
Embedding the V-Detector Algorithm
in FPGA

Maciej Brzozowski and Andrzej Chmielewski(B)

Faculty of Computer Science, Bia�lystok University of Technology,
ul. Wiejska 45a, 15-331 Bia�lystok, Poland

{m.brzozowski,a.chmielewski}@pb.edu.pl

Abstract. The b-v model is a hybrid immune-based approach for
detecting anomalies in high-dimensional datasets. It is based on a neg-
ative selection algorithm and utilizes both types of detectors to achieve
better results in comparison to single detection models. Also, it is an
interesting alternative to well known traditional, statistical approaches,
because only positive (self) examples are required at the learning stage.
As a result, it is able to detect even unnkown or never met anomalies and
this fact is one of the most attractive features of this approach. However,
especially in the case of on-line classification, not only high accuracy but
also high efficiency is needed. Thus, we propose to embed some complex
tasks in a reprogrammable FPGA to offload CPU and speed up the clas-
sification process. This paper presents a hardware implementation of the
V -Detector algorithm, which is the most complex and time consuming
part of b-v model.

Keywords: Artificial Immune System · Anomaly detection · FPGA

1 Introduction

An efficiency of Natural Immune System (NIS) is unsurpassed for all protec-
tion systems and verified over millions of years by living organisms. It is a very
complex system focused on discrimination between own cells (called self) and
pathogens (called nonself), which should be detected and eliminated. A nice
feature of NISis that it does not need any example of nonself samples to detect
them as only the information about its own cells is sufficient. Hence, every organ-
ism has a unique “protection system”, capable of detecting even a new type of
attack and tolerates only own cells which form its body.

This dedicated and highly efficient protection system against various types of
pathogens was an inspiration for developing Artificial Immune Systems (AIS).
Within this domain, many types of algorithms were proposed, mainly focused
on computer system security solutions. However, the most popular is Negative
Selection Algorithm (NSA) [7] with the ability of detecting novel, never met
samples, a counterpart of pathogens. Based on deep investigations with various
types of large and high-dimensional datasets, a solution called the b-v model [6]
was proposed. It minimizes the problem of scalability, by involving both types
of receptors: b- and v -detectors. This hybrid approach, presented by conducting
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
K. Saeed and W. Homenda (Eds.): CISIM 2016, LNCS 9842, pp. 43–54, 2016.
DOI: 10.1007/978-3-319-45378-1 5

44 M. Brzozowski and A. Chmielewski

numerous experiments, provides much better results in comparison to single
detection models as well as traditional, statistical approaches, even though only
positive (self) examples are required at the learning stage. It makes this approach
an interesting alternative for well known classification algorithms, like SVM, k-
nearest neighbours, etc. The b-v model is briefly described in Subsect. 2.3.

However, there are lots of domains where not only high accuracy is crucial.
In some cases, very high efficiency is also required to examine all samples in a
short time. On-line classification systems like firewalls, intruder detection and
prevention systems, etc. are examples of applications which usually operate on
huge amounts of data and over-lengthy delays, related with data processing, are
unacceptable.

Thus, every way to increase the speed of detection process is highly desirable.
One of them is embedding algorithms in a reprogrammable FPGA (Field Pro-
grammable Gate Array). Our preliminary results [3] conducted using b-detectors,
have shown while generating them as well as during censoring samples, which
are the most complex operations, can be parallelized and additionally computed
without CPU utilization. As a result, censoring of millions samples took only a
few ticks of the clock (a few nanoseconds).

In this paper we present our approach to embedding the V -Detector algo-
rithm in FPGA as being a very important part of b-v model. All samples not
recognized by very fast b-detectors are passed to V -Detector which is respon-
sible for the final decision: censored sample is self or nonself . It operates on
real-valued detectors (called v -detectors), in contrast to fast b-detectors repre-
sented as a binary string. Hence, this step is the most complex and time con-
suming in the whole process of detecting anomalies, especially in the case of
high-dimensional datasets. Hardware implementation of this algorithm should
significantly increase its efficiency.

2 Negative Selection

The NSA, proposed by Forrest et al. [8], is inspired by the process of thymocytes
(i.e. young T-lymphocytes) maturation: only those lymphocytes survive which
do not recognize any self molecules.

Formally, let U be a universe, i.e. the set of all possible molecules. The subset
S of U represents the collection of all self molecules and its complement N in
U represents all nonself molecules. Let D ⊂ U stand for a set of detectors and
let match(d, u) be a function (or a procedure) specifying if a detector d ∈ D
recognizes the molecule u ∈ U . Usually, match(d, u) is modelled by a distance
metric or a similarity measure, i.e. we say that match(d, u) = true only if
dist(d, u) ≤ δ, where dist is a distance and δ is a pre-specified threshold. Various
matching function are discussed e.g. in [9,11].

The problem relies upon construction the set D in such a way that

match(d, u) =
{
false if u ∈ S
true if u ∈ N (1)

for any detector d ∈ D.

Embedding the V -Detector Algorithm in FPGA 45

A naive solution to this problem, implied by the biological mechanism of
negative selection, consists of five steps:

(a) Initialize D as empty set, D = ∅.
(b) Generate randomly a detector d.
(c) If math(d, s) = false for all s ∈ S, add d to the set D.
(d) Repeat steps (b) and (c) until the sufficient number of detectors will be

generated.

A perfect NSA should cover whole N space by sets of detectors to detect
all nonself samples. However, as shown by numerous experiments, scalability is
a key issue here, regardless of the representation of samples used [6,12]. This
problem is also discussed in this article.

2.1 Detectors and Algorithms

Generally, there are two type of receptors used:

– b-detectors - represented as binary string (Hamming space),
– v -detectors - represented as real-valued vectors.

For each of them, many algorithms with different matching rules were pro-
posed. For binary representation, the most popular were presented in [2,7]. In
the case of real-valued vectors, V -Detector algorithm [10] is the most known.
Hardware implementation of this algorithm, described in details in Subsect. 2.2,
is the main subject of this article.

Because, neither b- nor v -detectors were not capable to detect anomalies to a
satisfactory degree, a b-v model here was proposed [6] (see Subsect. 2.3), which
used both types of detectors to overcome the problem with scalability. As shown
in the performed experiments, it provides much better results in comparison
to single detection models as well as in comparison to traditional, statistical
approaches, even though only positive self examples are required at the learning
stage.

2.2 Real-Valued Representation

To overcome scaling problems inherent in Hamming space, Ji and Dasgupta
proposed a real-valued NSA, termed V -Detector [10].

It operates on normalized vectors of real-valued attributes; each vector can
be viewed as a point in the d-dimensional unit hypercube, U = [0, 1]d. Each self
sample, si ∈ S, is represented as a hypersphere si = (ci, rs), i = 1, . . . , l, where
l is the number of self samples, ci ∈ U is the center of si and rs is its radius.
It is assumed that rs is identical for all si’s. Each point u ∈ U inside any self
hypersphere si is considered as a self element.

The detectors dj are represented as hyperspheres also: dj = (cj , rj), j =
1, . . . , p where p is the number of detectors. In contrast to self elements, the

46 M. Brzozowski and A. Chmielewski

radius rj is not fixed but it is computed as the Euclidean distance from a ran-
domly chosen center cj to the nearest self element (this distance must be greater
than rs, otherwise the detector is not created). Formally, we define rj as

rj = min
1≤i≤l

dist(cj , ci) − rs. (2)

The algorithm terminates if a predefined number pmax of detectors is generated
or the space U\S is sufficiently well covered by these detectors; the degree of
coverage is measured by the parameter co – see [10] for the algorithm and its
parameters description.

In its original version, the V -Detector algorithm employs Euclidean distance
to measure proximity between a pair of samples. Therefore, self samples and
the detectors are hyperspheres (see Fig. 1(a)). Formally, Euclidean distance is a
special case of Minkowski norm Lm, where m ≥ 1, which is defined as:

Lm(x,y) =

(
d∑

i=1

|xi − yi|m
) 1

m

, (3)

where x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are points in �d.
Particularly, L2-norm is Euclidean distance, L1-norm is Manhattan distance,

and L∞ is Tchebyshev distance.
However, Aggarwal et al. [1] observed that Lm-norm loses its discrimination

abilities when the dimension d and the values of m increase. Thus, for example,
Euclidean distance has the best (among Lm-norms) metrics when d ≤ 5. For
higher dimensions, the metrics with lower m (i.e. Manhattan distance) should
be used.

Based on this observation, Aggarwal introduced fractional distance metrics
with 0 < m < 1, arguing that such a choice is more appropriate for high-
dimensional spaces. Experiments, reported in [5], partially confirmed the effi-
ciency of this proposition. For 0.5 < m < 1, more samples were detected, in

Fig. 1. (a) Example of performance V -Detector algorithm for 2-dimensional problem.
Black and grey circles denotes self samples and v -detectors, respectively. (b) Unit
spheres for selected Lm norms in 2D.

Embedding the V -Detector Algorithm in FPGA 47

comparison to L1 and L2 norms. However, for m < 0.5 the efficiency rapidly
decreased and for m = 0.2, none samples were detected. Moreover, these exper-
iments also confirmed a trade-off between efficiency, time complexity and m.
For fractional norms, the algorithm runs slower for lower m values; for L0.5 the
learning phase was even 2–3 times longer than for L2.

Another consequence of applying fractional metrics for V -Detector algorithm
is modification of the shape of detectors. Figure 1(b) presents the unit spheres for
selected Lm-norms in 2D with m = 2 (outer most), 1, 0.7, 0.5, 0.3 (inner most).

2.3 Brief Description of the b-v Model

The b-v model [6] is the only NSA, involving both types of detectors, namely b-
and v -detectors. It was designed for anomaly detection in high-dimensional data,
which are difficult to analyze due to the lack of appropriate similarity metrics
which enable the covering of space N in sufficient degree and reasonable time.
One of the important features of the b-v model is its ability to minimize the
overlapping regions between sets of detectors. We do not expect that b-detectors
cover the space N in sufficient degree, as it can consume too much time. On the
other hand, fewer numbers of v -detectors should be generated because some part
of space N is already covered by b-detectors. The main idea of this algorithm is
depicted in Fig. 2.

Here, the b-detectors, as those providing fast detection, are used for pre-
liminary filtering of samples. The samples which did not activate any of the
b-detectors are censored by v -detectors next. As a result the overall duration of
classification could be significantly reduced as fewer v -detectors were needed to
cover space N . Hence, this model is more efficient for on-line classification sys-
tems in comparison to standard negative selection approaches which are based
only on one type of detectors.

Fig. 2. Flow diagram of the classification process for b-v model.

48 M. Brzozowski and A. Chmielewski

Embedding the V -Detector algorithm in FPGA (see Sect. 3) should signifi-
cantly affect the efficiency of the entire b-v model. This also opens the possibil-
ity of applying them in other domains, including devices used in the Internet of
Things technology.

3 Hardware Approach to V -Detector Algorithm

As was already mentioned, classification with the V -Detector algorithm is a very
complex and time consuming process because of its high complexity of performed
calculations that need to be done on real-valued vectors. Time of classification
of a single sample directly depends on its dimensionality (�d) and number of
detectors, because for each single sample, there is a need to calculate distance
to generated detectors from set D. The described process, of course, might be
divided into sub tasks to parallelize classification. As a result, the duration of
this process should be significantly decreased. However, when calculations are
performed on CPUs or GPUs processors, its efficiency is strictly restricted by
number of processors and numbers of its cores.

One of the solutions, corresponding to the above restrictions, are program-
mable devices, especially Field Programmable Gate Array (FPGA) devices, pro-
viding a high performance, low power consumption and relatively low price in
comparison to CPU/FPU solutions. FPGA is mainly designed to parallelize
computational tasks. Therefore, it might be used in projects where the main
indicator is performance. Designers equipped FPGA devices in specialized IP
(Intellectual Property) blocks like multipliers, pre-adders and accumulators for
increasing the number of computations per second and other more complicated
blocks like embedded CPUs, DSP, Ethernet Physical Interfaces, PCI Express,
DRAM controllers and many others. Moreover, some FPGA devices allow for
the partial reconfiguration (reprogramming) during its operation - helping the
system to adopt to rapidly a changing environment.

FPGA devices are characterized by high computing power, flexibility and
scalability. They can be adapted as a base for on-line classification systems eg.
firewalls and intruder detection systems for home use as well as for enterprise
solutions.

As was presented in [3], b-detectors were successfully implemented in repro-
grammable architectures, especially in FPGA devices. Hence, it is natural to try
to do the same for the V -Detector algorithm, where we could expect more spec-
tacular results in comparison to a software approach, which was a bottleneck in
the b-v model.

Classification algorithm will be explained in further sections but firstly we
must present how the distance between detectors and samples is calculated. The
main difference, in comparison to software implementation, is the usage of hyper-
cubes, instead of hyperspheres. Such a shape is more suitable for reprogrammable
architecture.

Each self sample, si ∈ S, is represented as a hypercube si = (ci, ls), i =
1, . . . , l, where l is the number of self samples, ci ∈ U is the center of si and ls

Embedding the V -Detector Algorithm in FPGA 49

is half of the length of its side (edge). It is assumed, that ls is identical for all
self samples. Similar to software approach, each hypercube u ∈ U inside any self
hypercube si is considered as a self element.

The detectors dj are represented as hypercubes also: dj = (cj , lj), j = 1, . . . , p
where p is the number of detectors. In contrast to self elements, the half length
of its side lj is not fixed, but it is computed as the distance from a randomly
chosen center cj to the nearest self element (this distance must be greater than
ls, otherwise detector is not created).

Formally, we define lj as:

lj = min
1≤i≤l

dist(cj , ci) − ls, (4)

where distance between two centers of hypercubes x and y is defined as:

dist(x, y) = min
1≤i≤d

|xi − yi|. (5)

Each hypercube is axis-aligned. It means, rotation of hypercube is not
allowed. Two hypercubes are not overlapping when:

min
1≤i≤d

|xi − yi| > lx + ly. (6)

Figure 3 presents d-dimensional hypercubes. In Fig. 3(b) two detectors d1 =
([0], 1), d2 = ([5], 1) in one dimensional space are marked (grey colour).
In Fig. 3(a) two detectors d1 = ([1, 3], 1) and d2 = ([3, 5], 1) are overlap-
ping. In Fig. 3(c): d1 = ([1, 1, 1], 0), d2 = ([0, 6, 7], 0), d3 = ([5, 5, 0], 0) and

Fig. 3. Example of axis-aligned v -detector hypercube in �d.

50 M. Brzozowski and A. Chmielewski

d4 = ([5, 5, 5], 1) are examples in three dimensional space. In V -Detector clas-
sification process it is sufficient to state that sample overlap with one of the
detectors. There is no need to state that detector includes the sample (sample
overlaps a whole over the detector or overlaps its partially). In both cases, the
sample should be rejected.

3.1 Emebedded V -Detector - The Fastest Approach

The first of the proposed solutions, denoted as V -Detector–HFast, for repro-
grammable architectures holds the entire D in target device resources. As a
result, it should maximize the speed of classification process for V -Detector algo-
rithm. The base concept allows the determination of distance between the single
sample and the entire set of D in one cycle of the designed system. Moreover,
the classification process does not depend to such an extent on the number of
dimensions as in the classical approach. Here, the universe set U is represented
by bitmap with detectors modeled as hypercubes. The number of distinguish
samples (represented as vectors) depends on the size of used internal memory.

Memory and other arithmetic operations are mapped into logic elements
available on the reprogrammable device, in our case FPGA. For each dimension,
a decoding vector responsible for choosing data from set D is created, depending
on the sample’s coordinates. For each coordinate logical products are created of
decoding vectors (for all dimensions) and its corresponding memory values. In
the last step, the number of ‘1’ in the logical product is counted. If this value is
not equal to 0, it means, sample overlaps at least one detector. Figure 4 shows a
simplified diagram of V -Detector (for one dimension) based on internal FPGA
memory.

The proposed solutions for reprogrammable architectures is incredibly fast in
classification of both single and group of samples. This approach, apart from the
high-speed classification, also has some disadvantages. Set D is held in FPGA
internal RAM (very limited capacity) or is mapped in the logical area on the
device. In this case, a synthesized classification algorithm is highly demanded
for device logic resources. Therefore, we are limited by logic element numbers on
the target programmable device, in which one, design has to be mapped. In this

Fig. 4. V -Detector - the fastest approach for reprogrammable architectures.

Embedding the V -Detector Algorithm in FPGA 51

case we have to choose a target device with appropriate logic elements overhead.
The lack of adequate number of logical resources may lead to a decrease in the
number of analyzed dimensions, or enforces the reduction of the resolution of
the analyzed samples.

3.2 Embedded V -Detector - Approach Based on External Memory

The presented classification solution, denoted as V -Detector–HRAM , is based
only on the resources provided by the target device, is characterized by con-
straints on the system resolution. One of the methods to increase the resolution
of the system is to move the set of detectors from the internal device resources
to external memory. In this case, part of the available resources has to be des-
tined to calculate the read/write memory cell addresses. The designed compo-
nent informs which memory lines are needed in the calcification process of each
sample and chooses only the appropriate cells from them. The proposed solu-
tion is slowed down by time needed by external memory to perform write and
read operations compared to the approach presented in Subsect. 3.1. When the
system is properly scaled to expected samples (in numbers of dimensions and
numbers of bits per dimension) i.e. ls = 0 (is small as possible) classification
process should need only one read operation from external memory.

For DE2-115 Development Board we were able to achieve a resolution of 230

distinguishable samples.

4 Hardware V -Detector Approaches Evaluation

In the proposed solutions, the learning phase is simplified, in comparison to soft-
ware implementation. The optimization process of D set is not needed because
its size does not affect the duration of classification of a single sample. Bitmap
hypercube representation of U is constant and therefore the number of detectors
has no impact on its size. Classification time is shorter because the designed com-
ponents consider calculations only in the nearest surroundings of the sample. All
the necessary calculations are performed at the level of the FPGA. Therefore,
the designed component may process large amounts of data in a single period of
time.

Both presented solutions were implemented and synthesized for Altera
Cyclone IVE EP4CE115F29C7 device equipped on the DE2-115 Development
and Education Board by using Quartus II 15.0. Figure 5(a) shows simplified
diagrams of the actual designs. The core of the solution is Nios II processor
with connected components via an Avalon bus. In the first stage, components
were tested as operated independently. In the second stage, components were
integrated into the system (Fig. 5(a)). In the future, both systems, V -Detector
based on internal and on external RAM cells, will be equipped with two Eth-
ernet interfaces 10/100/1000 and tested in a network environment (Fig. 5(b)).
Another possibility of the further development is integrated design with PCI
Express and use also of the desktop computer resources.

52 M. Brzozowski and A. Chmielewski

Fig. 5. System diagrams for FPGA device.

To measure performance (profiling) of the designed systems we used Altera
Megacore Performance Counter Unit. The designed system was based on Nios
II worked with 100 MHz frequency.

As was already mentioned in Subsect. 3.1, the dimensionality of samples
which can be processed by V -Detector–HFast algorithm is highly restricted
by resources availability in target devices. In the case of Altera Cyclone IVE
EP4CE115F29C7, which was used in our experiments, internal memory capac-
ity is limited to 3888 kb. Such a restriction forced us to select a rather small
dataset for testing. We chose the most popular dataset used for classification
purposes, namely Iris, which consists of only 150 samples. Each of 4 attributes
was represented by integer value from the range 0–3 (2 bits). Detectors were
generated, assuming that one class of thew iris plant is regarded as set S during
the learning stage. In all cases, samples were successfully classified. The main
advantage of the hardware approaches was the duration of classification, and
was presented in Table 1.

We can compare those values with the average time of classification achieved
for software implementation executed on a PC equipped with Intel i7-3770
processor (8 cores) 3.4 GHz with 16 GB RAM. In this case, process censoring all
samples took about 3 ms. It is about 20 times slower than V -Detector–HFast,
and about 6 times slower than V -Detector–HRAM . Taking into consideration
that the frequency of the CPU on the PC computer was 340 times higher, it can
be easily computed how fast the hardware approach is.

Table 1. Comparison of average duration of classification process for V -Detector–
HFast and V -Detector–HRAM algorithms for different number of bits per dimension
(n) for Iris dataset.

HFast HRAM

n = 2 n = 2 n = 6

time [ms] time (clock) time [ms] time (clock) time [ms] time (clock)

Iris-setosa 0.18 17914 0.58 58181 0.58 58181

Iris-versicolor 0.18 17914 0.58 58061 0.58 58061

Iris-virginica 0.18 17914 0.58 58038 0.58 58038

Embedding the V -Detector Algorithm in FPGA 53

Table 2. Comparison of average duration of classification process for software imple-
mentation and V -Detector–HRAM algorithm applied to randomly selected subsets for
KDD Cup 1999 dataset.

Software HRAM

time [ms] time [ms] time (clock)

106 000 45 4483698

Table 1 contains also the results of other classification experiments with the
same dataset. Here, samples were represented as 4 dimension vectors with 6 bits
per dimension. For V -Detector–HFast this design was too big to map into avail-
able architecture. Thus experiments were conducted only for the V -Detector–
HRAM algorithm for which the classification process took 0.58 ms (the same
time as in first experiment). Here, classification strictly depends on access time to
external memory (read/write data operation). It is clear that all operations per-
formed on internal resources are faster than on external memory. The increase in
the number of dimensions does not significantly affect the time of classification.
The most important is a properly scaled system (sample size).

However, the most spectacular results were obtained for some subsets of KDD
Cup 1999 from UCI Machine Learning Repository. This database was too big for
the current implementation of V -Detector–HRAM . Hence, only the samples of
the ICMP protocol were used for tests with randomly selected 7 of 41 attributes
(each coded on 4 bits). In this way, our test set contains 1074994 unique samples
and an average of 683 detectors were used. During the tests we could observe, the
duration of classification was more than 2000 times faster in the case of hardware
implementation (see Table 2).

5 Conclusions

In this paper we present our approach to hardware implementation of the V -
Detector algorithm, which is the most computationally complex part of b-v
model. Our preliminary promising results with b-detectors was a first step for
building a very fast classification system embedded in reprogrammable devices.
To achieve this goal, we had to implement also the V -Detector algorithm, which
operates on computationally complex real-valued vectors.

Here, we presented two different possible approaches, called V -Detector–
HFast and V -Detector–HRAM . Both of them have some disadvantages, which
are mainly related with the limitation of used memory. However, V -Detector–
HRAM can be extended to be used with external memory, which can make this
approach possible to be applied for much bigger datasets than those used in the
experiments described in this paper.

The performed experiments confirmed that hardware implementations can
significantly speed up the classification process, which usually is the most crucial
in classification systems. Obtained preliminary results are a good starting point

54 M. Brzozowski and A. Chmielewski

to build a hardware version of the b-v -model, dedicated for an on-line immune-
based intrusion detection system.

Acknowledgment. This research was partially supported by the grants S/WI/3/13
and MB/WI/1/2014 of the Polish Ministry of Science and Higher Education.

References

1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance
metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT
2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

2. Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and generalization
in an artificial immune system. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), New York, 9–13 July 2002, pp. 3–10
(2002)

3. Brzozowski, M., Chmielewski, A.: Hardware approach for generating b-detectors
by immune-based algorithms. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS,
vol. 8838, pp. 615–623. Springer, Heidelberg (2014)

4. Chu, P.P.: RTL Hardware Design Using VHDL: Coding for Efficiency, Portability,
and Scalability. Wiley-Interscience, New Jersey (2006)

5. Chmielewski, A., Wierzchoń, S.T.: On the distance norms for multidimensional
dataset in the case of real-valued negative selection application. Zesz. Nauk.
Politech. Bia�lost. 2, 39–50 (2007)

6. Chmielewski, A., Wierzchoń, S.T.: Hybrid negative selection approach for anomaly
detection. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012.
LNCS, vol. 7564, pp. 242–253. Springer, Heidelberg (2012)

7. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings of the 1996 IEEE Symposium on Research in Security
and Privacy, pp. 120–128. IEEE Computer Society Press (1996)

8. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a
computer. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, Los Alamitos, pp. 202–212 (1994)

9. Harmer, P.K., Wiliams, P.D., Gunsch, G.H., Lamont, G.B.: Artificial immune sys-
tem architecture for computer security applications. IEEE Trans. Evol. Comput.
6, 252–280 (2002)

10. Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized
detectors. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298.
Springer, Heidelberg (2004)

11. Ji, Z., Dasgupta, D.: Revisiting negative selection algorithms. Evol. Comput. 15(2),
223–251 (2007)

12. Stibor, T., Mohr, P.H., Timmis, J., Eckert, C.: Is negative selection appropriate
for anomaly detection? In: GECCO 2005, pp. 321–328 (2005)

13. Vanderbauwhede, W., Benkrid, K.: High-Performance Computing Using FPGAs.
Springer, New York (2013)

	Embedding the V-Detector Algorithm in FPGA
	1 Introduction
	2 Negative Selection
	2.1 Detectors and Algorithms
	2.2 Real-Valued Representation
	2.3 Brief Description of the b-v Model

	3 Hardware Approach to V-Detector Algorithm
	3.1 Emebedded V-Detector - The Fastest Approach
	3.2 Embedded V-Detector - Approach Based on External Memory

	4 Hardware V-Detector Approaches Evaluation
	5 Conclusions
	References

