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Abstract. In this paper we investigate the case of ambiguous shape
reconstruction from two light-source photometric stereo based on illumi-
nating the unknown Lambertian surface. So-far this problem is merely
well-understood for two linearly independent light-source directions with
one illumination assumed as overhead. As already established, a neces-
sary and sufficient condition to disambiguate the entire shape reconstruc-
tion process is controlled by the satisfaction of the corresponding second-
order linear PDE with constant coefficients in two independent variables.
This work extends the latter to an arbitrary pair of light-source direc-
tions transforming the above constraint into a special nonlinear PDE. In
addition, a similar ambiguity analysis is also performed for a special con-
figuration of two light-source directions assumed this time as orthogonal
and contained in the vertical plane. Finally, this work is supplemented
by illustrative examples exploiting symbolic computation used within a
framework of continuous reflectance map model (i.e. an image irradiance
equation) and applied to a genuine Lambertian surfaces.
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1 Problem Formulation

The task of surface reconstruction from its image (or images) poses one of the
major challenges in computer vision. There are two common approaches adopted
to tackle this problem. The first one (termed a stereo-like method) involves projec-
tive geometry tools applied to multiple camera images [1–3]. Solving the so–called
matching problem constitutes here the gist of the entire reconstruction process
based on incorporating the triangulation-like technique [1,2,4]. The second app-
roach, coined shape from shading [3–5], relies on a priori knowledge of the phys-
ical properties of light reflectance inherent to the specific material coating the
unknown surface S. In this model the surface S is assumed to be formed as a graph
S = graph(u) of the unknown Ck (k = 0, 1) function u : Ω → R defined over
an image domain Ω ⊂ R2. Recall that the normal n(s) = (n1(s), n2(s), n3(s))
to S at the point s = (x, y, u(x, y)) ∈ S (with n3(s) < 0) reads as n(s) =
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(ux(x, y), uy(x, y),−1). Assuming a distant light–source (yielding a parallel
light-beam along the direction p = (p1, p2, p3)) the so-called image irradiance
equation

R(ux(x, y), uy(x, y)) = E(x, y) (1)

encapsulates the relation between reflected light from surface S and absorbed
light in the image Ω - see [4]. Here E(x, y) denotes the intensity of the absorbed
light at the image point (x, y) ∈ Ω. On the other hand, R called reflectance map
refers to the intensity of the reflected light from s ∈ S with normal n(s). In the
special case of a Lambertian surface SL, RL is proportional to cos(α), where α
represents the angle between the normal n(s) and a given light-source direction
p = (p1, p2, p3) - see [4]. Consequently, for SL the corresponding image irradiance
Eq. (1) (over Ω = {(x, y) ∈ R2 : 0 ≤ E(x, y) ≤ 1}) reads as:

〈p|n(s)〉
‖p‖‖n(s)‖ =

p1ux(x, y) + p2uy(x, y) − p3
√

p21 + p22 + p22

√
u2

x(x, y) + u2
y(x, y) + 1

= E(x, y). (2)

By Cauchy-Schwartz inequality |E(x, y)| ≤ 1 holds. The extra condition
required E(x, y) ≥ 0 excludes shadowed (x, y)-points. The Eq. (2) yields the
first order non-linear PDE (in two variables) modelling a single image shape
from shading for SL. Commonly, in solving (2) one usually searches for u ∈ Ck

(k = 1, 2), modulo a vertical shift v = u + c (here c is an arbitrary constant).
A single image irradiance Eq. (2) renders generically an ill-posed problem (see
[6–10]). Though various mathematical extra assumptions can disambiguate (2)
or limit its number of solutions [4,11–15], they often turn unrealistic or difficult
to be met from real camera images.

A feasible remedy is to employ a photometric stereo technique for which
the unknown surface SL (or S) is consecutively illuminated by distant multi-
ple light–sources positioned along linearly independent directions [4,16]. In this
set-up, contrary to the classical stereo method relying on images taken from
multiple cameras, only a single camera is deployed.

As demonstrated in [4,16,17], three-light source photometric stereo suffices to
guarantee a unique surface SL = graph(u) (up to a vertical shift) with u ∈ C1

satisfying the corresponding system of three image irradiance Eq. (2) (formulated
for p, q and r) over an image Ω = Ω1 ∩ Ω2 ∩ Ω3. The respective right-hand
sides of (2) (i.e. the intensities Ei ≥ 0 over Ωi, for i = 1, 2, 3) are obtained by
consecutive illuminations of SL along three linearly independent directions p, q
r ∈ R3. The entire reconstruction process is decomposed here into two following
steps:

(a) a gradient computation (an algebraic step):

ux(x, y) = f1(x, y,E1, E2, E3), uy(x, y) = f2(x, y,E1, E2, E3). (3)

In case of three light-sources the resulting vector field ∇u = (ux, uy) satisfy-
ing three equations of type (2) is uniquely determined in (3) in terms of image
intensities Ei (i = 1, 2, 3) and light-source directions p, q and r - see [4,17].
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(b) a gradient integration (an analytic step):

u(x, y) = u(x0, y0) +
∫

γ

ux(x, y)dx + uy(x, y)dy, (4)

where (x0, y0), (x, y) ∈ Ω and γ : [t0, t1] → Ω is an arbitrary piecewise-C1 curve
such that γ(t0) = (x0, y0) and γ(t1) = (x, y). Note that (x0, y0) is fixed here and
u(x0, y0) represents any constant c. The choice of γ joining (x0, y0) with varying
(x, y) is arbitrary (at least in continuous model of (1)), provided Ω is simply
connected and the vector field (3) fulfills the so-called integrability condition.
The latter reads for u ∈ C2 as

uxy(x, y) = uyx(x, y), (5)

and for u ∈ C1 as ∫

γc

ux(x, y)dx + uy(x, y)dy = 0, (6)

holding for any piecewise-C1 loop γc ⊂ Ω (with γc(t0) = γc(t1)). Assuming
Ei (i = 1, 2, 3) are formed by a genuine Lambertian surface SL = graph(u), a
unique vector field ∇u obtained from (3) is automatically integrable and hence
the formula (4) determines an unambiguous u ∈ C1 (up to a constant).

The case of two-light source photometric stereo requires more intricate analy-
sis (see [17–19]). The respective system of two image irradiance equations:

p1ux(x, y) + p2uy(x, y) − p3√
p21 + p22 + p23

√
u2

x(x, y) + uy(x, y)2 + 1
= E1(x, y),

q1ux(x, y) + q2uy(x, y) − q3√
q21 + q22 + q23

√
u2

x(x, y) + uy(x, y)2 + 1
= E2(x, y) (7)

is solved by the following vector field (see [17,18]):

ux =
‖p‖(q1〈p|q〉 − p1‖q‖2)E1 + ‖q‖(p1〈p|q〉 − q1‖p‖2)E2 + (p3q2 − p2q3)ε

√
Λ

‖p‖(p3‖q‖2 − q3〈p|q〉)E1 + ‖q‖(q3‖p‖2 − p3〈p|q〉)E2 + (p1q2 − p2q1)ε
√

Λ
,

uy =
‖p‖(q2〈p|q〉 − p2‖q‖2)E1 + ‖q‖(p2〈p|q〉 − q2‖p‖2)E2 + (p1q3 − p3q1)ε

√
Λ

‖p‖(p3‖q‖2 − q3〈p|q〉)E1 + ‖q‖(q3‖p‖2 − p3〈p|q〉)E2 + (p1q2 − p2q1)ε
√

Λ
,

(8)

where

Λ = ‖p‖2‖q‖2 (1 − E2
1(x, y) − E2

2(x, y)
)− 〈p|q〉 (〈p|q〉 − 2‖p‖‖q‖E1(x, y)E2(x, y)) (9)

with the function ε(x, y) taking values ±1 so that f(x, y) = ε(x, y)
√

Λ(x, y) is
continuous (for u ∈ C1) or smooth (for u ∈ C2).

As discussed in [17,18] an image domain Ω is often decomposed into Ω =
Ω(1) ∪ Ω(2) ∪ Γ with Λ > 0 over disjoint sub-domains Ω(j) ⊂ Ω (here j = 1, 2)
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and with Λ = 0 satisfied along some smooth curve Γ . Consequently, over each
component Ω(j) either ε(x, y) ≡ 1 or ε(x, y) ≡ −1 hold, yielding the respective
two vector fields (u±

x , u±
y ) in (8) satisfying (7). Assuming E1 and E2 are generated

by a genuine Lambertian surface SL, at least one of these two pairs of vector
fields (over each Ω(j)) is integrable.

The ambiguous case of more than one integrable vector field from (8) is
well-understood merely for the special configuration of light-source directions,
namely when p = (0, 0,−1) and q = (q1, q2, q3) (here q21 + q22 > 0) - see [17,18].
In fact, generically there is only one integrable vector field over each Ω(j) (and
thus over Ω). The latter is governed by the fulfillment of the tight condition (10).
Indeed, given two simply connected sub-images Ω(j), a necessary and sufficient
condition enforcing both vector fields (u+

x , u+
y ) and (u−

x , u−
y ) to be integrable

(and thus yielding the existence of u+, u− ∈ C2(Ω(i)) solving (7)) reads as:

q1q2 (uyy(x, y) − uxx(x, y)) + (q21 − q22)uxy(x, y) = 0, (10)

which is to be satisfied by either u+ or u−. In addition (see [17,18]), if one of
u+ (or of u−) satisfies (10) then so does the complementary one i.e. u− (or u+).
In a rare situation of (10) holding, both pairs (u+, u−), determined by (4) over
Ω(j) (j = 1, 2), can bifurcate (i.e. can be glued together) along the curve Γ to
yield either zero or two or four global solutions u ∈ C2 over the whole image Ω
(see [17,18]). As it turns out, there are extra geometrical relations between both
graphs of u+ and u−. Indeed, let Ku(x, y) denote the Gaussian curvature of the
surface SL = graph(u) taken at the point (x, y, u(x, y)) ∈ SL and determined
by the formula (see [20]):

Ku(x, y) =
uxx(x, y)uyy(x, y) − u2

xy(x, y)
(1 + u2

x(x, y) + u2
y(x, y))2

. (11)

Interestingly, it is proved in [17,18] that if both (7) and (10) hold then:

Ku+(x, y) = −Ku−(x, y). (12)

Consequently, if s1 = (x, y, u±(x, y)) ∈ S±
L yields a hyperbolic point (having nega-

tive Gaussian curvature) then s2 = (x, y, u∓(x, y)) ∈ S∓
L renders an elliptic point

(having positive Gaussian curvature). Thus for p = (0, 0,−1) and q = (q1, q2, q3)
the convexity/concavity ambiguity is automatically excluded. Noticeably, such
ambiguity eventuates for single image shape from shading with p = (0, 0,−1)
(see e.g. [4,8]). Finally, if s1 is a parabolic point (with vanishing Gaussian cur-
vature) then so is s2.

This paper extends the above results with the following (see Sect. 2):

1. The necessary and sufficient condition (10) for testing the ambiguity in (7)
is extended to arbitrary pairs of linearly independent light-source directions
p = (p1, p2, p3) and q = (q1, q2, q3). Ultimately, such general case leads to
the non-linear second-order PDE (see (18)), which inherently constitutes a
challenging problem.
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2. To alleviate the above difficulty, special configurations of two light-source
directions (different from p = (0, 0,−1) and q = (q1, q2, q3)) are here admitted.
Namely, the family of orthogonal unit vectors (parallel to OXZ-plane):

pα = (−
√

1 − α2, 0,−α), qα = (α, 0,−
√

1 − α2) (13)

(with 0 < α < 1) is considered. The corresponding analysis for solving (7)
(with p = pα and q = qα) addresses the uniqueness issue and establishes,
in rare ambiguity cases, intrinsic geometrical inter-relations between multiple
solutions in two light-source photometric stereo (see also Theorem 1).

The theoretical Sect. 2 is also supplemented (see Sect. 3) by illustrative exam-
ples supported by Mathematica numerical and symbolic computation applied
to the continuous Lambertian model with pixels represented as ideal points
(x, y) ∈ Ω and image intensities (E1, E2) simulated here from u as left-hand
sides in (7). Finally, the closing Sect. 4 summarizes the main thrust of this paper
together with indicating its extensions and hints their possible solutions.

2 Orthogonal Illumination Directions in Vertical Plane

In the first part of this section (i.e. in (i)) we consider an arbitrary configuration
of linearly independent light-source directions p and q with ‖p‖ = ‖q‖ = 1. Under
such general assumption, condition (10) (testing whether the second vector field
from (8) over each Ω(j) is also integrable) is subsequently extended to the non-
linear PDE expressed by (18). Noticeably, the latter constitutes a difficult task
for further theoretical analysis. In order to deal with the latter somehow, a special
case of orthogonal vectors p and q contained in the OXZ-plane is here admitted
(see (ii)). The analysis to follow complements already established results in [17],
covering a different special choice of p = (0, 0,−1) and q = (q1, q2, q3) with
q21 + q22 > 0.

(i) Assume now that E1 and E2 introduced in (7) are generated by a genuine
Lambertian surface SL = graph(u), where u ∈ C2. Evidently, still by (7) both
image intensities are also expressible in terms of ux and uy. Using symbolic
computation in Mathematica [21–23] (or alternatively see complicated proof in
[17]) one arrives at:

Λ(x, y) =
(ux(p2q3 − p3q2) − uy(p1q3 − p3q1) + p2q1 − p1q2)

2

u2
x + u2

y + 1
=

(〈p × q|n〉)2
u2

x + u2
y + 1

.

(14)
Combining the latter with (8) (over each Ω(j) determined by Λ > 0)

leads to:

ux =

{
ux, if sgn(ε)sgn(θ) > 0;
(a2−b2−c2)ux+2acuy+2ab
2abux+2bcuy+b2−a2−c2 , if sgn(ε)sgn(θ) < 0

(15)

and

uy =

{
uy, if sgn(ε)sgn(θ) > 0;
2acux+(c2−a2−b2)uy+2bc
2abux+2bcuy+b2−a2−c2 , if sgn(ε)sgn(θ) < 0,

(16)
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where

a = p3q2 − p2q3, b = p1q2 − p2q1, and c = p1q3 − p3q1, (17)

and θ = ux(p2q3 − p3q2) − uy(p1q3 − p3q1) + p2q1 − p1q2. Here the function
ε = ε(x, y) is everywhere constant taking values ±1. The first pair (ux, uy) from
(15) and (16) satisfies integrability condition (5) over each Ω(j) as u ∈ C2. On
the other hand, the integrability of the second vector field from (15) and (16)
eventuates, if and only if:
(

(a2 − b2 − c2)ux + 2acuy + 2ab

2abux + 2bcuy + b2 − a2 − c2

)

y

=
(

2acux + (c2 − a2 − b2)uy + 2bc

2abux + 2bcuy + b2 − a2 − c2

)

x

.

Upon resorting to the symbolic computation in Mathematica, the last equation
is transformable into the following non-linear PDE:

c (a − bux(x, y)) uyy(x, y) +
(
a2 − c2 + bcuy(x, y) − abux(x, y)

)
uxy(x, y)

+a (buy(x, y) − c) uxx(x, y) = 0, (18)

which is to be satisfied by u. Evidently, the latter does not hold generically and
therefore the resulting integrability condition (18) disambiguates almost always
two-source photometric stereo modelled by (7) - see also Example 1. Still, in a
pursue of solving a rare ambiguity in (7), one ought to deal with (18) which
inevitably leads to a non-trivial task. Thus in the next step (ii) of this section,
a tighter constraint imposed on illumination directions p and q is considered.

(ii) Suppose now that two light-source directions pα and qα are introduced
according to (13). The resulting two image irradiance equations coincide with:

α − √
1 − α2ux(x, y)

√
u2

x(x, y) + uy(x, y)2 + 1
= E1(x, y),

αux(x, y) +
√

1 − α2

√
u2

x(x, y) + uy(x, y)2 + 1
= E2(x, y). (19)

Since pα ⊥ qα (i.e. are orthogonal), the function Λ defined in (9) simplifies into:

Λ(x, y) = 1 − E2
1(x, y) − E2

2(x, y) =
u2

y(x, y)
1 + u2

x(x, y) + u2
y(x, y)

. (20)

Thus ΩΛ>0 = {(x, y) ∈ Ω : uy(x, y) �= 0} and ΩΛ≡0 = {(x, y) ∈ Ω : uy(x, y) =
0}. Similarly to the special case of p = (0, 0,−1) and q = (q1, q2, q3) discussed in
[17,18], often the triples u, pα and qα (see Example 1) yield ΩΛ>0 = Ω(1) ∪Ω(2),
with Ω(j) (j = 1, 2) standing for two disjoint sub-domains of Ω and ΩΛ≡0 = Γ
representing a smooth curve in Ω. Here a bifurcation curve (along which solutions
over Ω(1) and Ω(2) are glued) coincides with the curve (overlapping with ΩΛ≡0):

Γ = {(x, y) ∈ Ω : uy(x, y) = 0}. (21)

Furthermore in (17) , since p2 = q2 = 0 then a = b = 0 and since q1 = −p3 = α
and p1 = q3 = −√

1 − α2 then c = 1. Consequently, both Formulae (15) and
(16) are reducible into:
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ux =

⎧
⎪⎨

⎪⎩

ux, if sgn(ε)sgn(θ) > 0;

ux, if sgn(ε)sgn(θ) < 0;
uy =

⎧
⎪⎨

⎪⎩

uy, if sgn(ε)sgn(θ) > 0;

−uy, if sgn(ε)sgn(θ) < 0.

(22)
Thus for the non-generic case of the second vector field (ux,−uy) also integrable
(over each Ω(i)), the function u should satisfy the following linear PDE:

uxy(x, y) = 0. (23)

Note that the last equation can be independently reached by substituting a =
b = 0 and c = 1 into (18). The generic case of (23) not fulfilled is illustrated also
in Example 1. Upon double integration (first over x and then over y) of (23), the
following representation for u (if two vector fields from (22) are to be integrable
over Ω(i)) holds:

u(x, y) = φ1(x) + ψ1(y), (24)

for some twice continuously differentiable functions φ1 and ψ1 in a single vari-
able. It is not difficult to show that φ1(x) = u(x, 0) − c, where ψ1(0) = c.
Similarly, ψ(y) = u(0, y) − φ1(0) = u(0, y) − u(0, 0) + c. Naturally, an analogous
argument applies to the second solution v ∈ C2 to (19) resulting in v satisfying
(23) and hence v(x, y) = φ2(x) + ψ2(y), where φ2 and ψ2 are defined similarly
to the introduction of φ1 and ψ1. Furthermore, by (22), the second function
v ∈ C2 (over each Ω(j)) fulfills (vx, vy) = (ux,−uy). Combining the latter with
ux(x, y) = φ′

1(x), uy(x, y) = ψ′
1(y), vx(x, y) = φ′

2(x) and vy(x, y) = ψ′
2(y) yields

“a conjugate-like” relation between u and v:

u(x, y) = φ1(x) + ψ1(y), v(x, y) = φ1(x) − ψ1(y) + c1, (25)

with c1 being a constant. Formula (25) determines specific analytic representa-
tions of the solutions to (19) over each Ω(j) in a rare situation of the ambiguous
two light-source photometric stereo. A straightforward verification shows that
the geometrical constraint from (12) is also preserved for pα and qα. Indeed,
combining (11) with (25) leads to Ku(x, y) = (φ′′

1(x)ψ′′
1 (y))(1 + (φ′

1(x))2 +
(ψ′

1(y))2)−2 = −Kv(x, y). Note that the condition (21) coupled with (25) implies
that Γ (or more general ΩΛ≡0) represents a line L = {(x, y∗) ∈ Ω : ψ′

1(y∗) = 0}
(or a collection of lines) parallel to the OX-axis. In addition, as ∇u = (ux, uy)
and ∇v = (ux,−uy) visibly any critical point of u is also a critical point of v.
Moreover, if such point represents a local minimum (maximum, saddle) for u
then it is also a local maximum (minimum, saddle) for v. Note also that by (21)
any critical point of u (and thus of v) belongs to the set ΩΛ≡0 and thus to the
potential bifurcation curve Γ . The non-generic ambiguity case discussed above
for pα and qα is illustrated in Example 2.

Evidently, as (18) or (23) are generically not fulfilled, there exists only one
solution u ∈ C2 to (7) or (19) over each Ω(j). Upon gluing u together, only one
global solution u ∈ C2 prevails over entire image Ω. On the other hand, the rare
scenario of the existence of two solutions u, v ∈ C2 over each Ω(j) (i.e. satisfying
(23)) leads to the possible bifurcations along Γ rendering 0, 2 or 4 global solutions
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of class C2 over entire image Ω. Recall that we assume here Ω = Ω(1)∪Ω(2)∪Γ .
The other decomposition topologies of Ω = ΩΛ>0 ∪ ΩΛ=0 are discussed in [17].
The detailed analysis justifying necessary and sufficient conditions to guarantee
successful Ck bifurcations (k = 0, 1, 2) (in case of Ω = Ω(1) ∪ Ω(2) ∪ Γ ) holding
along Γ exceeds the scope of this paper and therefore is here omitted.

Taking into account the above argument, the main theoretical contribution
of this paper can be summarized into the following:

Theorem 1. Assume that u ∈ C2 (which graph SL = graph(u) represents an
illuminated genuine Lambertian surface) satisfies (19) or (7) with pα and qα

determined by (13) (or with arbitrary linearly independent p and q). Suppose,
moreover that Λ in (9) satisfies Λ > 0 over simply-connected Ω(j) (j = 1, 2).
In order that there exists only one more solution v ∈ C2 to (19) over Ω(j) it is
necessary and sufficient for u to satisfy (23) or (18). In addition, the ambiguous
case for pα and qα yields u(x, y) = φ(x) + ψ(y) and v(x, y) = φ(x) − ψ(y), with
φ and ψ determined as in (24). Finally, the Gaussian curvatures of graphs of
u and v at respective points (x, y, u(x, y)) and (x, y, v(x, y)) (see (11)) satisfy
Ku(x, y) = −Kv(x, y).

As already pointed out, a local ambiguity to (19) or (7) (over ΩΛ>0) can
even be more proliferated to a global one (over entire image Ω) due to possible
bifurcations of u and v along ΩΛ≡0. The matter gets more complicated if ΩΛ≡0

forms an open subset of Ω (see [17,18]). The latter occurs once 〈p × q|n〉 = 0 as
implied by (14). Due to these intricacies, the respective discussion on bifurcation
issue in two light-source photometric stereo is here left out.

3 Experiments

This section includes two examples illustrating the main results established in
Sect. 2 (see also Theorem 1). The experiments presented here are carried out
with the aid of Mathematica symbolic computation. The corresponding pictures
of images (with the respective intensities E1 and E1) are simulated syntheti-
cally upon admitting arbitrary or specific illumination directions and assuming
a genuine u as temporarily initially given.

Example 1. (a) Consider a Lambertian hemi-sphere S1
L = graph(u1) with u1 ∈

C2(Ω̂) defined as u1(x, y) =
√

R2 − x2 − y2, where Ω̂ = {(x, y) ∈ R2 : x2+y2 ≤
R2}. For two linearly independent normalized light-source directions p and q the
respective image irradiance equations read as:

p1ux + p2uy − p3√
u2

x + u2
y + 1

= E11(x, y) =
−p1x − p2y − p3

√
R2 − x2 − y2

R
,

q1ux + q2uy − q3√
u2

x + u2
y + 1

= E21(x, y) =
−q1x − q2y − q3

√
R2 − x2 − y2

R
, (26)
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over Ω = Ω1 ∩ Ω2 ∩ Ω̂, where Ωi = {(x, y) ∈ R2 : E1
i1(x, y) ≥ 0} (for i = 1, 2).

The negative values of Ei1 represent shadowed subareas of Ω̂. The bifurcation
curve Γ (see (14)) reduces into a planar quadratic determined by:

(p3q2 − p2q3)x − (p3q1 − p1q3)y + (p2q1 − p1q2)
√

R2 − x2 − y2 = 0. (27)

Furthermore, the condition (18) ascertaining the existence of exactly one solution
u1 ∈ C2(Ω) (modulo its vertical shift) to (26) enforces u1 to satisfy:

(cx − ay)
(
ax + cy − b

√
R2 − x2 − y2

)
= 0, (28)

over Ω(j), with a, b and c defined as in (17). Clearly, the Eq. (28) is not satisfied
by u1 for all (x, y) ∈ Ω(j). This yields uniqueness in solving (26) (i.e. u = u1)
within u ∈ C2(Ω). In particular, for pα and qα (see (13)), (17) combined with
a = b = 0 and c = 1 reduce (27) into y = 0 rendering Γ = {(x, y) ∈ Ω̂ : y = 0},
Ω(1) = {(x, y) ∈ Ω : y < 0} and Ω(2) = {(x, y) ∈ Ω : y > 0}. The ambiguity
condition (28) is transformed into xy = 0 merely fulfilled along both X- and
Y -axes. Hence, again for arbitrary pα and qα, uniqueness of u1 prevails. This is
expected since pα and qα represents a special case of general positions of p and
q analyzed above.

(b) Let a Lambertian hill-like surface S2
L = graph(u2) with u2 ∈ C2(Ω̂) be

defined according to u2(x, y) = (2(1 + x2 + y2))−1, over e.g. Ω̂ = {(x, y) ∈ R2 :
|x| ≤ 1 and |y| ≤ 1}. The respective two image irradiance equations read as:

p1ux + p2uy − p3√
u2

x + u2
y + 1

= E12(x, y) =
−p1x − p2y − p3(x2 + y2 + 1)2

√
x2 + y2 + (x2 + y2 + 1)4

,

q1ux + q2uy − q3√
u2

x + u2
y + 1

= E22(x, y) =
−q1x − q2y − q3(x2 + y2 + 1)2

√
x2 + y2 + (x2 + y2 + 1)4

, (29)

over unshadowed Ω = Ω1∩Ω2∩Ω̂, where Ωi = {(x, y) ∈ R2 : E1
i2(x, y) ≥ 0} (for

i = 1, 2). The bifurcation curve Γ from (14) is defined by the following equation:

(p2q1 − p1q2) +
(p3q2 − p2q3)x

2(1 + x2 + y2)3/2
+

(p3q1 − p1q3)y
2(1 + x2 + y2)3/2

= 0. (30)

On the other hand, the integrability condition (18) stipulates u2 to satisfy

(cx − ay)
(
b + 6(ax + cy)

√
1 + x2 + y2

)
= 0, (31)

over Ω(j), with a, b and c introduced as in (17). Again, (31) is not fulfilled by
u2 for all (x, y) ∈ Ω(j). Hence there exists a unique solution of class C2 to (29)
(i.e. u = u2) over Ω. In the special case of pα and qα (see (13)), (17) coupled
with a = b = 0 and c = 1 transform (30) into y = 0. Hence again Γ = {(x, y) ∈
Ω̂ : y = 0}, Ω(1) = {(x, y) ∈ Ω : y < 0} and Ω(2) = {(x, y) ∈ Ω : y > 0}.
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Furthermore the ambiguity constraint (31) is reduced into xy = 0 which holds
again only along both X- and Y -axes. Thus for pα and qα the uniqueness of u2 to
(29) eventuates (as also follows from the above general (p, q)-position analysis).

Example 2. Consider now a Lambertian paraboloid S3
L = graph(u3) with u3 ∈

C2(Ω̂) defined as u3(x, y) = (x2+y2)/2 over Ω̂ = {(x, y) ∈ R2 : |x| ≤ 1 and |y| ≤
1}. For a general position of p and q, the integrability condition (18) reads here
as b(ay − cx) = 0. Provided b �= 0, such constraint never holds over any open
subset of Ω and thus uniqueness of u3 follows. Noticeably the bifurcation curve
Γ (a line) is determined here by p2q1−p1q2+(p2q3−p3q2)x+(p3q1−p1q3)y = 0.

For pα and qα from (13) the resulting two image irradiance equations are:

α − √
1 − α2ux(x, y)

√
u2

x(x, y) + uy(x, y)2 + 1
= E13(x, y) =

α − √
1 − α2x

√
x2 + y2 + 1

,

αux(x, y) +
√

1 − α2

√
u2

x(x, y) + uy(x, y)2 + 1
= E23(x, y) =

αx +
√

1 − α2

√
x2 + y2 + 1

, (32)

over Ωα = Ω̂ (for α = 1/
√

2) and over Ωα = {(x, y) ∈ Ω̂α : −1 ≤ x ≤ 0.204}
(for α = 1/5). Figure 1 shows images of S3

L with α = 1/
√

2 over Ω1/
√
2 =

Ω̂ = [−1, 1] × [−1, 1]. The bifurcation curve Γα in (21) coincides here with the
X–axis (i.e. here y = 0) trimmed either to −1 ≤ x ≤ 1 or to −1 ≤ x ≤ 0.204,
for α = 1/

√
2 or α = 1/5, respectively. The remaining decomposition com-

ponents of Ωα (along which Λ > 0) read as Ω
(1)
α = {(x, y) ∈ Ωα : y > 0}

and Ω
(2)
α = {(x, y) ∈ Ωα : y < 0} - see Fig. 2. Furthermore, since by (17)

the constant b = 0, the ambiguity condition b(ay − cx) = 0 is now satisfied.
Hence, upon combining (25) with φ(x) = x2/2 and ψ(y) = y2/2, the only one
another C2 solution to (32) equals to u4(x, y) = (x2 − y2)/2 (modulo a vertical
shift), over each Ω

(j)
α (here j = 1, 2). Once uk are glued with itself (k = 3, 4)

along X-axis, two C2 class global solutions to (32) over entire image Ωα are
defined (i.e. u3 and u4) - see Fig. 3 for α = 1/

√
2 (with gluing curve). On

the other hand the local solutions u3 (or u4) over Ω
(1)
α cross-bifurcate along

b)a)

Fig. 1. Two images of S3
L = graph(u3) illuminated along p1/

√
2 and q1/

√
2 directions.
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Fig. 2. Decomposition of Ωα = Ω
(1)
α ∪ Ω

(2)
α ∪ Γα for (32) with (a) α = 1/

√
2, (b)

α = 1/5.

Fig. 3. Two C2 class global solutions u3 and u4 to (32), over Ω1/
√
2 = [−1, 1]× [−1, 1].

Fig. 4. Two C1 class global solutions u34 and u43 to (32), over Ω1/
√
2 = [−1, 1]×[−1, 1].

Γ1/
√
2 with u4 (or with u3) over Ω

(2)
α to yield next two only C1 class solu-

tions u34 and u43 to (32) over Ωα. Indeed, a C2 differentiability is excluded as
lim(x,y)→(x,0) u3yy(x, y) = 2 �= −2 = lim(x,y)→(x,0) u4yy(x, y). The remaining two
C1 global solutions to (32) over Ω1/

√
2 (i.e. u34 and u43) are plotted in Fig. 4.

The case for α = 1/5 differs merely by different Ω1/5. Note that by (11) the
respective Gaussian curvatures yield Ku3(x, y) = 4(1+x2 + y2)−2 = −Ku4(x, y)
which is consistent with Theorem 1. A unique critical point (0, 0) of u3, u4, u34

and u43 belongs, as expected to Γ .
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4 Conclusion

This paper extends the claims of [17,18], where a special configuration of two
light-source directions p = (0, 0,−1) and q = (q1, q2, q3) (for q21 + q22 > 0) in
photometric stereo is studied. In particular, a respective integrability condition
expressed by the non-linear PDE (18) is derived here for a general configuration
of linearly independent p and q. Not unexpectedly, such PDE forms a difficult
theoretical problem and consequently a new family of orthogonal illumination
directions pα and qα is introduced in (13). The corresponding system of two
image irradiance Eq. (19) is subsequently analyzed and the resulting ambigu-
ity versus uniqueness question is addressed in Theorem 1. As proved in this
paper, similar ambiguity results are obtainable for pα and qα defined in (13)
(see Theorem 1 and Sect. 1) as compared to those already established in [17,18]
for p = (0, 0,−1) and q = (q1, q2, q3). The experiments reported in Sect. 3 illus-
trate the main results from Sect. 2. A possible extension of this paper includes a
relevant ambiguity analysis performed for the general positions of two linearly
independent light-source directions. Inevitably, any pending argument would rely
on characterizing the multiple solutions to the non-linear PDE defined in (18).
Another worth investigation venue is to complete a global uniqueness-ambiguity
analysis for two image photometric stereo over entire image Ω (see also [17,18]).
The latter should first cover the case of pα and qα defined in (13) and then should
refer to an arbitrary selection of two linearly independent illumination directions.
In particular, an extra attention should be paid here in derivation of analyti-
cal and numerical methods designed to localize possible bifurcation curve(s) Γ .
Some relevant clues concerning this task can be found in [24–28,30]. Finally, a
similar analysis based on real Lambertian images, where pixelization and noise
occur, forms another vital extension topic of this paper. Usually, handling noisy
and digitized image data requires a more robust integration techniques deal-
ing computationally with u recovery phase determined by theoretical formula
(4). Such analytic step is often substituted by the pertinent optimization task
designed to compute numerically the closest discrete integrable vector field - for
more see e.g. [4,5,29].
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