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Abstract. This paper considers the use of clustering techniques to learn the
mobility patterns existing in a cellular network. These patterns are materialized
in a database of prototype trajectories obtained after having observed multiple
trajectories of mobile users. Both K-means and Self-Organizing Maps
(SOM) techniques are assessed. Different applicability areas in the context of
Self-Organizing Networks (SON) for 5G are discussed and, in particular, a
methodology is proposed for predicting the trajectory of a mobile user.
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1 Introduction

The new generation of mobile and wireless systems, known as 5th Generation (5G),
intends to provide solutions to the continuously increasing demand for mobile
broadband services associated with the massive penetration of wireless equipment
while at the same time supporting new use cases associated to customers of new market
segments and vertical industries (e.g., e-health, automotive, energy). As a result, the
vision of the future 5G Radio Access Network (RAN) corresponds to a highly
heterogeneous network with unprecedented requirements in terms of capacity, latency
or data rates, as identified in different fora [1, 2]. To cope with this heterogeneity and
complexity, the RAN planning and optimization processes can benefit at a large extent
from exploiting cognitive capabilities that embrace knowledge and intelligence.

In this direction, legacy systems already started the automation in the planning and
optimization processes through Self-Organizing Network (SON) functionalities [3]. In
5G, considering also the advent of big data technologies [4], it is envisioned that SON
can be further evolved towards a more proactive approach able to exploit the huge
amount of data available by a Mobile Network Operator (MNO) and to incorporate
additional dimensions coming from the characterization of end-user experience and
end-user behavior [5]. Then, SON can be enhanced through Artificial Intelligence (AI)-
based tools, able to smartly process input data from the environment and come up with
knowledge that can be formalized in terms of models and/or structured metrics that
represent the network behavior. This will allow gaining in-depth and detailed knowl-
edge about the whole 5G ecosystem, understanding hidden patterns, data structures and
relationships, and using them for a more efficient network management [6].
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AI-based SON involves three main stages [6]: (i) the acquisition and pre-processing
of input data exploiting the wide variety of available data sources; (ii) the knowledge
discovery that smartly processes the input data to come up with exploitable knowledge
models that represent the network/user behavior; and (iii) the knowledge exploitation
stage that applies the obtained models to drive the decision-making of the SON
functions. This paper focuses on the knowledge discovery stage and, in particular, on
automatically learning the mobility patterns of the mobile users, trying to identify if the
traffic across the cells in a scenario follows specific patterns that can be characterized in
terms of prototype trajectories followed by many users.

Different works of the literature have addressed the analysis of trajectories in
different contexts such as hurricane trajectories, animal movements, public trans-
portation, etc. Various tools have been considered, such as Self-Organizing Maps
(SOM) together with visual analysis [7], density-based clustering [8, 9] or Principal
Component Analysis [10]. In wireless networks, [11] proposed a trajectory prediction
strategy to deal with routing in mesh sensor networks. It is based on clustering similar
trajectories followed by wireless nodes and using them for making predictions of other
nodes. However, the concept of trajectory in [11] is defined by the set of nodes that a
mobile node would associate with to send or receive data along a path, but not by the
geographical locations. Instead, in our work we intend to derive a deeper knowledge
about trajectories based on analyzing the geographical coordinates. In turn, [12, 13]
address the problem of classifying the trajectory followed by a mobile terminal based
on a set of reference trajectories in order to optimize the handover process in LTE.
However, while [12, 13] use a simple method for building the set of reference tra-
jectories, based on monitoring certain users with a given probability and adding their
trajectories to the set, in our approach we propose the use of clustering techniques,
which are more powerful for identifying the most representative trajectories.

In this context, the approach proposed in this paper considers the use of clustering
techniques, namely K-means and SOM, to learn the mobility patterns existing in a
cellular network. These patterns are materialized in a database of prototype trajectories
obtained after having observed multiple trajectories of mobile users. Different appli-
cability areas for these patterns in the context of 5G-SON are discussed and, in par-
ticular, a methodology is proposed for predicting the trajectory of a mobile user.

The rest of the paper is organized as follows. Section 2 describes the proposed
methodology based on clustering tools for learning mobility patterns. Section 3 dis-
cusses the applicability areas and describes the approach for identifying the trajectory
of a mobile user. Proposed approach is evaluated in Sect. 4, while Sect. 5 summarizes
the concluding remarks.

2 Mobility Pattern Knowledge Discovery

Current cellular networks like 4G already include the capability that the User Equip-
ments (UEs) provide geolocation information, including both geographical coordinates
and altitude, as part of the radio measurement reporting processes [14]. Location
information can be obtained from UEs in connected mode, who periodically transmit
measurement reports to the network. Furthermore, thanks to the use of Minimization of
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Drive Tests (MDT) feature [15], UEs in idle mode can log measurements and transmit
them later on when the UE enters in connected mode. These capabilities enable MNOs
to collect large amounts of data that include valuable knowledge about the
spatio-temporal traffic distribution across the cells. This paper proposes a methodology
to analyze this data and identify the existing mobility patterns of the UEs.

The approach for learning mobility patterns is graphically illustrated in Fig. 1. It
operates on a long-term basis after having observed a large amount of connected and
idle mode UEs in different time periods of a certain geographical area and analyzes the
collected location information from these UEs to identify the existence of prototype
trajectories. As shown in Fig. 1 the first step is the pre-processing, which analyzes
consecutive reports for each UE and extracts the geolocation information in order to
build a trajectory for this UE. A trajectory is defined here as the concatenation of N
coordinates at consecutive time instants t1, …, tN. Then, assuming for simplicity
two-dimensional (2D) coordinates (x, y), the trajectory for the j-th UE is given by the
vector of dimension B = 2N denoted as rj = [xj(t1), yj(t1), …, xj(tN), yj(tN)]. The result
of the pre-processing task will be a total of J trajectories rj, j = 1, …, J.

The second step is the clustering, which processes the set of J trajectories by
grouping them in K clusters in a way that trajectories of the same cluster are similar
among them and different from the trajectories of the rest of the clusters. Two alter-
native clustering techniques are considered in this work:

• K-means: This strategy belongs to the family of partitioning methods. It groups the
J input trajectories in K clusters by trying to maximize the similarity between
trajectories of the same cluster and to minimize the similarity between trajectories of
different clusters, using the Euclidean distance as a metric of similarity. The process
can be summarized as follows (see [16] for further details): (a) The algorithm starts
by selecting randomly K out of the J input trajectories. Each of these K trajectories
represents an initial cluster. For each cluster k, the algorithm computes the centroid
sk. At this initial stage, where each cluster contains only one trajectory, the centroid
sk equals the selected trajectory for the k-th cluster. (b) Each of the remaining J − K
trajectories is assigned to the cluster to which it is the most similar, based on
Euclidean distance between the trajectory and the centroid of each cluster |rj − sk|.
Once all the J trajectories have been clustered, the new values of the centroids sk are
recomputed. In particular, the i-th component of sk is the average of the i-th
components of all the trajectories belonging to the k-th cluster. (c) Using the new

Fig. 1. Procedure for learning mobility patterns
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values of the centroids sk, each of the J trajectories rj is reassigned to the cluster
with lowest distance |rj − sk|. The new centroids are recomputed and this step is
iteratively repeated until convergence (i.e. until there are no changes in the obtained
clusters after two consecutive iterations). (d) At the end of the process, each cluster
k = 1, …, K will contain a number of input trajectories Nk and its centroid sk will
be the so-called prototype trajectory that is taken as a representative of all the
trajectories belonging to this cluster.

• Self-Organizing Map (SOM): This clustering strategy relies on a neural network
model with a total of K neurons and where each neuron is characterized by a
B-dimensional weight vector sk. The process can be summarized as follows (see
[17] for details): (a) The weight vectors sk are initialized. This can be done ran-
domly or through the linear initialization method described in [17]. (b) An iterative
unsupervised learning process is used to update the values of the weight vectors sk
of the different neurons according to the Kohonen’s algorithm [17] based on the
input trajectories rj. In essence, at iteration t the algorithm identifies, for each
trajectory rj the winning neuron as the one with the lowest Euclidean distance
|rj − sk|. Then, the algorithm updates the weight vector of this winning neuron k as
sk(t + 1) = sk(t) + a(t)(rj − sk(t)) where a(t) is a scalar-valued adaptation gain that
decreases with successive iterations. A similar update is performed for the weight
vectors of the rest of neurons k′ 6¼ k but in this case the adaptation gain a(t) is
multiplied by a neighborhood function that decreases with the distance between
neurons k′ and k. The process is repeated for a certain number of iterations. (c) At
the end of the process, all the input trajectories that have neuron k as winning
neuron form the k-th cluster. The number of trajectories in the k-th cluster is Nk, and
the prototype trajectory of this cluster is the weight vector sk.

As shown in Fig. 1, the prototype trajectories obtained as a result of the clustering
will be stored in the database. In addition, two statistical indicators are also included for
each cluster to assess how representative this cluster is:

• Percentage of hits (Ak = Nk/J): It is the percentage of input trajectories that belong
to the cluster k. The prototype trajectories of clusters with a high value of Ak will be
more frequent and representative of the scenario.

• Average squared Euclidean distance of the trajectories in k-th cluster (Ek): It is a
metric that captures the degree of similarity between trajectories of the same cluster
with respect to the prototype trajectory sk of the cluster. A high value of Ek reflects a
higher dispersion in the cluster, meaning that the prototype trajectory is less rep-
resentative of the clustered trajectories. It is defined as:

Ek ¼
X

j2Cluster k
rj � sk
�� ��2 ð1Þ
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3 Exploitation of Mobility Patterns

It is envisaged that the identification of prototype trajectories as explained in previous
section can have applicability for different 5G-SON functions.

For example, prototype trajectories can be used in the context of self-planning to
decide appropriate cell locations and antenna settings. For example, if there is a well
identified representative trajectory, a sector of a cell site can be pointed in the direction
of this trajectory. Typically, this can be the case of a cell site providing coverage over a
main street. Despite one could argue that a radio engineer could easily identify such a
situation and take such a common sense decision, the interest of the proposed use case
remains in the fact that SON involves automatization. That is, self-planning and
self-configuration means the capability for the system to automatically identify the
trajectories and propose the adequate values for the parameters of a new cell.

Similarly, the learnt mobility patterns can also have applicability in the self-
optimization of several functions such as handover, load balancing or admission
control. For example, by identifying the trajectory of a UE or group of UEs in relation
to a known prototype trajectory it is possible to anticipate the cell that the UEs are
heading to and configure these functions so as to avoid call droppings and overload
situations. In the following, we focus on proposing a methodology to predict the future
positions of a certain UE based on analyzing the actual locations reported by the UE in
relation to the learnt prototype trajectories.

3.1 Mobility Prediction

The proposed approach is illustrated in Fig. 2 and is executed on an individual UE
basis. The criterion to decide which specific UEs are analyzed is out of the scope of this
paper and it will depend on the specific self-optimization function under consideration.
For example, the optimization of load balancing may predict the trajectory of UEs that
demand a high bit rate in order to anticipate the arrival of these UEs to a cell and take
the appropriate actions to ensure there are sufficient resources for these UEs in the cell.
Similarly, it is also possible to predict the trajectory of high priority UEs to ensure that
they will not experience problems in handovers, etc.

Fig. 2. Exploitation of learnt patterns for predicting the trajectory of a UE
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The process of Fig. 2 starts from the measurement reports provided by the UE
whose trajectory is being predicted. First, pre-processing stage is carried out to extract
the geolocation information and build the trajectory u that is currently being observed
for this UE. The trajectory u is a vector of dimension C = 2M composed by the
concatenation of M pairs of coordinates followed by the UE at consecutive time
instants u = [x(t1), y(t1), …, x(tM), y(tM)]. Without loss of generality, let us consider
that the dimension of u is lower than the number of elements of the prototype tra-
jectories sk (i.e. C � B). This reflects that, in case that the UE was following a
prototype trajectory, the actual location of the UE is somewhere within the prototype
trajectory.

The mobility prediction process of Fig. 2 intends to determine the likelihood that
the UE is following one of the learnt prototype trajectories. This is done by assessing
the similarity between the trajectory u followed by the UE and the prototype trajec-
tories sk according to the Euclidean distance. Given that C � B, all the possible
portions of C consecutive elements of the vectors sk (k = 1, …, K) need to be con-
sidered when assessing this similarity. The a-th portion of sk is then defined as the
vector [sk(1 + a),…, sk(C + a)] with a = 0, …, B − C, where sk(i) denotes the i-th
component of sk. Then, the squared Euclidean distance between the a-th portion of sk
and trajectory u is computed as:

du;k að Þ ¼
XC

c¼1
u cð Þ � skðcþ aÞ½ �2 with a ¼ 0; . . .;B� C ð2Þ

Then, the similarity between u and sk is computed as the minimum Euclidean
distance between u and the possible portions of the prototype trajectory sk, that is:

mk ¼ min
a

du;k að Þ ð3Þ

A low value of mk indicates that the trajectory u is very similar to some portion of
vector sk. Then, the likelihood Lk that the UE is following the prototype trajectory sk is
defined here as:

Lk ¼ 1=mkPK
k¼1 1=mkð Þ ð4Þ

A high value of Lk reflects that the UE is following a trajectory very similar to a
portion of sk. Therefore, sk provides information about the positions that the UE may
likely follow in the future.

4 Results

This section provides some results to illustrate the performance of the proposed
approach. The considered scenario is shown in Fig. 3 and represents an urban area in
the intersection between two main streets. The mobility of multiple UEs has been
considered including a wide variety of situations as shown Fig. 3a. For example, some
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UEs move straight along a street, others move straight and turn right, left or move back.
For each kind of trajectory, 100 realizations have been generated by considering UE
trajectories that are not perfectly straight but they have lateral movements simulating
e.g. cars changing the lane in the road. It is assumed that the distance between two
consecutive positions of the trajectory is a random value (simulating that the user speed
may be variable). Moreover, 100 realizations of users that move a short distance and
stop at a particular position (represented by black arrows in Fig. 3a) have been also
generated. Finally, a group of 100 static users (represented by black dots in Fig. 3a)
have also been placed randomly in each of the four corners of the scenario. After the
preprocessing of the UE measurements, there are a total of J = 2100 trajectories. Each
trajectory rj consists on N = 40 positions.

4.1 Clustering Process

The K-means and SOM clustering techniques have been implemented by means of
RapidMiner Studio [18]. The K-means algorithm is configured with 1000 runs and a
maximum of 100 iterations for each run (i.e. the process explained in Sect. 2 is
repeated 1000 times with different initial random selections, and the best result among
all runs is kept). In turn, a SOM with one dimension is configured with 10000 itera-
tions, initial adaptation rate equal to 0.1 and final adaptation rate 0.01. The neigh-
borhood function is defined by an initial adaptation radius of 2 and a final adaptation
radius equal to 0.01.

First, the impact of the number of clusters K has been analyzed for both K-means
and SOM techniques. The Davies-Bouldin index [19] is considered as a relevant metric
to assess the quality of the clustering process. This index takes into account how similar
are all the trajectories that belong to the same cluster and how different are the prototype
trajectories of the different clusters. Low values of the Davies-Bouldin index reflect a
better quality of the clustering process. Figure 3b presents the Davies-Bouldin index as a
function of the number of clusters for both K-means and SOM methodologies. As

(a) (b)

Fig. 3. (a) Illustration of the considered scenario. Distances are normalized between 0 and 1.
(b) Davies-Bouldin index for different numbers of clusters.
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shown, for the considered use case, the minimum value of the Davies-Bouldin index is
observed with K = 20 clusters for both methodologies. For this case, Fig. 4 illustrates
the prototype trajectories sk obtained by the K-means methodology. The same proto-
types are obtained by the SOMmethodology with K = 20. The red point marked in each
prototype trajectory in Fig. 4 indicates the initial position of the trajectory while the
black point indicates its final position (e.g. the prototype trajectory 1 represents a user
moving from the left to the right while the prototype trajectory 2 represents a user
moving from the right to the left). Note that some shorter prototype trajectories represent
users who move on a specific direction and then go back (e.g. prototype trajectory 13
represents to users who move from the left to the right in the scenario, and then go back
from the right to the left). Other prototype trajectories, such as prototype 17, represent
the centroid of some static users located around this area.

Figure 5a illustrates the percentage of hits Ak for each cluster with both K-means
and SOM, while Fig. 5b represents the average squared Euclidean distance Ek. All the
clusters corresponding to long trajectories (i.e. clusters 1 to 12 of Fig. 4) exhibit low
Ek. This indicates that these trajectories are well-clustered and their corresponding
prototype trajectories are good representatives of the cluster. In turn, clusters 13, 14, 15
and 16 of Fig. 4 include users that move straight and go back, users that move short
distances and even some static users. As a consequence, higher percentage of hits Ak

and higher values of Ek are observed. Finally, clusters 17, 18, 19 and 20 of Fig. 4 are
formed by static users scattered around the four corners of the scenario. These are

Fig. 4. Prototype trajectories obtained with K-means (K = 20). Horizontal and vertical axes
represent normalized distances between 0 and 1.
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characterized by high values of Ek, meaning that some static users of these clusters may
be located at a relatively high distance of the centroid. A very similar clustering is done
by both K-means and SOM methodologies as shown in Fig. 5a and b.

4.2 Mobility Prediction

This section presents several examples to illustrate the behavior of proposed mobility
prediction approach. Figure 6 presents the trajectories followed by four different UEs.
UE A has a trajectory that consists of 20 positions representing a movement from the
left of the scenario to the right. UE B has a trajectory of 20 positions moving straight
and then turning in the intersection. UE C has a shorter trajectory of 10 positions while
UE D is static and contains 10 samples of the same position.

Figure 7 shows the likelihood Lk that each of the four UEs is following each
prototype trajectory. As shown, the likelihood that UE A is following prototype tra-
jectory 1 is almost 100 %. As seen in Fig. 5, this prototype trajectory corresponds to
the users that move from the left to the right. Similarly, for UE B there is also a very
high likelihood that it is following prototype trajectory 5. For UE C, the likelihood L1,
L5 and L6 are similar, because, with the trajectory followed by UE C so far, it may
correspond to either trajectories 1, 5 or 6. Finally, trajectory D is not similar to any of

(a) (b)

Fig. 5. (a) Percentage of hits Ak for the different clusters; (b) Average square Euclidean distance
to the centroid Ek for the different clusters.

Fig. 6. Example of UEs’ trajectories. Horizontal and vertical axes represent normalized
distances between 0 and 1.
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the prototypes obtained in the clustering process (see Fig. 4). For this reason, the
prediction process provides a very low likelihood for all the clusters.

5 Concluding Remarks

The paper has proposed a methodology for learning mobility patterns in wireless
networks based on clustering techniques such as K-means and SOM. Learnt trajectories
present applicability in different areas, such as self-planning and self-optimization. In
this respect, the paper has proposed a strategy for predicting the mobility of specific
users based on the obtained prototype trajectories. Results reflect that both K-means
and SOM techniques are able to properly identify the different trajectories existing in
the considered scenario.
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