
7Modeling Uncertainty

Decision-makers are increasingly willing to
consider the uncertainty associated with model
predictions of the economic, environmental, or
social impacts associated with possible decisions.
Information on uncertainty does not make
decision-making easier, but to ignore it is to
ignore reality. Incorporating what is known about
the uncertainty of input parameters and variables
used in optimization and simulation models can
help in quantifying the uncertainty in the result-
ing model output. This chapter outlines and
illustrates some approaches for doing this.

7.1 Introduction

Water resource planners and managers work in
an environment of change and uncertainty. Water
supplies are always uncertain, if not in the short
term at least in the long term. Water demands and
the multiple purposes and objectives water serve
tend to change over time, and these changes
cannot always be predicted. Many of the
parameters of models used to predict the multiple
hydrologic, economic, environmental, ecologi-
cal, and social impacts are also uncertain. Indeed,
models used to predict these impacts are, at least
in part, based on many uncertain assumptions.
This uncertainty associated with planning and
managing cannot be avoided (WWAP 2012).

To the extent that probabilities can be inclu-
ded where appropriate in models and their inputs
at least some of the uncertainty of their outputs

can be identified and quantified. These models
are called probabilistic or stochastic models.
Most probabilistic models provide a range of
possible values for each output variable along
with their probabilities. Stochastic models
attempt to model the random processes that occur
over time, and provide alternative time series of
outputs along with their probabilities. In other
cases sensitivity analyses (solving models under
different assumptions) can be carried out to
estimate the impact of any uncertainty on the
decisions being considered. In some situations
uncertainty may not significantly impact the
decisions that should be made. In other situations
it will. Sensitivity analyses can help guide efforts
needed to reduce that uncertainty. Model sensi-
tivity and uncertainty analysis are discussed in
more detail in the next chapter.

This chapter is divided into two main sections.
The first section introduces a number of
approaches to probabilistic optimization and
simulation modeling. Probabilistic models will
be developed and applied to some of the same
water resources management problems used to
illustrate deterministic modeling in previous
chapters. These modeling methods could be, and
have been, applied to numerous other water
resources planning and management problems as
well. The purpose here, however, is simply to
illustrate some of these commonly used approa-
ches to probabilistic modeling and show how
they can be applied to water resources system
design and operating problems.
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7.2 Generating Values from Known
Probability Distributions

As discussed in the previous chapter, variables
whose values cannot be predicted with certainty
are called random variables. Often inputs to
hydrologic simulation models are observed or
synthetically generated values of rainfall or
streamflow. Other examples of such random
variables could be evaporation losses, point and
nonpoint source wastewater discharges, demands
for water, spot prices for energy that may impact
the amount of hydropower to produce, etc.
Random processes are considered stationary if
the statistical attributes of the process are not
changing. If there is no serial correlation in the
spatial or temporal sequence of observed values,
then such stationary random processes can be
characterized by single probability distributions.
These probability distributions are often based on
past observations of the values of the random
variable. These past observations or measure-
ments are used either to define the probability
distribution itself or to estimate parameter values
of an assumed type of distribution.

Let R be a random variable whose probability
density distribution, fR(r), is as shown in Fig. 7.1.
This distribution indicates the probability or
likelihood of an observed value of the random
variable R being between any two values of r on
the horizontal axis. For example, the probability
of an observed value of R being between 0 and r*
is p*, the shaded area to the left of r* in Fig. 7.1.
The entire area under a probability density dis-
tribution, as shown in Fig. 7.1, is 1.

Integrating this function over the entire range
of r, converts the density function to a cumula-
tive distribution function, FR(r*), ranging from 0
to 1, as illustrated in Fig. 7.2.

Zr�
0

fRðrÞdr ¼ Prðr� �RÞ ¼ FR r�ð Þ ð7:1Þ

Given any value of p* from 0 to 1, one can
find its corresponding random variable value r*
from the inverse of the cumulative distribution
function.

F�1
R p�ð Þ ¼ r� ð7:2Þ

From the distribution shown in Fig. 7.1 it is
obvious that the likelihood of different values of
the random variable varies; values in the vicinity
of r* are much more likely to occur than are
values at the tails of the distribution. A uniform
distribution is one that looks like a rectangle; any
value of the random variable between its lower
and upper limits is equally likely. Using Eq. 7.2,
together with a series of uniformly distributed
(all equally likely) values of p* over the range
from 0 to 1 (i.e., along the vertical axis of
Fig. 7.2), a corresponding series of random
variable values, r*, associated with any distri-
bution can be generated. These random variable
values will have a cumulative distribution as
shown in Fig. 7.2, and hence a density distribu-
tion as shown in Fig. 7.1, regardless of the
types or shapes of those distributions. The mean
and variance of the distributions will be
maintained.

The mean and variance of continuous distri-
butions are

Z
rfRðrÞdr ¼ E½R� ð7:3Þ

Z
r�E½R�ð Þ2fRðrÞdr ¼ Var R½ � ð7:4Þ

The mean, variance and serial correlations of
discrete distributions having possible values
denoted by ri with probabilities pi are

Fig. 7.1 Probability density distribution of a random
variableR. The probability that r is less than or equal r* is p*
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X
i

ripi ¼ E½R� ð7:5Þ

X
i

ri�E R½ �ð Þ2pi ¼ Var[R� ð7:6Þ

If a time series of T random variable values, rt,
generated from the distribution of the same sta-
tionary random variable, R, exist, then the serial
or autocorrelations of rt and rt+k in this time
series for any positive integer k are

qRðkÞ ¼
X

t¼1;T�k

ðrt�E½R�Þðrtþ k�E½R�Þ½ �=
X
t¼1;T

rt�E½R�ð Þ2

ð7:7Þ

The probability density and corresponding
cumulative probability distributions can be of any
shape, not just those named distributions com-
monly found in probability and statistics books.

The process of generating a time sequence
t = 1, 2, … of inputs, rt, from the probability
distribution of a random variable R where the lag
1 serial correlation, ρR(1) = ρ, is to be preserved
is a little more complex. The expected value of
the random variable Rt+1 depends on the
observed value, rt, of the random variable Rt,

together with the mean of the distribution, E[R],
and the correlation coefficient ρ. If there is no
correlation (ρ is 0), the expected value of Rt+1 is
the mean of the population, E[R]. If there is
perfect correlation (ρ is 1), the expected value of
Rt+1 is rt. In general, the expected value of Rt+1

given an observed value rt of Rt is

E Rtþ 1jRt ¼ rt½ � ¼ E½R� þ qðrt�E½R�Þ: ð7:8Þ

The variance of the random variable Rt+1

depends on the variance of the distribution, Var
[R], and the lag one correlation coefficient, ρ.

Var Rtþ 1jRt ¼ rt½ � ¼ Var½R�ð1� q2Þ: ð7:9Þ

If there is perfect correlation (ρ = 1) the pro-
cess is deterministic and there is no variance. The
value for rt+1 is rt. If there is no correlation, i.e.,
serial correlation does not exist (ρ = 0), the
generated value for rt+1 is its mean, E[R], plus
some randomly generated deviation from a nor-
mal distribution having a mean of 0 and a stan-
dard deviation of 1, denoted as N(0, 1). In this
case the value rt+1 is not dependent on rt.

When the serial correlation is more than 0 but
less than 1, then both the correlation and the
standard deviation (the square root of the

Fig. 7.2 Cumulative
distribution function of a
random variable R showing
the probability of any
observed random value of
R being less than or equal
to a given value r. The
probability of an observed
value of R being less than
or equal to r* is p*
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variance) influence the value of rt+1. A sequence
of random variable values from a multivariate
normal distribution that preserves the mean, E
[R], overall variance, Var[R], and lag one corre-
lation ρ, can be obtained from Eq. 7.10.

rtþ 1 ¼ E½R� þ qðrt � E½R�Þ þNð0; 1Þrð1� q2Þ1=2:
ð7:10Þ

The term N(0, 1) in Eq. 7.10 is a random
number generated from a normal distribution
having a mean of 0 and a variance of 1. The
process involves selecting a random number
from a uniform distribution ranging from 0 to 1,
and using it in Eq. 7.2 for a N(0, 1) distribution
to obtain a value of random number for use in
Eq. 7.10. This positive or negative number is
substituted for the term N(0, 1) in Eq. 7.10 to
obtain a value rt+1. This is shown on the graph in
Fig. 7.3.

Simulation models that have random inputs,
such as a series of rt values, will generally pro-
duce random outputs. After many simulations,
the probability distributions of each random
output variable value can be defined. These then
can be used to estimate reliabilities and other
statistical characteristics of those output distri-
butions. This process of generating multiple
random inputs for multiple simulations to obtain
multiple random outputs is called Monte Carlo
simulation.

7.3 Monte Carlo Simulation

To illustrate Monte Carlo simulation, consider
the allocation problem involving three firms,
each of which receives a benefit, Bi(xit), from the
amount of water, xit, allocated to it in each period
t. This situation is shown in Fig. 7.4. Monte
Carlo simulation can be used to find the proba-
bility distribution of the benefits to each firm
associated with the firm’s allocation policy.

Suppose the policy is to keep the first two
units of flow in the stream, to allocate the next 3
units to Firm 3, and the next 4 units to firms 1
and 2 equally. The remaining flow is to be allo-
cated to each of the three firms equally up to the
limits desired by each firm, namely 3.0, 2.33, and
8.0, respectively. Any excess flow will remain in
the stream. The plots in Fig. 7.5 illustrate this
policy. Each allocation plot reflects the priorities
given to the three firms and the users further
downstream.

A simulation model can now be created. In
each of a series of discrete time periods t, the
flows Qt are drawn from a probability distribu-
tion, such as from Fig. 7.2 using Eq. 7.2. Once
this flow is determined, each successive alloca-
tion, xit, is computed. Once an allocation is made
it is subtracted from the streamflow and the next
allocation is made based on that reduced
streamflow, in accordance with the allocation

Fig. 7.3 Diagram showing the calculation of a sequence of values of the random variable R from a multivariate normal
distribution in a way that preserves the mean, variance and correlation of the random variable
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policy defined in Fig. 7.5. After numerous time
steps the probability distributions of the alloca-
tions to each of the firms can be defined.

Figure 7.6 shows a flow chart for this simu-
lation model.

Having defined the probability distribution of
the allocations, based on the allocation policy,
one can now consider each of the allocations as
random variables, X1, X2, and X3 for firms 1, 2
and 3, respectively.

Fig. 7.4 Stream flow allocations in each period t result in benefits, Bi(xit), to each firm i. The flows, Qit, at each
diversion site i are the random flows Qt less the upstream withdrawals, if any

(a) (b)

(c) (d)

Fig. 7.5 a Water allocation policy for Firm 1 based on
the flow at its diversion site. This policy applies for each
period t. bWater allocation policy for Firm 2 based on the
flow at its diversion site for that firm. This policy applies
for each period t. c Water allocation policy for Firm 3

based on the flow at its diversion site. This policy applies
for each period t. d Streamflow downstream of site 3
given the streamflow Q3t at site 3 before the diversion.
This applies for each period t
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7.4 Chance Constrained Models

For models that include random variables it may
be appropriate in some situations to consider
constraints that do not have to be satisfied all the

time. Chance constraints specify the probability
of a constraint being satisfied, or the fraction of
the time a constraint has to apply. Consider, for
example, the allocation problem shown in
Fig. 7.4. For planning purposes, the three firms
may want to set allocation targets, not expecting

Fig. 7.6 Monte Carlo simulation to determine probability distributions of allocations to each of three water users, as
illustrated in Fig. 7.4. The dash lines represent information (data) flows
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to have those targets met 100% of the time. To
insure, for example, that an allocation target, Ti,
of firm i will be met at least 90% of the time, one
could write the chance constraint

PrfTi �Xig� 0:90 i ¼ 1; 2; and 3 ð7:11Þ

In this constraint, the allocation target Ti is an
unknown decision variable, and Xi is a random
variable whose distribution has just been com-
puted and is known.

To include chance constraints in optimization
models, their deterministic equivalents must be
defined. The deterministic equivalents of these
three chance constraints in Eq. 7.11 are

Ti � x0:10it i ¼ 1; 2; and 3 ð7:12Þ

where x0:10it is the particular value of the random
variable Xi that is equaled or exceeded 90% of
the time. This value is shown on the probability
distribution for Xi in Fig. 7.7.

To modify the allocation problem somewhat,
assume the benefit obtained by each firm is a
function of its target allocation and that the same
allocation target applies in each time period
t. The equipment and labor used in the firm is
presumably based on the target allocations. Once
the target is set assume there are no benefits
gained by excess allocations of water. If the
benefits obtained are to be based on the tar-
get allocations, rather than the actual allocations,
then the optimization problem is one of finding

the values of the three targets that maximize the
total benefits obtained with a reliability of, say, at
least 90%.

Maximize 6T1�T2
1

� �þ 7T2 � 1:5T2
2

� �þ 8T3 � 0:5T2
3

� �
ð7:13Þ

Subject to:

Pr T1 þ T2 þ T3 � Qt �min Qt; 2ð Þ½ �f g� 0:90
for all periods t

ð7:14Þ

where Qt is the random streamflow variable
upstream of all diversion sites. If the same
unconditional probability distribution ofQt applies
for each period t then only one Eq. 7.14 is needed.

Assuming the value of the streamflow, q0:10t ,
that is equaled or exceeded 90% of the time, is
greater than 2 (the amount that must remain in
the stream), the deterministic equivalent of
chance constraint Eq. 7.14 is

T1 þ T2 þ T3 � q0:10t �min q0:10t ; 2
� �� � ð7:15Þ

The value of the flow that is equaled or
exceeded 90% of the time, q0:10t , can be obtained
from the cumulative distribution of flows as
illustrated in Fig. 7.8.

Assume this 90% reliable flow is 8. The deter-
ministic equivalent of the chance constraint
Eq. 7.14 for all periods t is simply T1 + T2 +
T3 ≤ 6. The optimal solution of the chance

Fig. 7.7 Probability density distribution of the random
allocation Xi to firm i. The particular allocation value x0:10it
has a 90% chance of being equaled or exceeded, as
indicated by the shaded region

Fig. 7.8 Example cumulative probability distribution
showing the particular value of the random variable,
q0:10t , that is equaled or exceeded 90% of the time
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constrained target allocation model, Eqs. 7.13
and 7.15, is, as seen before, T1 = 1, T2 = 1, and
T3 = 4. The next step would be to simulate this
problem to see what the actual reliabilities might
be for various sequences of flows qt.

7.5 Markov Processes
and Transition Probabilities

Time series correlations can be incorporated into
models using transition probabilities. To illus-
trate this process, consider the observed flow
sequence shown in Table 7.1.

The estimated mean, variance and correlation
coefficient of the observed flows shown in
Table 7.1 can be calculated using Eqs. 7.16, 7.17
and 7.18.

E½Q� ¼
X31
t¼1

qt=31 ¼ 3:155 ð7:16Þ

Var½Q� ¼
X31
t¼1

qt � 3:155ð Þ2=31 ¼ 1:95 ð7:17Þ

Lag-one correlation coefficient ¼ q

¼
X30
t¼1

qtþ 1 � 3:155ð Þ qt � 3:155ð Þ
" #

=
X31
t¼1

qt � 3:155ð Þ2

¼ 0:50

ð7:18Þ

The probability distribution of the flows in
Table 7.1 can be approximated by a histogram.
Histograms can be created by subdividing the
entire range of random variable values, e.g.,
flows, into discrete intervals. For example, let
each interval be 2 units of flow. Counting the
number of flows in each interval and then
dividing those interval counts by the total num-
ber of counts results in the histogram shown in
Fig. 7.9. In this case, just to compare this with
what will be calculated later, the first flow, q1, is
ignored.

Table 7.1 Sequence of flows for 31 time periods t
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Figure 7.9 shows a uniform unconditional
probability distribution of the flow being in any
of the possible discrete flow intervals. It does not
show the possible dependency of the probabili-
ties of the random variable value, qt+1, in period
t + 1 on the observed random variable value, qt,
in period t. It is possible that the probability of
being in a flow interval j in period t + 1 depends
on the actual observed flow interval i in period t.

To see if the probability of being in any given
interval of flows is dependent on the past flow
interval one can create a matrix. The rows of the
matrix are the flow intervals i in period t. The
columns are the flow intervals j in the following
period t + 1. Such a matrix is shown in
Table 7.2. The numbers in the matrix are based
on the flows in Table 7.1 and indicate the

number of times a flow in interval j followed a
flow in interval i.

Given an observed flow in an interval i in
period t, the probabilities of being in one of the
possible intervals j in the next period t + 1 must
sum to 1. Thus each number in each row of the
matrix in Table 7.2 can be divided by the total
number of flow transitions in that row (the sum of
the number of flows in the row) to obtain the
probabilities of being in each interval j in t + 1
given a flow in interval i in period t. In this case
there are 10 flows that followed each flow
interval i, hence by dividing each number in each
row of the matrix by 10 defines the transition
probabilities Pij.

Pij ¼ Pr Qtþ 1 in interval jjQt in interval if g
ð7:19Þ

These conditional or transition probabilities,
shown in Table 7.3, correspond to the number of
transitions shown in Table 7.2.

Table 7.3 is a matrix of transition probabili-
ties. The sum of the probabilities in each row
equals 1. Matrices of transition probabilities
whose rows sum to one are also called stochastic
matrices or first-order Markov chains.

If each row’s probabilities were the same, this
would indicate that the probability of observing
any flow interval in the future is independent of
the value previous flows. Each row would have

Fig. 7.9 Histogram showing an equal 1/3 probability
that the values of the random variable Qt will be in any
one of the three 2-flow unit intervals

Table 7.2 Matrix showing the number of times a flow in
interval i in period t was followed by a flow in interval j in
period t + 1

Table 7.3 Matrix showing the probabilities Pij of having
a flow in interval j in period t + 1 given an observed flow
in interval i in period t
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the same probabilities as the unconditional dis-
tribution shown in Fig. 7.9. In this example the
probabilities in each row differ, showing that low
flows are more likely to follow low flows, and
high flows are more likely to follow high flows.
Thus the flows in Table 7.1 are positively cor-
related, as indeed has already determined from
Eq. 7.18.

Using the information in Table 7.3, one can
compute the probability of observing a flow in
any interval at any period on into the future given
the present flow interval. This can be done one
period at a time. For example assume the flow in
the current time period t = 1 is in interval i = 3.
The probabilities, PQj,2, of being in any of the
three intervals in the following time period t + 1
are the probabilities shown in the third row of the
matrix in Table 7.3.

The probabilities of being in an interval j in
the following time period t = 3 is the sum over
all intervals i of the joint probabilities of being in

interval i in period t = 2 and making a transition
to interval j in period t = 3.

Pr Q3 in interval jf g ¼ PQj;3

¼
X
i

Pr Q2 in interval if g Pr Q3 in interval jjQ2 in interval if g

ð7:20Þ

The last term in Eq. 7.20 is the transition
probability, from Table 7.3, that in this example
remains the same for all time periods t. These
transition probabilities, Pr{Qt+1 in interval j | Qt

in interval i} can be denoted as Pij.
Referring to Eqs. 7.19, 7.20 can be written in

a general form as

PQj;tþ 1 ¼
X
i

PQitPij

for all intervals j and periods t
ð7:21Þ

This operation can be continued to any future
time period. Table 7.4 illustrates the results of

Table 7.4 Probabilities of observing a flow in any flow interval i in a future time period t given a current flow in
interval i = 3

These probabilities are derived using the transition probabilities Pij in Table 7.3 in Eq. 7.21 and assuming the flow
interval observed in period 1 is in interval 3
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such calculations for up to six future periods,
given a present period (t = 1) flow in interval
i = 3.

Note that as the future time period t increases,
the flow interval probabilities are converging to
the unconditional probabilities, in this example
1/3. 1/3, 1/3, as shown in Fig. 7.9. The predicted
probability of observing a future flow in any
particular interval at some time in the future
becomes less and less dependent on the current
flow interval as the number of time periods
increases between the current period and that
future time period.

When these unconditional probabilities are
reached, PQit will equal PQi,t+1 for each flow
interval i. To find these unconditional probabili-
ties directly, Eq. 7.21 can be written as

PQj ¼
X
i

PQi Pij for all intervals j less one

ð7:22Þ
Equation 7.22 along with Eq. 7.23 can be

used to calculate all the unconditional probabil-
ities PQi directly. X

i

PQi ¼ 1 ð7:23Þ

Conditional or transition probabilities can be
incorporated into stochastic optimization models
of water resource systems.

7.6 Stochastic Optimization

To illustrate the development and use of
stochastic optimization models consider first the
allocation of water to a single user. Assume the
flow in the stream where the diversion takes
place is not regulated and can be described by a
known probability distribution based on histori-
cal records. Clearly the user cannot divert more
water than is available in the stream. A deter-
ministic model would include the constraint that
the diversion x cannot exceed the available water
Q. But Q is a random variable. Some discrete
value, q, of the random variable Q will have to be

selected, knowing that there is some probability
that in reality, or in a simulation model, the
actual flow may be less than the selected value
q. Hence if the constraint x ≤ q is binding
(x = q), the actual allocation may be less than the
value of the allocation or diversion variable
x produced by the optimization model.

If the value of x affects one of the system’s
performance indicators, e.g., the net benefits, B
(x), to the user, a more accurate estimate of the
user’s net benefits will be obtained from con-
sidering a range of possible allocations x,
depending on the range of possible values of the
random flow Q. One way to do this is to divide
the known probability distribution of flows q into
discrete ranges, i, each range having a known
probability PQi. Designate a discrete flow qi for
each range. Associated with each known flow qi
is an unknown allocation xi. Now the determin-
istic constraint x ≤ q can be replaced with the set
of constraints xi ≤ qi and the term B(x) in the
original objective function can be replaced by its
expected value,

P
i POiBðxiÞ.

Note, when dividing a continuous known
probability distribution into discrete ranges, the
discrete flows qi selected to represent each range
i having a given probability PQi, should be
selected so as to maintain at least the mean and
variance of that known distribution as defined by
Eqs. 7.5 and 7.6.

To illustrate this consider a slightly more
involved example involving the allocation of
water to consumers upstream and downstream of
a reservoir. Both the policies for allocating water
to each user and the reservoir release policy are
to be determined. This example problem is
shown in Fig. 7.10.

If the allocation of water to each user is to be
based on a common objective, such as the min-
imization of the total sum, over time, of squared
deviations from prespecified target allocations,
each allocation in each time period will depend
in part on the reservoir storage volume.

Consider first a deterministic model of the
above problem, assuming known flows Qt and
upstream and downstream allocation targets UTt

and DTt in each of T within-year periods t in a
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year. Assume the objective is to minimize the
sum of squared deviations of actual allocations,
ut and dt, from their respective target allocations,
UTt and DTt in each within-year period t.

Minimize
XT
t

UTt�utð Þ2 þ DTt�dtð Þ2
n o

ð7:24Þ

The constraints include:

(a) Continuity of storage involving initial stor-
age volumes St, net inflows Qt − ut, and
releases Rt. Assuming no losses

St þQt � ut � Rt ¼ Stþ 1

for each period t; T þ 1 ¼ 1
ð7:25Þ

(b) Reservoir capacity limitations. Assuming a
known active storage capacity K,

St �K for each period t ð7:26Þ

Allocation restrictions for each period t:

ut �Qt ð7:27Þ

dt �Rt ð7:28Þ

Equations 7.25 and 7.28 could be combined
to eliminate the release variable Rt since in this
problem knowledge of the total release in each
period t is not required. In this case Eq. 7.25
would become an inequality.

The solution for this model, Eqs. 7.24–7.28,
would depend on the known variables (the tar-
gets UTt and DTt, flows Qt and reservoir capacity
K). It would identify the particular upstream and
downstream allocations and reservoir releases in
each period t. It would not provide a policy that
defines what allocations and releases to make for
a range of different inflows and initial storage
volumes in each period t. A backward-moving
dynamic programming model can provide such a
policy. This policy will identify the allocations
and releases to make based on various initial
storage volumes, St, as well flows, Qt, as dis-
cussed in Chap. 4.

This deterministic discrete dynamic program-
ming allocation and reservoir operation model

Fig. 7.10 Example water
resource system involving
water diversions from a
river both upstream and
downstream of a reservoir
of known capacity
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can be written for different discrete values of
storage volumes St from 0 ≤ St ≤ capacity K as

Fn
t St;Qtð Þ ¼ min UTt � utð Þ2þ DTt � dtð Þ2 þFn�1

tþ 1 Stþ 1;Qtþ 1ð Þ
n o

ut;Rt; dt
ut �Qt

Rt � St þQt � ut
Rt � St þQt � ut � K

dt �Rt

Stþ 1 ¼ St þQt � ut � Rt

ð7:29Þ

There are three variables to be determined at
each stage or time period t in the above dynamic
programming model. These three variables are
the allocations ut and dt and the reservoir release
Rt. Each decision involves three discrete decision
variable values. The functions Fn

t St;Qtð Þ define
the minimum sum of squared deviations given an
initial storage volume St and streamflow Qt in
time period or season t with n time periods
remaining until the end of reservoir operation.

One can reduce this three-decision variable
model to a single variable model by realizing that
for any fixed discrete initial and final storage
volume states, there can be a direct tradeoff
between the upstream and downstream alloca-
tions given the particular streamflow in each
period t. Increasing the upstream allocation will
decrease the resulting reservoir inflow and this in
turn will reduce the release by the same amount.
This reduces the amount of water available to
allocate to the downstream use.

Hence for this example problem involving
these upstream and downstream allocations, a
local optimization can be performed at each time
step t for each combination of storage states St
and St+1. This optimization finds the allocation
decision variables ut and dt that

minimize UTt � utð Þ2 þ DTt � dtð Þ2 ð7:30Þ

where

ut �Qt ð7:31Þ

dt � St þQt � ut � Stþ 1 ð7:32Þ

This local optimization can be solved to
identify the ut and dt allocations for each feasible
combination of St and St+1 in each period t.

Given these optimal allocations, the dynamic
programming model can be simplified to include
only one discrete decision variable, either Rt or
St+1. If the decision variable St+1 is used in each
period t, the releases Rt in those periods t do not
need to be considered. Thus the dynamic pro-
gramming model expressed by Eq. 7.29 can be
written for all discrete storage volumes St from 0
to K and for all discrete flows Qt as

Fn
t St;Qtð Þ ¼ min

Stþ 1
Stþ 1 �K

UTt�ut St ;Stþ 1ð Þð Þ2 þ
DTt�dt St ;Stþ 1ð Þð Þ2

�

ð7:33Þ

where the functions ut(St, St+1) and dt(St, St+1)
have been determined using Eqs. 7.30–7.32.

As the total number of periods remaining, n,
increases, the solution of this dynamic pro-
gramming model will converge to a steady or
stationary state. The best final storage volume
St+1 given an initial storage volume St will likely
differ for each within-year period or season t, but
for a given season t it will be the same in suc-
cessive years. In addition, for each storage vol-
ume St, streamflow, Qt, and within-year period
t the difference between Fnþ T

t St;Qtð Þ and
Fn
t St;Qtð Þ will be the same constant regardless of

the storage volume St, flow Qt and period t. This
constant is the optimal, in this case minimum,
annual value of the objective function, Eq. 7.24.

There could be additional limits imposed on
storage variables and release variables, such as for
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flood control storage or minimum downstream
flows, asmight be appropriate in specific situations.

The above deterministic dynamic program-
ming model (Eq. 7.33) can be converted to a
stochastic model. Stochastic models consider
multiple discrete flows as well as multiple dis-
crete storage volumes, and their probabilities, in
each period t. A common way to do this is to
assume that the sequence of flows follow a
first-order Markov process. Such a process
involves the use of transition or conditional
probabilities of flows as defined by Eq. 7.20.

To develop these stochastic optimization
models it is convenient to introduce some addi-
tional indices or subscripts. Let the index k de-
note different initial storage volume intervals.
These discrete intervals divide the continuous

range of storage volume values from 0 to the
active reservoir capacity K. Each Skt is a discrete
storage volume that represents the range of
storage volumes in interval k at the beginning of
each period t.

Let the index l denote different final storage
volume intervals. Each Sl,t+1 is a discrete volume
that represents the storage volume interval l at the
end of in each period t or equivalently at the
beginning of period t + 1. As previously defined,
let the indices i and j denote the different flow
intervals, and each discrete qit and qj,t+1 represent
the flows in those flow intervals i and j in periods
t and t + 1, respectively.

These subscripts and the volume or flow
intervals they represent are illustrated in
Fig. 7.11.

Fig. 7.11 Discretization of streamflows and reservoir storage volumes. The area within each flow interval i below the
probability density distribution curve is the unconditional probability, PQit, associated with the discrete flow qit
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With this notation it is now possible to develop
a stochastic dynamic programming model that
will identify the allocations and releases that are
to be made given both the initial storage volume,
Skt, and the flow, qit. It follows the same structure
as the deterministic models defined by Eqs. 7.30–
7.32, and 7.33.

To identify the optimal allocations in each
period t for each pair of feasible initial and final
storage volumes Skt and Sl,t+1, and inflows qit, one
can solve Eqs. 7.34–7.36.

minimize UTt � ukitð Þ2 þ DTt � dkiltð Þ2 ð7:34Þ

where

ukit � qit for all k; i; t: ð7:35Þ

dkilt � Skt þ qit � ukit � Sl;tþ 1

for all feasible k; i; l; t:
ð7:36Þ

The solution to these equations for each fea-
sible combination of intervals k, i, l, and period
t defines the optimal allocations that can be
expressed as ut(k, i) and dt(k, i, l).

The stochastic version of Model 7.33, again
expressed in a form suitable for backward mov-
ing discrete dynamic programming, can be
written for different discrete values of Skt from 0
to K and for all qit as

Fn
t ðSkt; qitÞ ¼ minf UTt � ut k; ið Þð Þ2 þ DTt � dt k; i; lð Þð Þ2

þ
X

j
Pt
ijF

n�1
tþ 1ðSl;tþ 1; qj;tþ 1Þg

Sl;tþ 1

Sl;tþ 1 �K

Sl;tþ 1 � Skt þ qit

ð7:37Þ

Each Pt
ij in the above recursive equation is

the known conditional or transition probability of
a flow qj,t+1 within interval j in period t + 1 given
a flow of qit within interval i in period t.

Pt
ij ¼ Pr flow qj;tþ 1within interval j in tþ 1jflow ofqit

�
within interval i in tg

The sum over all flow intervals j of these
conditional probabilities times the
Fn�1
tþ 1 Sl;tþ 1; qj;tþ 1

� �
values is the expected mini-

mum sum of future squared deviations from
allocation targets with n − 1 periods remaining
given an initial storage volume of Skt and flow of
qit and final storage volume of Sl,t+1. The value
Fn
t Skt; qitð Þ is the expected minimum sum of

squared deviations from the allocation targets
with n periods remaining given an initial storage
volume interval of Skt and flow interval of qit.
Stochastic models such as these provide expected
values of objective functions.

Another way to write the recursion equations
of this model, Eq. 7.37, is by using just the
indices k and l to denote the discrete storage
volume variables Skt and Sl,t+1 and indices i and
j to denote the discrete flow variables qit and qj,t+1:

Fn
t ðk; iÞ ¼ minf UTt � ut k; ið Þð Þ2 þ DTt � dt k; i; lð Þð Þ2

þ
X

j
Pt
ijF

n�1
tþ 1ðl; jÞg

l such that

Sl;tþ 1 �K

Sl;tþ 1 � Skt þ qit

ð7:38Þ

The steady-state solution of this dynamic
programming model will identify the preferred
final storage volume Sl,t+1 in period t given the
particular discrete initial storage volume Skt and
flow qit. This optimal policy can be expressed as
a function ‘ that identifies the best interval
l given intervals k, i and period t.

l ¼ ‘ k; i; tð Þ ð7:39Þ

All values of l given k, i, and t, defined by
Eq. 7.39, can be expressed in a matrix, one for
each period t.

Knowing the best final storage volume interval
l given an initial storage volume interval k and
flow interval i, the optimal downstream alloca-
tion, dt(k, i), can, like the upstream allocation, be
expressed in terms of only k and i in each period t.
Thus knowing the initial storage volume Skt and

7.6 Stochastic Optimization 315



flow qit is sufficient to define the optimal alloca-
tions ut(k, i) and dt(k, i), final storage volume
Sl,t+1, and hence the release Rt(k, i).

Skt þ qit � utðk; iÞ � Rtðk; iÞ ¼ Sl;tþ 1

8k; i; t where l ¼ ‘ðk; i; tÞ ð7:40Þ

7.6.1 Probabilities of Decisions

Knowing the function l = ‘(k, i, t) permits a
calculation of the probabilities of the different
discrete storage volumes, allocations, and flows.
Let

PSkt = the unknown probability of an initial
storage volume Skt being within some interval
k in period t.
PQit = the steady-state unconditional probability
of flow qit within interval i in period t.
Pkit = the unknown probability of the upstream
and downstream allocations ut(k, i) and
dt(k, i) and reservoir release Rt(k, i) in period t.

As previously defined

Pt
ij = the known conditional or transition proba-

bility of a flow within interval j in period t + 1
given a flow within interval i in period t.

These transition probabilities Pt
ij can be dis-

played in matrices, similar to Table 7.3, but as a
separate matrix (Markov chain) for each period t.

The joint probabilities of an initial storage
interval k, an inflow in the interval i, Pkit in each
period t must satisfy two conditions. Just as the
initial storage volume in period t + 1 is the same
as the final storage volume in period t, the
probabilities of these same respective discrete
storage volumes must also be equal. Thus

X
j

Pl;j;tþ 1 ¼
X
k

X
i

Pkit 8l; t ð7:41Þ

where the sums in the right hand side of Eq. 7.41
are over only those combinations of k and i that

result in a final volume interval l. This relation-
ship is defined by Eq. 7.39 (l = ‘(k, i, t)).

While Eq. 7.41 must apply, it is not sufficient.
The joint probability of a final storage volume in
interval l in period t and an inflow j in period
t + 1 must equal the joint probability of an initial
storage volume in the same interval l and an
inflow in the same interval j in period t + 1.
Multiplying the joint probability Pkit times the
conditional probability Pt

ij and then summing
over all k and i that results in a final storage
interval l defines the former, and the joint prob-
ability Pl,j,t+1 defines the latter.

Pl;j;tþ 1 ¼
X
k

X
i

PkitP
t
ij 8l; j; t l ¼ ‘ðk; i; tÞ

ð7:42Þ

Once again the sums in Eq. 7.42 are over all
combinations of k and i that result in the desig-
nated storage volume interval l as defined by the
policy ‘(k, i, t).

Finally, the sum of all joint probabilities Pkit

in each period t must equal 1.

X
k

X
i

Pkit ¼ 1 8t ð7:43Þ

Note the similarity of Eqs. 7.42 and 7.43 to
the Markov steady-state flow Eqs. 7.22 and 7.23.
Instead of only one flow interval index consid-
ered in Eqs. 7.22 and 7.23, Eqs. 7.42 and 7.43
include two indices, one for storage volume
intervals and the other for flow intervals. In both
cases, one of Eqs. 7.22 and 7.42 can be omitted
in each period t since it is redundant with that
period’s Eqs. 7.23 and 7.43, respectively.

The unconditional probabilities PSkt and PQit

can be derived from the joint probabilities Pkit.

PSkt ¼
X
i

Pkit 8k; t ð7:44Þ

PQit ¼
X
k

Pkit 8i; t ð7:45Þ

316 7 Modeling Uncertainty



Each of these unconditional joint or marginal
probabilities, when summed over all their vol-
ume and flow indices, will equal 1. For example

X
k

PSkt ¼
X
i

PQit ¼ 1 ð7:46Þ

Note that these probabilities are determined
based only on the relationships among flow and
storage intervals as defined by Eq. 7.39, l = ‘(k,
i, t) in each period t, and the Markov chains
defining the flow interval transition or condi-
tional probabilities, Pt

ij. It is not necessary to
know the actual discrete storage values repre-
senting those intervals. Thus assuming any rela-
tionship among the storage volume and flow
interval indices, l = ‘(k, i, t) and a knowledge of
the flow interval transition probabilities Pt

ij, one
can determine the joint probabilities Pkit and their
marginal or unconditional probabilities PSkt. One
does not need to know what those storage
intervals are to calculate their probabilities.
(Amazing, isn’t it?)

Given the values of these joint probabilities
Pkit, the deterministicmodel defined byEqs. 7.24–
7.28 can be converted to a stochastic model to
identify the best storage and allocation decision
variable values associated with each storage
interval k and flow interval i in each period t.

Minimize
X
k

X
i

XT
t

Pkit UTt � ukitð Þ2þ DTt � dkitð Þ2
n o

ð7:47Þ

The constraints include

(a) Continuity of storage involving initial stor-
age volumes Skt, net inflows qit − ukit, and at
least partial releases dkit. Again assuming no
losses:

Skt þ qit � ukit � dkit � Sl;tþ 1 8k; i; t
l ¼ ‘ðk; i; tÞ ð7:48Þ

Reservoir capacity limitations.

Skit �K 8k; i; t ð7:49Þ

Allocation restrictions.

ukit � qit 8k; i; t ð7:50Þ

7.6.2 A Numerical Example

A simple numerical example may help to illus-
trate how these stochastic models can be devel-
oped without getting buried in detail. Consider,
for simplicity, two within-year periods each year.
The random flows Qt in each period t are divided
into two intervals. These flow intervals are rep-
resented by discrete flows of 1 and 3 volume
units per second in the first period and 3 and 6
volume units per second in the second period.
Their transition probabilities are shown in
Table 7.5.

Assuming equal within-year period durations,
these three discrete flow rates are equivalent to

Table 7.5 Transition probabilities for two ranges of flows in two within-year periods
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about 16, 47 and 95 million volume units per
period.

Assume the active storage volume capacity
K in the reservoir equals 50 million volume
units. This capacity can be divided into different
intervals of storage. For this simple example
assume three storage volume intervals repre-
sented by 10, 25, and 40 million volume units.
Assume the allocation targets remain the same in
each period at both the upstream and downstream
sites. The upstream allocation target is approxi-
mately 2 volume units per second or 30 million
volume units in each period. The downstream
allocation target is approximately 5 volume units
per second or 80 million volume units in each
period.

With these data we can use Eqs. 7.34–7.36 to
determine the allocations that minimize the sum
of squared deviations from targets and what that
sum is, for all feasible combinations of initial and
final storage volumes, and flows. Table 7.6
shows the results of these optimizations. These
results will be used in the dynamic programming
model to determine the best final storage vol-
umes given initial volumes and flows.

With the information in Tables 7.5 and 7.6,
the dynamic programming model, Eq. 7.38 or as
expressed in Eq. 7.51, can be solved to find the
optimal final storage volumes given an initial
storage volume and flow. The iterations of the
recursive equation, sufficient to reach a steady
state, are shown in Table 7.7.

Fn
t ðk; iÞ ¼minfSDkil þ

X
j

Pt
ijF

n�1
tþ 1 l; jð Þg

over all l such that

Sl;tþ 1 �K

Sl;tþ 1 � Skt þQit

ð7:51Þ
This process can continue until a steady-state

policy is defined. Table 7.8 summarizes the next
five iterations. At this stage, the annual differ-
ences in the objective values associated with a

particular state and season have come close to a
common constant value.

While the differences between corresponding
Fnþ T
t and Fn

t have not yet reached a common
constant value to the nearest unit deviation (they
range from, 3475.5 to 3497.1 for an average of
3485.7), the policy has converged to that shown
in Tables 7.8 and 7.9.

Given this policy, the probabilities of being in
any of these volume and flow intervals can be
determined by solving Eqs. 7.42–7.45.
Table 7.10 shows the results of these equations
applied to the data in Tables 7.5 and 7.8. It is
obvious that if the policy from Table 7.9 is fol-
lowed, the steady-state probabilities of being in
storage interval 1 in period 1 and in interval 3 in
period 2 are 0.

Multiplying these joint probabilities by the
corresponding SDkit values in the last column of
Table 7.6 provides the annual expected squared
deviations, associated with the selected discrete
storage volumes and flows. This is done in
Table 7.11 for those combinations of k, i, and
l that are contained in the optimal solution as
listed in Table 7.9.

The sum of products of the last two columns
in Table 7.11 for each period t equals the
expected squared deviations in the period. For
period t = 1 the expected sum of squared devi-
ations are 1893.3 and for t = 2 they are 1591.0.
The total annual expected squared deviations are
3484.3. This compares with the expected squared
deviations derived from the dynamic program-
ming model, after nine iterations, ranging from
3475.5 to 3497.1 (as calculated from data in
Table 7.8).

The policy for reservoir releases is a function
not only of the initial storage volumes, but
also of the current inflow, i.e., the total water
available in the period. Reservoir release rule
curves now must become two-dimensional.
However, the inflow for each period usually
cannot be predicted at the beginning of each
period. Thus the reservoir release policy has to be
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Table 7.6 Optimal allocations associated with given initial storage, Sk, flow, Qi, and final storage, Sl, volumes

These allocations uki and dkil minimize the sum of squared deviations, DSkil = (30 − uki)
2 + (80 − dkil)

2, from upstream
and downstream targets, 30 and 80, respectively, subject to uki ≤ flow Qi, and dkil ≤ release (Sk + Qi − uki − Sl)
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Table 7.7 First four iterations of dynamic programming model, Eq. 7.51, moving backward in successive periods n,
beginning in season t = 2 with n = 1

(continued)
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Table 7.7 (continued)

(continued)
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Table 7.7 (continued)

(continued)
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The iterations stop when the final storage policy given any initial storage volume and flow repeats itself in two
successive years. Initially, with no more periods remaining, F0

1 k; ið Þ ¼ 0 for all k and i

Table 7.7 (continued)
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Table 7.8 Summary of objective function values Fn
t k; ið Þ and optimal decisions for stages n = 5–9 periods remaining

Table 7.9 Optimal reservoir policy l = ‘(k, i, t) for the example problem
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expressed in a way that it can be followed
without knowledge of the current inflow. One
way to do this is to compute the expected value
of the release for each discrete storage volume,
and show it in a release rule. This is done in
Fig. 7.12. The probability of each discrete
release associated with each discrete river flow is
the probability of the flow itself. Thus in period 1
when the storage volume is 40, the expected
release is 46(0.41) + 56(0.59) = 52. These

discrete expected releases can be used to define a
continuous range of releases for the continuous
range of storage volumes from 0 to full capacity,
50. Figure 7.12 also shows the hedging that
might take place as the reservoir storage volume
decreases.

These and modifications of these policies can
be simulated to determine improved release
rules. Simulation modeling is the subject of the
following chapter.

Table 7.10 Probabilities of flow and storage volume intervals associated with policy as defined in Table 7.9 for the
example problem
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Table 7.11 The optimal operating policy and the probability of each state and decision
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Fig. 7.12 Reservoir release rule showing an interpolated release, increasing as storage volumes increase
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7.7 Summary

This chapter has introduced some approaches for
including risk into optimization and simulation
models. The discussion began with ways to
obtain values of random variables whose proba-
bility distributions are known. These values, for
example streamflows or parameter values, can be
inputs to simulation models. Monte Carlo simu-
lation involves the use of multiple simulations
using these random variable values to obtain the
probability distributions of outputs, including
various system performance indicators.

Two methods were reviewed for introducing
random variables along with their probabilities
into optimization models. One involves the use
of chance constraints. These are constraints that
must be met, as all constraints must be, but now
with a certain probability. As in any method there
are limits to the use of chance constraints. These
limitations were not discussed, but in cases
where chance constraints are applicable, and if
their deterministic equivalents can be defined,
they are probably the only method of introducing
risk into otherwise deterministic models that do
not add to the model size.

Alternatively, the range of random variable
values can be divided into discrete ranges. Each
range can be represented by a specific or discrete
value of the random variable. These discrete
values and their probabilities can become part of
an optimization model. This was demonstrated
using transition probabilities incorporated into
both linear and dynamic programming models.

The examples used in this chapter to illustrate
the development and application of stochastic
optimization and simulation models are relatively
simple. These and similar probabilistic and
stochastic models have been applied to numerous
water resources planning and management
problems. They can be a much more effective
screening tool than deterministic models based
on the mean or other selected values of random
variables. But sometimes they are not. Clearly if
the system being analyzed is very complex, or
just very big in terms of the number of variables

and constraints, the use of deterministic models
for a preliminary screening of alternatives prior
to a more precise probabilistic screening is often
warranted.
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Exercises

7:1 Can you modify the deterministic discrete
DP reservoir operating model to include the
uncertainty, expressed as Pt

ij, of the inflows,
as in Exercise 6.25?
(Hints: The operating policy would define
the release (or final storage) in each season
as a function of not only the initial storage
but also the inflow. If the inflow changes, so
might the release or final storage volume.
Hence you need to discretize the inflows as
well as the storage volumes. Both storage
and inflow are state variables. Assume, for
this model, you can predict with certainty
the inflow in each period at the beginning of
the period. So, each node of the network
represents a known initial storage and
inflow value. You cannot predict with cer-
tainty the following period’s flows, only
their probabilities. What does the network
look like now?

7:2 Assume that there exist two possible dis-
crete flows Qit into a small reservoir in each
of two periods t each year having proba-
bilities Pit. Find the steady-state operating

policy (release as a function of initial
reservoir volumes and current period’s
inflow) for the reservoir that minimizes the
expected sum of squared deviations from
storage and release targets. Limit the stor-
age volumes to integer values that vary
from 3 to 5. Assume a storage volume target
of 4 and a release target of 2 in each period
t. (Assume only integer values of all states
and decision variables and that each peri-
od’s inflow is known at the beginning of the
period.) Find the annual expected sum of
squared deviations from the storage and
release targets.

Period, t Flows, Qit Probabilities,
Pit

i = 1 i = 2 i = 1 i = 2

1 1 2 0.17 0.83

2 3 4 0.29 0.71

This is an application of Exercise 6.27 except
the flow probabilities are independent of the
previous flow.

7:3 Develop a linear model for defining the
optimal joint probabilities of predefined dis-
crete initial storage volumes, discrete
inflows, and discrete final storage volumes in
a reservoir in each period t. Let values of the
index k represent the different discrete initial
storage volumes, Skt. Similarly, let the index
i represent the inflows, Qit, and the index
l represent the final storage volumes, Sl,t+1, in
period t. Let the index j represent the discrete
inflows, Qj,t+1, and m represent the discrete
final storage volumes, Sm,t+2, in period t + 1.
Let PRkilt be the unknown joint probability of
a discrete initial storage, Skt, an inflow, Qit,
and a final storage volume, Sl,t+1, in period
t. It is also the probability of a release asso-
ciated with a particular combination of k, i,
and l in period t. The objective is to maxi-
mize the expected net benefits, however,
measured. The net benefits associated with
any combination represented by k, i, and l in
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period t is Bkilt. These net benefits and the
conditional inflow probabilities. Pt

ij ¼
Pr Qj;tþ 1jQit

� �
; are known. Show how the

optimal operating policy can be determined
once the values of the joint probabilities,
PRkilt, are known.
The same policy can be found by
DP. Develop a DP model to find the optimal
operating policy.

7:4 Referring to Exercise 7.3, instead of defining
a final volume subscript l and m for com-
puting joint probabilities PRkilt, assume that
subscripts d and e were used to denote dif-
ferent reservoir release volumes. How would
the linear programming model developed be
altered to include d and e in place of l and m?
How would the dynamic programming
recursion equation be altered?

7:5 Given joint probabilities PRkilt found from
Exercise 7.3, how would one derive the
probability distribution of reservoir releases
and storage volumes in each period t?

7:6 Assume that the streamflow Q at a particular
site has cumulative distribution function
FQ(q) = q/(1 + q) for q ≥ 0. The withdrawal
x at that location must satisfy a chance con-
straint of the form Pr[x ≥ Q] ≤ 1 − α. Write
the deterministic equivalent for each of the
following chance constraints:

Pr½x�Q� � 0:90 Pr½x�Q� � 0:80

Pr½x�Q� � 0:95 Pr½x�Q� � 0:10

Pr½x�Q� � 0:75

7:7 Monte Carlo Simulation:
Consider the symmetric triangular probabil-
ity density function that ranges from 0 to 10
whose mean and most likely value is 5

fX x)

0 5 10     x

(a) Generate values of x that come from this
distribution.

To do this you need to

• Determine the equations of the cumulative
distribution.

• Generate uniformly distributed random val-
ues of probabilities p.

• For each p find corresponding value of x. The
inverse of the cumulative probability function
FX(x) denoted as FX�1 pð Þ.

• Using this inverse function, generate a series
of 100 random variable values x that would
have a probability distribution as shown
above.

(b) Calculate the mean, variance, and standard
deviation of this distribution based on the
random values you computed. What is the
effect on these statistics of increasing the
number of sample values of the random
variable, say from 100 to 1000 to 9000?

(c) Calculate and compare with the true mean
and variance.

(d) Next, suppose these random values of X are
flows entering a reservoir having a capacity
of 6. The purpose of the reservoir is to
release a target flow of 5 in each time period.
Simulate the operation of the reservoir
assuming that if there is insufficient water to
meet the target release of 5, release what is
available, leaving an empty reservoir. Find
the mean, variance, and standard deviation of
reservoir storage and release values.

(e) Finally assume the reservoir releases are to
be allocated to three water users whose target
allocations are 3, 2.33, and 8. Actual allo-
cations should not exceed these target allo-
cations. Make the allocations such that in
each time period the maximum percentage
deficit allocation is minimized. Find the
mean, variance and standard deviation of
each user’s percentage deficit allocations.

Exercises 329



Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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