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Learning Objectives
Use the MIMIC II database to compare the performance of multiple algorithms for
estimation of respiratory rate (RR) from physiological waveforms.

1. Extract electrocardiogram (ECG), photoplethysmogram (PPG) and thoracic
impedance pneumography (IP) waveforms from the MIMIC II database.

2. Identify periods of low quality waveform data.
3. Identify heart beats in the ECG and PPG signals.
4. Estimate RR from the signals.
5. Improve the accuracy of RR estimation using quality assessment and data

fusion.
6. Evaluate the performance of RR algorithms.

26.1 Introduction

Respiratory rate (RR) is an important physiological parameter which provides
valuable diagnostic and prognostic information. It has been found to be predictive of
lower respiratory tract infections [1], indicative of the severity of pneumonia [2], and
associated with mortality in paediatric intensive care unit (ICU) patients [3].
Respiratory rate is measured in breaths per minute (bpm). Current routine practice
for obtaining RR measurements outside of Critical Care involves manually counting
chest movements [4]. This practice is time-consuming, inaccurate [5], and poorly
carried out [6–8]. Therefore, there is an urgent need to develop an accurate, auto-
mated method for measuring RR in ambulatory patients. Furthermore, an automated
method of measuring RR could facilitate: (i) objective patient-led home-monitoring
of asthma; (ii) screening for obstructive sleep apnea; and (iii) screening for periods of
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dysregulated breathing during sleep, occasionally seen in advanced congestive heart
failure.

A potential solution is to estimate RR from a convenient non-invasive signal
which is modulated by respiration and is easily, and preferably routinely, measured.
Two such signals are the electrocardiogram (ECG) and the photoplethysmogram
(PPG). Both signals exhibit baseline wander (BW), amplitude modulation
(AM) and frequency modulation (FM) due to respiration, as shown in Fig. 26.1 (see
[9, 10] for further details). Furthermore, both signals can be acquired continuously
from ambulatory patients using novel wearable sensors. For example, the
SensiumVitals® system (Sensium Healthcare) provides continuous ECG monitoring
using a lightweight patch with a battery life of up to five days. The ViSi Mobile®

(Sotera Wireless) provides continuous ECG and PPG monitoring using a
wrist-worn monitor with additional ECG electrodes. In addition, non-contact
video-based technology is being developed for continuous monitoring of the PPG
without the need for any equipment to be attached to a patient [11].

Many algorithms have been developed for estimating RR from the ECG and
PPG [10, 12], but have not yet been widely adopted into clinical practice. In this
case study we demonstrated the application of exemplary techniques to the ECG
and PPG. The performance of these techniques was assessed on an example dataset.
The case study is accompanied by MATLAB® code, equipping the reader with
tools to develop and test their own RR algorithms for estimation of RR from
physiological waveforms.

26.2 Study Dataset

PhysioNet’s MIMIC II database (Version 3) was chosen for this study since it
contains simultaneous ECG, PPG and thoracic impedance pneumography
(IP) waveforms [13, 14]. IP signals, usually only measured in critical care, can be
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Fig. 26.1 Idealised respiratory modulations of the PPG (left hand side) and ECG (right hand
side). During three respiratory cycles, from top: no modulation, baseline wander (BW), amplitude
modulation (AM), and frequency modulation (FM). Adapted from [18, 27, 30]
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used to estimate reference RRs since individual breaths can be identified as the
thoracic impedance increases during inhalation and decreases during exhalation.
MIMICII_data_importer.m was used in conjunction with the freely available
WFDB Toolbox1 to download the data. One hundred Intensive Care Unit (ICU) stay
records, each containing data from a distinct ICU stay, were downloaded.

Records meeting the criteria in Table 26.1 were included in the analysis. The
required waveforms and numerics were extracted from the 51 % of records that met
these criteria. Each data channel was stored in two vectors of values and corre-
sponding timestamps. This ensured that any gaps in the data due to changes in
patient monitoring or data acquisition failures were preserved in the analysis.

Inspection of the dataset revealed a substantial difference in the distributions of
IP RR measurements acquired from neonatal and adult patients, as illustrated in
Fig. 26.2. This is in keeping with previous findings in [15], in which it was reported
that children’s RRs decrease from a median of 43 bpm when younger than

Table 26.1 Criteria for determining whether each of the 100 downloaded MIMIC II database
records were included in the analysis

Criterion Percent of records
meeting criterion

Contain all the required waveforms (ECG, PPG and thoracic
impedance)

76

Contain all the required numerics [heart rate (HR), pulse rate
(PR) and respiratory rate (RR)]

64

Required waveforms and numerics last at least 10 min 51

Impedance RR numeric [bpm]
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Fig. 26.2 Reference respiratory rate (RR) measurements acquired using thoracic impedance from
adults and neonates. The disparity between the distributions of RR measurements acquired from
adults (blue) and neonates (red) prompted a sub-group analysis of these two patient populations

1WFDB Toolbox is available from PhysioNet: http://physionet.org/physiotools/matlab/wfdb-app-
matlab/.

26.2 Study Dataset 379

http://physionet.org/physiotools/matlab/wfdb-app-matlab/
http://physionet.org/physiotools/matlab/wfdb-app-matlab/


3 months to a median of 16 bpm when aged 15–18 years. Therefore, we decided to
restrict the analysis to adult patients only.

26.3 Pre-processing

The extracted waveforms contained periods of high and low (reliable and unreli-
able) quality, as shown in Fig. 26.3. This is in keeping with the literature, where it
is well reported that physiologic signals can be expected to contain periods of
artifact in the Critical Care setting [16]. Each 10 s segment of ECG and PPG data
was categorised as either high or low quality using the signal quality indicator
(SQI) reported in [17]. This SQI determines the quality of the signal in two steps.
Firstly, heart beats are detected to quantify the detected heart rate. Any segments
containing physiologically implausible heart rates are deemed to be low quality.
Secondly, template matching is used to quantify the correlation between an aver-
aged beat’s morphology and that of each individual beat. If the average correlation
coefficient across a segment is below an empirical threshold, then the signal quality
is deemed to be low (as shown in Fig. 26.4). Low quality segments were eliminated
from the analysis.

The RR measurements provided by the clinical monitor were not used as a
reference against which to test the accuracy of RR algorithms since they are sus-
ceptible to inaccuracies during periods of signal artifact. Instead, reference RRs
were extracted from the IP signal, with periods in which reference RRs were
unreliable being excluded from the analysis. To do so, the signal was segmented
into non-overlapping 32 s windows. Two independent methods were used to
estimate RR from each window in line with the methodology presented in [18].
Firstly, Fourier analysis was used to compute the power spectral density of the
signal, as described in [19]. A first RR estimate was obtained as the frequency
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Fig. 26.3 Periods of high and low quality PPG waveform

380 26 Waveform Analysis to Estimate Respiratory Rate



corresponding to the maximum power within the range of plausible respiratory
frequencies (4–60 bpm). Secondly, the “count-orig” method presented in [20] was
used to detect individual breaths. A second RR estimate was calculated from the
average duration of individual breaths. Count-orig involves normalising the signal,
identifying pairs of maxima exceeding a threshold value, and identifying reliable
breaths as periods of signal between the pairs of maxima which contain only one
minimum below zero. Finally, if the difference between the two RR estimates was
< 2 bpm, then the reference RR was calculated as the mean of the two estimates.
Otherwise, the window was excluded.

26.4 Methods

A plethora of algorithms have been proposed for estimation of RR from the ECG or
PPG. In this case study we implemented exemplary algorithms (using RRest.m)
which estimate RR by exploiting one of the three fundamental respiratory modu-
lations, modelled on the approach described in [19]. RR algorithms generally
consist of two compulsory components and two optional components. The com-
pulsory components are:

• extraction of a respiratory signal (a time series dominated by respiratory mod-
ulation) from the raw signal, and

• estimation of RR from the respiratory signal.

Time [s]

ECG
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Time [s]

PPG
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Fig. 26.4 Use of a template-matching signal quality index (SQI) to determine whether a segment
of signal is high or low quality. a the ECG beats (grey) all have a similar morphology to the
average beat template (red), and the ECG segment is deemed to be high quality. b the PPG beats
have a highly variable morphology, indicating low signal quality
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Two optional components, quality assessment and fusion, can be used to
improve the accuracy of estimated RRs.

Extraction of a respiratory signal is often performed using a feature-based
technique, which extracts a time series of beat-by-beat feature measurements.
Figure 26.5 shows the steps involved. The first two steps, the elimination of
sub-respiratory (<4 bpm) and very high frequencies (>100 Hz and >35 Hz for the
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Extrac on of Respiratory Signal(s)
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frequencies
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frequencies

3. Beat detec on
4. Iden fica on of fiducial points
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2. Output mean RR

Mean Respiratory Rate (RR)

Fig. 26.5 The steps within a
respiratory rate
(RR) algorithm. Extraction of
respiratory signal(s) and RR
estimation are compulsory.
The third step consisting of
quality assessment and fusion
is optional
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ECG and PPG respectively), are usually not necessary when analysing EHR data
since they are often performed by patient monitors prior to signal output. Beat
detection was performed in the ECG using a QRS detector based upon the algo-
rithm of Pan, Hamilton and Tompkins [21, 22], and in the PPG using the
Incremental-Merge Segmentation (IMS) algorithm [23]. Fiducial points, such as
R-waves and pulse-peaks, and Q-waves and pulse troughs, were identified for each
beat. Three feature measurements were then extracted from these fiducial points on
both the ECG and PPG waveforms as illustrated in Fig. 26.6. The three
beat-by-beat time series of feature measurements are sampled irregularly since there
is one measurement per heart beat. Since frequency domain analysis requires
regularly sampled signals, these signals were resampled at a regular frequency of
5 Hz using linear interpolation. Finally, spurious non-respiratory frequencies
introduced in the extraction process were eliminated using band-pass filtering
within the range of plausible respiratory frequencies (4–60 bpm). Spurious high
frequencies arise due to linear interpolation and spurious low frequencies can be
caused by physiological changes.
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Fig. 26.6 Feature measurement from fiducial points of the ECG and PPG signals. a and
b Measurement of baseline wander (BW), the mean of the amplitudes of a beat’s peak and trough;
c and d amplitude modulation (AM), the difference between the amplitudes of each beat’s peak and
trough; e and f frequency modulation (FM), the time interval between consecutive peaks
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RR estimation from the ECG and PPG was performed in both the frequency and
time domain using the Fourier analysis and breathing cycle detection techniques
used to estimate the reference RRs. An additional quality assessment and fusion
step, the “Smart Fusion” method [19], was optionally performed in an attempt to
increase the accuracy of RR estimates. The first step of “Smart Fusion” is to assess
the quality of the RR estimates derived from the three modulations. If the three
estimates are within 4 bpm of each other, then a final RR estimate is generated as
the mean of the estimates. Otherwise, no output is provided.

26.5 Results

Table 26.2 shows the mean absolute error (MAE) for all methods under analysis.
The most accurate algorithm prior to implementing quality assessment and fusion
steps had a MAE of 4.28 bpm. This algorithm extracted BW from the PPG and
estimated RR using breath detection. Algorithms using BW respiratory signals
outperformed those using AM, which in turn outperformed FM algorithms.
Furthermore, those using breath detection to estimate RR outperformed those using
Fourier analysis.

An improvement in accuracy was observed when the additional quality
assessment and fusion step was added to breath detection algorithms. The MAEs
for the ECG and PPG decreased from 4.87 to 3.92 bpm, and from 4.28 to 3.36 bpm
respectively. This was achieved at the expense of the number of windows from
which RRs were estimated. When using this additional step 44 % of ECG windows
and 63 % of PPG windows were discarded by the quality assessment. Interestingly,
no improvement in accuracy was observed when adding these steps to a
Fourier-based algorithm.

It should be noted that a substantial proportion of the data available for analysis
was discarded prior to analysis. A reference RR could only be obtained from 10 %
of windows. In addition, 44 % of ECG windows, and 30 % of PPG windows were

Table 26.2 The performances of the algorithms applied to the ECG and PPG, measured using the
mean absolute error (MAE, measured in breaths per minute, bpm)

Algorithm specification MAE (bpm)

Respiratory signal RR estimation ECG PPG

BW Breath detection 4.87 4.28

AM Breath detection 4.95 5.58

FM Breath detection 8.48 7.95

BW Fourier 7.51 8.18

AM Fourier 8.69 11.14

FM Fourier 13.16 12.11

BW, AM, FM Breath detection + quality assess + fusion 3.92 3.36

BW, AM, FM Fourier + quality assess + fusion 12.66 10.52
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discarded due to low signal quality, likely indicating the presence of movement
artifact or sensor disconnection. Consequently, only 6 % of the ECG data, and 7 %
of the PPG data were included in the analysis.

26.6 Discussion

RR is widely used in a range of clinical settings to aid diagnosis and prognosis.
Despite its clinical importance, it is the only vital sign which is not routinely
measured electronically outside of Critical Care. In this case study techniques have
been presented for the estimation of RR from two easily and routinely measured
physiological signals, the ECG and PPG. There were two important findings.
Firstly, the addition of a signal quality and fusion step to the breath-detection
algorithms increased accuracy. Secondly, time-domain breath-detection algorithms
outperformed the frequency-domain algorithms. This suggests that further research
is warranted into time-domain methods, which are far less reliant on the RR being
quasi-stationary. If a method is found to perform sufficiently well then it could be
used to measure RR during routine physiological assessments to provide early
warning of clinical deteriorations.

The dataset used in this case study is a useful resource for further testing of RR
algorithms. Its strength is that it contains waveform data from thousands of
critically-ill patients, with many datasets lasting hours or days. However, the
generalisability of the results is limited by the consisting solely of critically-ill
patients. This is particularly significant considering that RR algorithms would most
often be used with patients outside of Critical Care. Furthermore, the IP signal gave
a reliable reference RR for only 10 % of the time. This resulted in a low number of
signal windows being included in the analysis, a significant limitation.
Consequently, this case study should be treated as an example of the methodology
which could be used to perform a robust study, rather than as a robust study itself.
In addition, some uncertainty remained in the reference RRs since they are the mean
of two estimates which could differ by up to 2 bpm. When testing algorithms for
extraction of clinical parameters from physiological signals, the more accurate the
reference value, the better. In this study the measured MAEs are likely to be higher
than the true MAEs of the algorithms because of inaccuracies in the reference RR.

A key challenge of waveform analysis is the handling of low quality data. One
approach is to detect and exclude low quality data, as performed using the quality
assessment and fusion step in this study. A simple template-matching SQI was used
here. More complex techniques which fuse the results of multiple SQIs to determine
signal quality may improve the performance of RR algorithms in clinical practice
[24, 25]. An alternative approach is to refine analysis techniques to ensure they
remain accurate even when using low quality data. For instance, in [26] an algo-
rithm is presented for estimation of RR from the ECG during exercise, when the
signal is likely to be of low quality.
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26.7 Conclusions

This case study demonstrates the potential utility of the ECG and PPG for mea-
surement of RR in the clinical setting. The necessary tools required to design and
test RR algorithms are presented, allowing the interested reader to extend this work.
The results suggest two particular areas for further algorithmic development.
Firstly, the use of signal quality and fusion to improve the accuracy of RR algo-
rithms should be explored further. In the literature much focus has been given to the
extraction of respiratory signals and estimation of RR, whereas relatively little
research has been conducted into quality assessment and fusion. Secondly, further
research should be conducted into the use of time-domain techniques to identify
individual breathing cycles. It is notable that in this study the time-domain tech-
nique outperformed the frequency-domain technique, whilst in the literature
reported time-domain techniques are rarely more sophisticated than peak detection.
However, the low data inclusion rate in this study suggests that further investigation
is required to ensure that conclusions are robust.

26.8 Further Work

There are two pressing research questions concerning estimation of RR from
physiological signals. Firstly, it is not clear which RR algorithm is the most
accurate. Until recently validation studies had compared only a few of the many
existing algorithms. Comparison between studies is difficult since studies are
usually performed on different datasets collected from different populations, using
different statistical measures. A recent study evaluated many algorithms on data
acquired from young, healthy subjects. Secondly, it is not clear whether the most
accurate algorithm performs well enough for clinical use.

Further studies are required to answer such questions. We propose that algo-
rithms should be tested firstly in a healthy population, in ideal operating conditions.
This would facilitate assessment of the best possible performance of the algorithms.
If any algorithms perform sufficiently well for clinical use, then they could be tested
in patient populations in clinical settings. Conversely, if no algorithms perform
adequately, then further algorithmic development should be carried out to attempt
to improve the performance. The MIMIC II database provides opportunity to test
algorithms in a wide range of physiological conditions, such as hyper- and
hypotension, and normal and reduced ejection fraction. This may provide insight
into the limitations of the algorithms, ensuring that they are only used when in
conditions in which they can be expected to perform well.
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26.9 Non-contact Vital Sign Estimation

As presented in this chapter, current monitoring systems available to track changes
in the vital signs of patients in the clinic or at home require contact with the subject.
Most patients requiring regular monitoring find the probes difficult to attach and use
properly [28]. The process of recording vital signs, even if it only takes a few
minutes, becomes burdensome as it usually has to be performed on a daily basis.
The low compliance of patients with wearing sensors is also an obstacle to suc-
cessful monitoring.

The ideal technology to estimate vital signs would involve sensors with no direct
contact with the patient, providing several advantages over traditional methods
because no subject participation is required to set the equipment up, it requires no
skin preparation, causes no skin irritation, decreases the risk of infection, and has
the potential to be seamlessly integrated into the patient’s lifestyle.

Several technologies have been proposed for non-contact monitoring of vital
signs from Radar-based systems to non-contact ECG using capacitive coupling
electrodes. During the last decade, with the cost of digital video cameras continuing
to decrease as the technology becomes more ubiquitous, research in non-contact
vital sign monitoring has expanded through the use of off-the-shelf video cameras.
Video cameras can be found in laptops, mobile phones, set-top boxes and television
sets in patients’ living room, opening up new possibilities for the monitoring of
vital signs.

Video-based vital sign monitoring extends the concepts of traditional photo-
plethysmography using the multiple photosites present in an imaging sensor to
record the blood volume changes associated with the cardiac cycle. These physi-
ological changes result in a waveform known as photoplethysmographic imaging
(PPGi), from which vital signals such as heart rate, respiratory rate, oxygen satu-
ration (SpO2) and other can be estimated [11, 29]. Figure 26.7 shows a 15-s sample
of PPGi alongside PPG and IP signals measured using conventional monitoring
equipment. The patient was undergoing haemodialysis treatment at the Churchill
Hospital in Oxford. During this period the patient had a heart rate of 60 beats/min
and a respiratory rate of 15 bpm, both of which can be computed from both the
conventional monitoring equipment and the camera using the methods explained in
this chapter.

Decades of extensive research from the computer vision community have helped
to develop imaging systems that are capable of complex computations (such as face
detection, identity access control or other object tracking), are interactive (such as
motion/gesture and body tracking in games) and can perform complex 3D recon-
struction operations. Therefore, video-based vital sign monitoring has the potential
to expand the role vital sign monitoring beyond that which can be met by traditional
pulse oximetry.
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Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used:

Fig. 26.7 A 15-s sample of data from a patient undergoing haemodialysis treatment at the
Churchill Hospital in Oxford. a Reference PPG waveform from a Nonin pulse oximeter,
b extracted photoplethysmographic imaging (PPGi) waveform from a video camera, c reference
impedance pneumography (IP) respiratory signal, d respiratory signal extracted from the PPGi
waveform. During the period the patient had a heart rate of 60 beats/min and a respiratory rate of
15 breaths per minute (bpm)
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• MIMICII_data_importer.m: used to extract data from the MIMIC II
database.

• RRest.m: used to run RR algorithms and assess their performances.
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