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Abstract. The number of species of macro organisms on the planet is
estimated at about 10 million. This staggering diversity and the need
to better understand it led inevitably to the development of classifica-
tion schemes called biological taxonomies. Unfortunately, in addition to
this enormous diversity, the traditional identification and classification
workflows are both slow and error-prone; classification expertise is in
the hands of a small number of expert taxonomists; and to make things
worse, the number of taxonomists has steadily declined in recent years.
Automated identification of organisms has therefore become not just a
long time desire but a need to better understand, use, and save biodiver-
sity. This paper presents a survey of recent efforts to use computer vision
and machine learning techniques to identify organisms. It focuses on the
use of leaf images to identify plant species. In addition, it presents the
main technical and scientific challenges as well as the opportunities for
herbaria and cybertaxonomists to take a quantum leap towards identify-
ing biodiversity efficiently and empowering the general public by putting
in their hands automated identification tools.
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1 Introduction

The word “biodiversity” is a synonym of “biological diversity”. The Convention
on Biological Diversity (CBD) defines biodiversity as: “the variability among liv-
ing organisms from all sources including, inter alia, terrestrial, marine and other
aquatic ecosystems and the ecological complexes of which they are a part; this
includes diversity within species, between species, and of ecosystems.”1 There-
fore, there are three levels of biodiversity: intra-specific (genetic), inter-specific,

1 https://www.cbd.int/convention/articles/default.shtml?a=cbd-02.
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and ecosystemic. Even though a full understanding of all three levels is indispens-
able to guide biodiversity conservation efforts, this paper focuses on inter-specific
biodiversity and some associated taxonomic challenges.

The CBD Strategic Plan 2011–2020 has explicitly stated twenty ambitious
targets known as the Aichi Targets2. Aichi Target 19 specifically proposes that
“knowledge, the science base and technologies relating to biodiversity, its values,
functioning, status and trends, and the consequences of its loss, are improved,
widely shared and transferred, and applied”; but in fact biodiversity informatics
will be fundamental to the achievement of all of the Aichi Targets.

It is estimated that about 10 million species of macro organisms inhabit the
earth. This vast inter-specific biodiversity and the need to better understand
it led to the development of classification schemes called biological taxonomies.
Even since Aristotle’s times, when only approximately 500 species of animals
had been identified, Aristotle himself established a classification method. In the
XVIII century, Carl Linnaeus “father of modern taxonomy” formalized a system
of naming organisms called binomial nomenclature which is used to this day.

Unfortunately, in addition to the enormous biodiversity of the earth, current
identification and classification workflows are both slow and error-prone. Fur-
thermore, classification expertise is in the hands of a small, decreasing number
of expert taxonomists. This has been identified as a serious problem and is known
as the “global taxonomic impediment”3. Automated identification of organisms
has therefore become not just a dream among systematists for centuries [1] but
a need to better understand, use, and save biodiversity.

Even though the number of plant species (about 400,000) is considerably
smaller than the number of animal species, taxonomic work on them is still a
monumental task. However, plant species identification is particularly important
for biodiversity conservation. It is critical to conduct studies of biodiversity rich-
ness of a region, monitoring of populations of endangered plants and animals,
climate change impact on forest coverage, bioliteracy, payment for environmental
services, and weed control, among many other major challenges.

The rest of this paper is organized as follows: Sect. 2 summarizes progress
made to automate the identification of taxa in systematics. It starts with a
description of the traditional dichotomous keys approach, and then presents
interactive keys, morphometric approaches, briefly describes DNA barcoding,
and concludes with recent approaches based on machine learning and computer
vision techniques. Section 3 summarizes the state of the art of leaf-based plant
species identification using computer vision. Finally, Sect. 4 concludes with cur-
rent challenges and opportunities.

2 Automated Taxon Identification in Systematics

Traditionally, systematists have not relied on quantitative data alone to identify
taxa. They prefer the visual inspection of morphology, the (mostly) qualitative
2 https://www.cbd.int/sp/targets/.
3 https://www.cbd.int/gti/.
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assessment of characters, and the comparison of these to reference specimens
and/or images. While this process works, it is not quick, efficient or reliable [1].
The following subsections describe some attempts to automate or at least define
algorithms that can be followed either manually (e.g., dichotomous keys and
morphometrics) or translated into software that fully or partially automates the
taxa identification process. In some cases, the resulting software guides a human
user (e.g., interactive keys) who actually makes the decisions. In other cases,
it fully automates the taxa identification process by extracting additional data
from specimens (e.g., molecular and chemical data) or multimedia information
such as digital images and sound.

2.1 Single-Access Keys

In biology, an identification key is a document or software that takes the form
of a decision tree that offers a fixed sequence of identification steps. If each step
has only two alternatives, the key is said to be dichotomous, otherwise it is
polytomous. These keys are possibly the oldest attempt to designing algorithms
for organismal identification long before computers were available. They aim at
reducing the rate of errors, making explicit and objective the rules to be followed,
and selecting optimal or semi-optimal sequences of questions.

This approach has several drawbacks even when those algorithms have
been programmed. Among them are the difficulty to accommodate new species
descriptions and the assumption that a user has all the information available to
proceed from the top question (the single-access key) to the following levels. The
latter means that when only partial information is available about the organism
(e.g., only leaves or flowers of a plant), a user might not be able to go past the
very first question.

2.2 Multiple-access Keys

These are decision trees that have multiple starting points that allow users to
follow different paths, possibly because he/she has partial morphological infor-
mation. In its computerized version, they are also called interactive keys. They
start with a full domain of candidates (e.g., all plants from a country), and pro-
ceed to gradually discard candidates as the user proceeds answering questions
in an arbitrary order. The final result could be a unitary set of candidates (full
identification achieved), an empty set (a new species or an incomplete key), or
a set with cardinality greater than 1 (some questions remain to be answered).

2.3 Morphometric Approaches

Morphometrics is the study of shape variation and its co-variation with other
variables [2]. Three general approaches are usually distinguished: traditional
morphometrics, landmark-based morphometrics and outline-based morphomet-
rics. Traditional morphometrics is the application of multivariate statistical
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analysis to sets of quantitative variables such as length, width, and height. Geo-
metric morphometrics emphasizes methods that capture the geometry of the
morphological structures of interest and preserve this information throughout
the analyses. Outline-based morphometrics focuses on shape variation along the
contour of an object. These three approaches are not necessarily mutually exclu-
sive. [3] provides an excellent survey on this subject.

2.4 DNA Barcoding

DNA barcoding is a taxonomic method that uses a short genetic marker in
an organism’s DNA to identify it as belonging to a particular species [4]. The
gene region that is being used as the standard barcode for almost all animal
groups is a 648 base-pair region in the mitochondrial cytochrome c oxidase 1
gene (“CO1”). For plants, two gene regions in the chloroplast, matK and rbcL,
have been approved as the barcode region. DNA barcoding has met with a
strong reaction from scientists, especially systematists, who either express their
enthusiastic support or vehement opposition [5,6]. The current trend appears to
be that DNA barcoding should be used alongside traditional taxonomic tools
and alternative forms of molecular systematics so that problem cases can be
identified and errors detected.

2.5 Crowd Sourcing (Collective Intelligence)

Crowd sourcing approaches to species identification is neither a quantitative
nor an automated method. However, it is included it in this survey because it
uses computer technology to gather georeferenced multimedia information (e.g.,
images) and a community of citizen scientists and biologists who jointly tackle
the challenge of identifying an organism based on an image, collective knowl-
edge, and interactive keys or other forms of computer-based tools. Besides, it
is a low-cost high impact approach to empower and engage the general public
in cibertaxonomy and biodiversity conservation. iNaturalist4 and Pl@ntNET5

[7] are two excellent examples of this approach. On the negative side, high lev-
els of quality control are imperative because the community involved does not
necessarily comprise domain experts.

2.6 Computer Vision and Machine Learning

In spite of enormous progress in the application of computer vision algorithms
in other areas such as medical imaging, OCR, and biometrics [8], only recently
have they been applied to identify taxa. Images of plant leaves and insect wings
have been particularly attractive because they are flat and their morphology is
used in most identification keys. Thus, in the last decade, research in computer
vision has produced algorithms to help botanists and non-experts classify plants
4 http://www.inaturalist.org.
5 http://www.plantnet-project.org/page:projet?langue=en.
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based on images of their leaves [9–13]. However only a few studies have resulted
in efficient systems that are used by the general public, such as LeafSnap [14].

Computer vision and machine learning are two highly related artificial intel-
ligence fields. In a supervised learning scenario, the general approach for organ-
ismal identification using computer vision comprises two general steps. First,
digital images of identified species are fed to an algorithm that cleans them,
segments them, and extracts relevant features. As a result, source images are
typically transformed from the bitmap domain to a more tractable domain (e.g.,
histograms) and stored in a training dataset D. The second step consists of
using the training dataset D to train an algorithm A. Unsupervised learning
(e.g., cluster analysis) can also be used when a dataset of images is available but
the associated species have not been identified.

Once algorithm A has been trained and tested, it is ready to try to identify
species based on images of organisms. In the typical scenario, algorithm A has
two inputs, namely, an image I of the unidentified organism and the dataset D.
Algorithm A applies to image I the same filters used to create the dataset D and
outputs a ranking of k candidate species. The larger the number k is, the better
the chance of including the correct identification in the ranking is. However,
most users would expect k to be a small value to be useful. Details on the use
of computer vision and machine learning to identify plants based on images of
leaves are presented in the following section.

3 Automated Leaf-Based Plant Species Identification

Several surveys regarding leaf-based identification of plants have been published
in the past. [15] covers most classification methods such as k Nearest Neight-
bors (kNN), Probabilistic Neural Network (PNN), and Support Vector Machines
(SVM), as well as their accuracy and precision. In [16], Metre and Ghorpade sur-
vey different texture-only techniques, provide a comparison schema for them, and
pinpoint how important it is to create a centralized dataset of leaf images.

Most researchers agree on a general workflow to identify species based on
images of their leaves [9–13]. The first step is data acquisition. Acquiring leaf
images is a time consuming task. Because of the lack of standards and cen-
tralized repositories, researchers have typically generated isolated datasets for
their projects. Segmentation of the leaf is then executed to explicitly separate
leaf from non-leaf pixels. Afterwards, different techniques are used to extract
features based on venation [17], curvature [14] and morphometrics [11]. Finally,
machine learning techniques are used to generate the trained algorithm [9–13].

3.1 Data Acquisition

Existing leaf recognition datasets use images of individual leaves on uniformly
colored backgrounds for easier leaf segmentation. There are several datasets pub-
licly available but, to our knowledge, there is not yet a centralized dataset which
can grow as researchers and citizen scientists add more images and data. The
following are examples of datasets from different projects:
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– The Flavia Dataset [12] encompasses 32 species and a total of 3,621 fresh leaf
images on white backgrounds. Leaves were collected in Nanking, China.

– Kumar et al. [14] created a dataset for 184 tree species from Northeastern
USA that includes 23,916 images of fresh leaves with uniform backgrounds. It
is used by the LeafSnap mobile app.

– Mata-Montero and Carranza-Rojas [18] from the Costa Rica Institute of Tech-
nology created a dataset that comprises 2,345 noisy and 1,468 clean leaf images
from 67 Costa Rican tree species, all with uniform background.

– ImageCLEF is a leaf classification competition that has created its own dataset
[7]. It currently includes 1,000 plant species from West Europe. It has more
than 100,000 images of leaves, as well as flowers, fruits, stem and the whole
plant pictures. It comprises both images with white background and images
taken directly in the field with complex backgrounds and noise [7].

3.2 Leaf Segmentation

Leaf segmentation can act on images with uniform backgrounds, such as a white
piece of paper, or complex backgrounds. The former is simpler although arti-
facts such as shadows and light gradients still generate some problems. Most
researchers use uniformbackgrounds to simplify this phase. In [14,18]Expectation-
Maximization (EM) is used to cluster pixels. This produces fairly good segmen-
tation but shadows tend to generate false positives. Similarly, in [19] the authors
study how a semi-controlled light environment affects clustering algorithms. They
perform color clustering and then apply Grab-Cut to find the global optimal seg-
mentation solution.

Very few studies have tackled the problem of segmenting leaves with complex
backgrounds [20,21]. This feature is highly desirable for at least two types of
leaves: leaves of tall trees from which it is difficult to take a sample and then
photograph it with a uniform background, and leaves of plants that have been
mounted on herbarium sheets. In the former case, it would be ideal to zoom-
in with the camera and take a picture of the leaf in its tree. In the latter, the
background may not be as complex as a natural setting but overlapping of leaves
and other plant elements in the herbarium sheet makes the automated extraction
of leaves and their subsequent segmentation very challenging.

We are not aware of any research that aims at generating leaf image datasets
from herbarium sheets. The benefit of doing this is twofold. First of all, herbaria
all over the world have invested millions of dollars over long periods of time to
collect samples of plants. Rather than going again to the field to take pictures
or collect more samples, it would be considerably less expensive to use leaves of
plants that have already been identified and conserved in herbaria. Secondly, it
would help demonstrate the value of herbaria collections.

3.3 Feature Extraction and Identification

Segmentation of the input image I produces a segmented image I ′ to which
feature extraction is applied. This subsection briefly surveys approaches that
use curvature, texture, venation, leaf morphometrics, or combinations of them.
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Curvature. In [14] Kumar et al. create what they call a Histogram of Curvature
over Scale (HCoS), which consists on measuring the leaf area and arc length of
the intersection of the leaf and disks of radius r, where 1 <= r <= 25 pixels, and
the disks are centered at every leaf contours pixel of the leaf in I ′. All calculations
are then added into a unique histogram that describes the contour of the leaf.
Using kNN and histogram intersection, a list of the k species whose leaves more
closely match the leaf in I is presented to the user. Another method applied
on both simple and complex leaves is the one described in [22]. Their method
captures both global and local shape features and uses them separately during
identification. This allows to discriminate leaves with similar shape but different
margin patterns, and viceversa. Similarly to [14], several scales are explored by
convolving the contour against a Gaussian filter with different values σ. This is
particularly useful for serration of the margin.

Texture. Local Binary Patterns (LBP) descriptors are used in [23] to iden-
tify medicinal and house plants from Indonesia. Different LBP descriptors were
extracted from different sample points and radius, and concatenated into his-
tograms. Then a four layer PNN classifier was used. For complex background
images the achieved precision was 77 % and for uniform background images
86.67 %. In [24] Speeded Up Robust Features (SURF) features were used to
develop an Android application for leaf recognition. The reported precision was
95.94 % on the Flavia dataset [12]. In [10] authors identify plants based only on a
portion of the leaf, allowing botanists to identify damaged plants. The reported
precision is 98.7 % when using Artificial Neural Network (ANN) for classification
on their own small dataset.

Venation. Very few studies have used venation extraction as the basis for taxa
identification. Venation extraction is not trivial, since veins are often merged
with other leaf features. Some authors have simplified the task by using spe-
cial equipment or treatments that render images with more clearly identified
veins [25,26]. However, this defeats the goal of having users get an automated
identification for specimens that they have photographed with ordinary digital
cameras.

In [25], vein pixels are extracted from laser scanned images in 3D. The laser
scans a 3D point cloud in which veins are 3D-convex. A curvature threshold
is then used to obtain potential vein pixels. Finally a squared linear fitting is
applied to approximate the vein contour lines. In [17] researchers developed a
tool to help botanists extract veins of leaves with minimum human interaction.
They used a patch-based approach where a set of linear functions are learned
from patches of images containing veins using Independent Component Analysis
(ICA). Then these learned functions are used as a pattern map for vein detection.

Leaf Morphometrics. Leaves display very rich morphology. Traditional leaf
measurements include aspect ratio, leaf area, rectangularity, circularity, convex-
ity, and solidity, among others [11]. Additionally, color moments for gray scale
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intensities such as mean, variance, kurtosis, skewness have also been used [11].
Traditional, landmark-based, and outline-based morphometrics have been used
both separately and in combined form.

Multimodal Approaches. In [9], a multimodal system composed of 38 mor-
phological features and a Principal Component Analysis (PCA) approach for
texture were used. The PCA training phase took all the dataset pictures and
put them in a matrix, where a small number of characteristic features called
eigenpictures were generated. Then, each image was represented as a linear com-
bination of these eigenpictures. Their reported precision on the Flavia dataset
[12] for the morphological features was 91.9 %, for the PCA algorithm 85.4 %,
and for both combined 89.2 %.

In [13] a combination of shape, texture and color was used to recognize
Indonesian medicinal plants. As a classifier they used PNN with a reported
precision of 72.16 % over 51 medicinal species, with a total of 2,448 images. The
authors created a mobile app which runs on Android OS called Medleaf [13].
Their best precisions were achieved by using Local Binary Pattern Variance
(LBPV) as a feature base and not morphological features.

In [18] texture extraction of the whole leaf using LBP was compared with the
HCoS curvature method developed by [14]. In the experiments it was proved that
texture is more resilient to noise on leaf images. Better accuracy was achieved
by assigning a small importance factor to curvature (10 %) and a larger one
to texture (90 %). This result also matches results of [23] with regard to the
usefulness of LBP for identification based on images of damaged leaves.

Deep Learning Approaches. Deep learning has become a huge success in
computer vision research [27]. In [28] a Convolutional Neural Networks (CNN)
was applied to a dataset with 44 species. The CNN was not coded with lay-
ers for specific features (e.g., curvature or texture), but the authors could infer
that a layer was related to shape/curvature and another one to patterns sim-
ilar to texture/venation. With this interpretation, the authors conclude that
shape/curvature is not as discriminating as texture/venation, which is consis-
tent with [18].

4 Challenges and Opportunities

Biodiversity conservation presents several monumental challenges. At the polit-
ical and management level, it requires information and a deep understanding
of living nature. However, about 80 % of the organisms on the planet do not
even have a name. The scientific task of naming and classifying those organ-
isms is gigantic, not only because of the large number of species to identify and
describe, but also because it is tedious, slow, and error-prone. The global taxo-
nomic impediment adds to the complexity of these challenges. Finally, access to
this knowledge is limited by the scientific and non-digital nature of large amounts
of literature.



34 E. Mata-Montero and J. Carranza-Rojas

Fortunately, computer vision and machine learning techniques that have been
very effective in other realms are now being used to identify organisms, in par-
ticular plants, with high levels of accuracy (90 % or more). This could have an
important impact in concrete conservation actions such as control of trade of
endangered species and the execution of rapid biodiversity inventories. The fol-
lowing paragraphs, summarize some opportunities we currently have to cope
with the above mentioned challenges.

Building a Global Dataset: Global biodiversity informatics initiatives such as
GBIF6, EOL7, and BHL8, have successfully built large global databases of bio-
diversity information that is freely available on the web. GBIF currently provides
more than 600 million specimen-level records, EOL over a million species level
descriptions, and BHL more than 50 million pages of literature. An analogous
dataset of digital images of plant elements (e.g., leaves) does not exist. However,
there are several opportunities that should be taken. First of all, digital cam-
eras are now very inexpensive and powerful. Secondly, even though data sharing
protocols and standards need to be in place, organizations such as TDWG9

are devoted to precisely this endeavor. Finally, crowd sourcing offers now excel-
lent opportunities to both, generate large repositories of information, and raise
awareness of the general public through citizen science projects. iNaturalist and
Pl@ntNET [7] have been very successful and deserve being emulated. The Plant-
CLEF dataset already demonstrates that this can be done at the European level.

Work with Herbaria: Herbaria hold treasures of information that should be criti-
cal to scale up the size and impact of a global dataset of digital images of elements
of plants. Herbaria maintain large collections of plants that have been carefully
mounted on sheets, could be digitized, and whose elements (e.g., leaves) could be
extracted to feed a global dataset. Because herbaria sheets contain juxtaposed
leaves, flowers, and other plant elements, research on detection and extraction
of leaves needs to be further developed. In addition, more research is needed
to deal with noisy images, complex backgrounds, damage detection and digital
image repair, along with leaf identifications based on portions of the leaf (in case
it is damaged). Landmark-based morphometrics research should help with the
latter. Finally, as a very important herbaria financial sustainability side effect,
herbaria around the world would have more arguments to demonstrate the value
and impact of maintaining and investing in their collections. However, it is very
critical for herbaria to supplement their collections with digital images through
crowd sourcing and changes in their traditional workflows.

Deep Learning: Deep Learning, particularly using CNN, is a very hot topic in
computer vision. The exciting results obtained in events such as ImageNet [27]
have generated a lot of expectation. As more data and computational power
are now available, this technique has become the most widely used, without

6 http://www.gbif.org.
7 http://www.eol.org.
8 http://www.bhl.org.
9 http://www.tdwg.org.
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substantial algorithmic changes since its inception. Instead of following a gradual
path that aims at using images of elements of an organism first (e.g., leaves
or flowers of a plant), and then pictures of the whole organism, CNN tackles
directly the challenge of identifying organisms by using pictures of the whole
or parts of the organism. However, this approach has at least two important
limitations. First, it tends to work better with very large sets of images [29].
Secondly, it lacks the explanatory power of other approaches such as landmark-
based morphometrics. Nevertheless, as global data sets are developed, it is just
a matter of time to overcome the former. Additionally, research work is already
under way to overcome the latter [28].
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