywave protocol
and our tool was also able to find the attack, but now in 78s traversing 20.8k
states.

The use of the SMT solver was essential to reduce the number of states.
However, it seems that it is possible to reduce the overhead caused by each call
of the SMT solver.

We also experimented with protocols that fall outside of our language frag-
ment. The NSL + Distance Bounding protocol described in [24] with a small
modification carries out a standard Needham-Schroeder-Lowe protocol session,
followed by a distance bounding protocol using xor. Since our tool does not sup-
port yet equational theories, a subject for future work, we modeled the distance
bounding session with a pair. Our tool was able to find a terrorist attack in 108
ms traversing 86 states. This attack was not reported in [24] as they did not
assume that intruders are close to the participants.

Finally, we also obtained preliminary results on using the tool for checking
whether there is a privacy attack on a protocol [7]. In order to check for such
an attack, we need to enumerate all possible executions. (The formal definitions
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are out of the scope of this paper.) In order to have an idea of how big this
set of executions is, we implemented the protocol used for RFID in European
passports. The total number of states was only 10 states. This is a promising
result for extending this work to check for properties that rely on observational
equivalence [5].

6 Related and Future Work

Meadows et al. [19] and Pavlovic and Meadows in [23] propose and use a logic
called Protocol Derivation Logic (PDL) to formalize and prove the safety of a
number of cyber-physical protocols. In particular, they specify the assumptions
and protocol executions in the form of axioms, specifying the allowed order of
events that can happen, and show that safety properties are implied by the
axiomatization used. They do not formalize an intruder model. Another dif-
ference between their work and ours is that their PDL specification is not an
executable specification.

Another approach similar to [19], in the sense that it uses a theorem proving
approach, is given by Basin et al. [3]. They formalize an intruder model that
is similar to ours in Isabelle, and also formalize some cyber-physical security
protocols. They then prove the correctness of these protocols under some specific
conditions and also identify attacks when some conditions are not satisfied. Their
work has been a source of inspiration for our intruder model specified in Sect. 3.
However, they do not propose or investigate the Timed Intruder Completeness
Problem.

Chothia et al. [6] investigate empirically the execution times of commands
of CPSP which are carried out by limited resource devices and then, based on
these measurements, they propose the inclusion of a distance bounding session
to mitigate relay attacks. They proved the security of CPSP by modeling the
protocol in different phases. As we illustrate in Example 2, our language allows
the inclusion of the measurements themselves. We leave a more detailed analysis
to future work.

Cheval and Cortier [5] propose a way to prove the observational equivalence
with time by reducing it to the observational equivalence based on the length
of inputs. They are able to automatically show that RFID protocols used by
passports suffer a privacy attack. Their approach is, therefore, different as they
do not investigate the Timed Intruder Completeness Problem. Also it is not
clear whether from their language one can capture attacks such as the Attack-
in-Between Ticks which exploits the time constraints of the verifier. Finally, from
our initial experiments with the Passport RFID protocol, we believe that it is
also feasible to check for privacy attacks given the very low number of states
encountered by our tool. This is left for future work.

Corin et al. [9] propose using timed automata to model check security pro-
tocols taking into account retransmission and error states of security protocols.
This is an early contribution on the analysis of timing aspects of security proto-
cols which did not consider CPSP nor the completeness of timed intruders.
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Finally, Malladi et al. [18] formalize distance bounding protocols in strand
spaces. They then construct an automated tool for protocol verification using
a constraint solver to verify a number of examples. There are some similarities
between their goals and the goal we want to achieve, namely, the automated
verification of CPSP and in the use of SMT solvers to do so. However, there
are some important differences. Firstly, we formalize and provide a solution to
the Timed Intruder Completeness Problem and, secondly, our language seems
to have more expressive features, e.g., our time constraints.

The definition of restricted bundle to characterize executions from the pro-
tocol participants perspective is inspired by the notions of skeleton and shape in
strand space based protocol analysis [11,12].

Arnaud et al. [1] propose a model for specifying and reasoning about secured
routing protocols where nodes communicate in a direct way with their neighbors.
It seems possible to represent our network model using time constraints as they
do and not only reason about the routing of packets, but also the time when
these arrive, which is important for cyber-physical systems where agents use
some routing protocol to communicate. We leave this to future work.

We are currently investigating methods to control even further the state
space explosion, for example, using more elaborate symbolic constraint sys-
tems for messages and investigating how to support backward Narrowing as
in Maude-NPA [14]. Moreover, we are extending our implementation to sup-
port message signatures with equational theories using the library available in
Maude [13]. Finally, we are investigating definitions of observational equivalence
which involve time and that can be implemented using SMT-solvers.
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