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Learning Objectives
Understand the incentives and disadvantages of using propensity score analysis for
statistical modeling and causal inference in EHR-based research.

This case study introduces concepts that should improve understanding of the
following:

1. Be aware of different approaches for estimating propensity scores: parametric,
non-parametric, and machine learning approaches; and understand the pros and
cons of each.

2. Learn different ways of using propensity scores to adjust for pre-treatment
conditions, and to assess the balance of pre-treatment conditions among different
treatment groups.

3. Appreciate concepts underlying propensity score analysis with EHRs including
stratification, matching, and inverse probability weighting (including straight
weight, stabilized weight, and doubly robust weighted regression).

23.1 Incentives for Using Propensity Score Analysis

When conducting research with electronic health records (EHRs) or other big data
sources, we have access to a large number of covariates [1]. These covariates
include patient demographics, physical parameters (e.g., vitals signs and physical
examinations), laboratory parameters, home medications, pre-morbid conditions,
etc. All these covariates could be confounders when considering the association
between an exposure and an outcome. We can use statistical modeling to account
for the confounding effect of these covariates and establish an association between
the exposure and the outcome of interest [2, 3]. Propensity score analysis is
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particularly advantageous when dealing with a large number of covariates [1]. The
remainder of this chapter assumes a basic understanding of statistics and regression
modeling (especially logistic regression).

Adjusting for as many covariates as possible sets the ground for a convincing
causal inference by reducing latent biases due to latent variates [4]. However, this
results in increased dimension [5]. Although large scale EHRs often have large
enough sample size to allow high-dimensional study, dimension reduction is still
useful for the following reasons: (i) to simplify the final model and make inter-
pretation easier, (ii) to allow sensitivity analyses to explore higher order terms or
interaction terms for those covariates that might have correlation or interaction with
the outcome, and (iii) depending on the research question, the study cohort might
still be small despite coming from a large database, and dimension reduction
therefore becomes crucial for a model to be valid.

23.2 Concerns for Using Propensity Score

Although propensity score analysis has the above mentioned advantages, it is
important to understand the theory of propensity score analysis and appreciate its
limitations. A propensity score is an ‘estimated probability’ of one subject being
assigned to either the treatment group or the control group given the subject’s
‘characteristics’, or ‘pre-treatment conditions’. It is a surrogate for all the covariates
that are used to estimate it. It is not hard to imagine that using a single propensity
score to represent all characteristics of a subject could introduce bias [6]. Therefore,
implementing propensity scores in a statistical analysis model has to take into
account the research question, the dataset, and the covariates included in the
analysis. Furthermore, results must always be validated with sensitive analyses [7].

23.3 Different Approaches for Estimating Propensity
Scores

In a randomized controlled trial, a causal relationship between exposure (treatment)
and outcome can be readily determined if the randomization is carried out properly,
i.e. if there is no difference in pre-treatment conditions between the two groups.
However, in retrospective studies a difference in pre-treatment conditions between
the two groups almost always exists. In order to demonstrate comparative effec-
tiveness, causal inference with statistical modeling can be carried out in a number of
ways [8, 9]. For propensity score analyses [3, 10], the pre-treatment conditions can
be used as predictors in determining the likelihood of a subject being in the
treatment group or the control group. In other words, the probability of being in the
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treatment or control group is a function of pre-treatment conditions. There are a
number of ways to generate this function. The most basic one is regression.

When using regression to estimate propensity scores, the outcome of the
regression equation is either treatment group or control group, i.e. a binary out-
come, and the variables in the regression equation can be a combination of numeric
and nominal variables. This is a multivariate logistic regression that can be easily
performed using most free or commercial statistical packages. If there is more than
one treatment group (e.g., treatment A, treatment B, and control group) [11], then
the propensity score can be estimated using a multivariate multinomial logistic
regression.

The conventional regression model is a parametric model. Consequently, the
estimated propensity score will be subject to any inherent limitations of the para-
metric model, i.e. model misspecification [12]. It is possible to use a non-parametric
model to estimate the propensity score [13], such as regression trees, piecewise
approaches, and kernel distributions. However, these methodologies are less
established and are likely to require the use of machine learning algorithms [14].
Although non-parametric methods often require machine learning algorithms,
machine learning techniques can be applied to both parametric and non-parametric
methods. For example, some studies use a genetic algorithm to select variables and
model specification for a conventional logistic regression to estimate propensity
score [15].

23.4 Using Propensity Score to Adjust for Pre-treatment
Conditions

The goal of using propensity score analysis is to create a treatment group and a
control group that are indistinguishable from each other in terms of the
pre-treatment conditions statistics (e.g., means and standard deviations of numeric
variables, distribution of nominal variables). In other words, a treatment group and
a control group are created that mimic a post-randomization assignment result of a
randomized controlled trial, so that a causal inference can be made. Propensity
score analysis is one of the tools to reach this goal [8, 9, 16].

For example, consider one subject that received the study drug or treatment
(treatment group) and one subject that received placebo or standard treatment
(control group). If they have similar pre-treatment conditions then their chance
(probability) of being in the treatment group is the same. Consequently, it is
comparable to two identical subjects being randomly assigned to either treatment or
control group. When we find two subjects that have similar propensity scores where
one actually received treatment and the other actually received placebo, we ‘match’
them in our final study cohorts before we look at the treatment effect (outcome
variable). This process is called “propensity score matching.” By doing this, we will

23.3 Different Approaches for Estimating Propensity Scores 341



have similar propensity score distributions (or pre-treatment conditions distribu-
tions) between the treatment and control groups.

If the model used to estimate propensity scores is well-specified [17, 18], we
would expect the propensity scores to be representative of subjects’ pre-treatment
conditions. However, this might not always be the case, so we always look at the
group statistics after propensity score matching. Since the ultimate goal is to
eliminate the difference in pre-treatment conditions between groups, other methods
like propensity score weighting have been proposed to achieve this. More
sophisticated machine learning algorithms have also been developed that look at the
balance of pre-treatment variables between two groups during the process of esti-
mating a propensity score to ensure a valid model in simulating a randomized
controlled trial-like result [19].

In EHR data research, we have access to a large number of pre-treatment
covariates that we can extract from the database and use in the propensity score
model. Although we cannot use an indefinite number of covariates to simulate a real
RCT (which accounts for all unobserved variables), we can gain greater confidence
in our conclusion by including more variables [20, 21]. Propensity score analysis is
a powerful tool to simplify the final model while allowing a large number of
pre-treatment conditions to be included. Figure 23.1 summarizes the above dis-
cussion of applying a propensity score model.

We now present a case study that used the MIMIC II database (v.2.26) [22, 23],
and focus on the application of propensity scores in the analytic phase. The study
was a retrospective cohort study of Intensive Care Unit (ICU) patients who were
treated with at least one rate control agent (metroprolol, amiodarone or diltiazem).
Propensity score analysis was performed using the following covariates: demo-
graphics, vital signs, basic metabolic panels, past medical conditions, disease
severity scores, types of admission, and types of ICU. The outcomes measured

Fig. 23.1 Integration of propensity score analysis into a statistical design
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were: (i) whether rate control was achieved by a single agent, or multiple agents
(binary outcome); and, for those patients who reached rate control, (ii) the time to
reach rate control (continuous outcome).

23.5 Study Pre-processing

In order to identify those patients with atrial fibrillation and rapid ventricular
response (Afib with RVR) in the dataset, we used a combination of structured and
unstructured data. Specifically, the structured data used included ICD-9 codes (the
code for “Atrial Fibrillation” is 427.31) and medication administration data. The
unstructured data used included waveform ECG data, serial heart rate (HR) data,
discharge summaries and nursing notes. Unfortunately, only a small fraction of
patients in the database have waveform data (approximately 2000 out of 32,000
patients). Consequently, we were unable to take full advantage of waveform
analysis.

Patients who had Afib with RVR mentioned in their discharge summaries were
identified by text searching equivalent keywords in discharge summaries while
excluding the past medical history section. Once these patients had been identified
we used the serial HR and medication administration data to find the subset of
patients who had a HR of over 110 beats per minute (bpm) for more than 15 min
and who received at least one of the rate control agents of interest (metoprolol,
diltiazem, or amiodarone). Raw data was extracted using the Oracle® variety of
SQL and was further processed using Python®, for text-searching discharge sum-
maries, and Matlab®, for processing and plotting serial HR data and establishing
temporal relationship between rapid ventricular response and medication
administration.

Serial HR data existed for almost every patient in the database. However,
contrary to the continuous waveform ECG data, it is only recorded every 5, 10, or
15 min and inconsistently. To make the data more homogenous and easier for
plotting and processing, we interpolated the HR every 5 min: during the patient’s
ICU stay, if a raw HR data was not available for any given 5-min period, a value
was interpolated using the two adjacent data points. Because of the infrequent
sampling of HR for this data entity, one HR data point above 110 bpm would
correspond to an episode of a rapid HR of 5-min duration. We arbitrarily chose a
15-min duration as a significant episode of rapid HR that warrants the algorithm
(described below) to bring in more information from other data entity to determine
if the tachycardic episode reflected Afib with RVR or another form of rapid rhythm
(e.g. sinus tachycardia). This doesn’t mean that a patient has to have 15 min of Afib
with RVR before the physician decides to treat in clinical practice. Instead, it is a
measure to reduce the noise of solitary rapid HRs. One can experiment on imple-
menting different cut-off values and then review the result to determine an appro-
priate threshold.
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After identifying an episode of rapid HR which appeared to last for at least
15 min, we next determined whether the patient received a pharmacologic control
agent of interest within 2 h before or after the identified episode. A 2-h window was
used because medication data and HR data are two different data entities, and the
time stamps they carried might not be aligned exactly. Furthermore, the time stamps
associated with medication data might subject to inaccurate data entry by human
loggers. This window was arbitrarily determined; a smaller window would have
increase specificity but decreased the sensitivity of detecting the cohort of interest,
and vice versa for a larger window.

A major criterion for determining the effectiveness of a pharmacologic agent in
the control of Afib with RVR is the time until termination of the RVR episode. As
this information is not explicitly contained in the database, one has to define when
the rate is ‘controlled’ and then run an algorithm to find the time lapse between the
onset and resolution of RVR. The half-life of intravenous metoprolol and dilitazem
are each approximately 4 h and, therefore, we defined the resolution of RVR as
achieving sustained HR below 110 bpm for 4 h. Although there is no consensus for
the definition of RVR resolution, as long as the same definition is used for every
subject or sub-cohort, there is a ground for comparison. Our algorithm finds every
HR below 110 bpm after the previous identified Afib RVR (episodes of rapid HR
that lasted for at least 15 min and were treated by at least one rate control agent) and
tested if the ensuing HR data in the following 4 h was below 110 bpm for at least
90 % of the time. The time lapse between the onset and the resolution can then be
calculated.

Covariates, including demographics, vital signs, basic metabolic panels, past
medical conditions, disease severity scores, types of admission, and types of ICU,
were extracted using SQL. We also looked into the patient’s home medication and
past medical history of Afib. These pieces of information have to be extracted from
the “home meds” and “past medical history” sections in the discharge summaries by
using natural language processing techniques to text-search in a particular section of
a discharge summary. Figure 23.2 is an example that our group used for discussing
the analytic model.

Although we identified 1876 patients who were treated for Afib with RVR, only
320 of them received diltiazem as the first rate control agent. Using conventional
regression analysis would result in over-fitting because of the small cohort size, and
leaving out covariates would likely introduce biases. Propensity score analysis was
used to reduce dimensionality. The first step is to estimate the propensity score
(probability of being assigned to one treatment group given the pre-treatment
covariates). As mentioned earlier, there are several different ways to estimate
propensity scores including parametric methods such as multinomial logistic
regression, and non-parametric methods such as prediction trees. Machine learning
techniques can be implemented to train the propensity score model for optimized
prediction. After the propensity score has been estimated, it can be used either as a
variable in regression model to match subjects in different treatment groups with
similar propensity scores, or to calculate inverse probability weights. When esti-
mating propensity scores, besides optimizing the model to best predict the possible
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treatment assignment given the pre-treatment variables, a newer concept is to
estimate propensity scores to balance out pre-treatment covariates after matching or
weighting. When using propensity score weighting, one can choose to use either
straight weights or stabilized weights. Straight weighting is more susceptible to
outliers with very distinct combination of pre-treatment covariates, and will double
the cohort size when there are two treatment groups or triple the cohort size when
there are three treatment groups. On the other hand, stabilized weighting is less
susceptible to outliers, and does not increase the cohort size regardless of the
number of treatment groups.

For this study we chose a machine learning algorithm (a generalized boosted
model) to build a regression tree for the estimation of propensity scores (a
non-parametric method). The reason for not choosing a parametric method is the
same as that for not using a conventional regression analysis, as mentioned above.
The model iteratively combines many simple regression trees until the
pre-determined metrics for assessing between group pre-treatment covariate
imbalance (standardized bias or Kolmogorov-Smirnov statistics) reach a minimum.

Extreme weights were eliminated using stabilized weights. Stabilized weights
were then implemented in the final weighted regression for hypothesis testing.
Depending on the nature of the outcome variable, weighted logistic regression is
used for a binary outcome, and weighted liner regression is used for a continuous
outcome. Several covariates with higher predictive power (of treatment assignment)
were included in the final weighted regression model.

Fig. 23.2 Group discussions of the analytical model. The green arrows represent the final model,
and the red arrows represent the model that was used as sensitivity analysis
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23.6 Study Analysis

In general, propensity score analysis has been used to compare two treatment
groups, i.e. treatment versus control group. It is also commonly used for stratifi-
cation (using propensity score as a covariate in a regression model) and propensity
score matching (creating treatment and control groups of similar pre-treatment
attribute and thus mimicking randomized trials). However, stratification can only
establish association and propensity score matching mainly serves as a way of
dimension reduction. Propensity score matching does carry the intention for causal
inference, but matching propensity scores of three or more treatment groups
requires calculating two or more dimensional distances for each matched group of
subjects, which can be mathematically challenging and lacks supporting theory.
Therefore, we chose machine-generated regression trees for our propensity score,
and used a propensity score weighted regression model for outcome effect. The
non-parametric approach avoided the limitations and biases introduced by model
specification when using parametric methods. After the propensity score weight
was generated, weighted regression was performed. This allows for exploration of
interaction terms and adjustment for variables that have heavier effects on the
outcomes that could not be fully eliminated by using propensity scores alone.

To validate our model, a series of sensitivity analyses using pair-wise propensity
score matching were performed and similar effects of different treatment groups
have on the outcomes were observed.

23.7 Study Results

In this single center retrospective cohort study, intravenous metoprolol was the most
commonly used rate control agent for the control of Afib with RVR amongst patients
in the intensive care unit. Using a novel propensity matching based approach, the
effectiveness of metoprolol was compared to two other commonly used pharma-
cologic agents used for the control of Afib with RVR: diltiazem and amiodarone.
With regards to the primary outcome of medication failure (defined as a switch to or
addition of a second rate control agent), metoprolol had the lowest overall failure
rate. Those patients who received diltiazem (odds ratio OR 1.55, confidence interval
CI 1.05–2.3, p = 0.027) or amiodarone (OR 1.50, CI 1.1–2.0, p = 0.006) as their
initial pharmacologic agent were more likely to receive an additional agent prior to
the end of the RVR episode. In a secondary analysis of patients who received only
one drug during their RVR episode, those who received diltiazem had significantly
longer times to resolution of the RVR episode. Similarly, patients who received only
diltiazem were also less likely to be controlled at 4 h than those who only received
metoprolol (OR 0.59, CI 0.40–0.86, p = 0.007).

These results suggest that critically ill patients with Afib with RVR are less
likely to require a second pharmacologic agent and more likely to be controlled at
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4 h if they receive metoprolol as their initial rate control agent then either diltiazem
or amiodarone. This effect seems to be most pronounced when comparing meto-
prolol to diltiazem.

23.8 Conclusions

While it is widely accepted that Afib with RVR in the ICU is associated with worse
outcomes overall, there is no clear consensus with regards to optimal pharmaco-
logic management and practice varies amongst clinicians. Through the use of a
three-way propensity matching model, we have compared the most commonly used
pharmacologic agents for this phenomenon and found evidence that starting with
metoprolol may lead to fewer treatment failures and a more rapid resolution of the
RVR episode.

Propensity score theory is more commonly implemented on two-treatment group
studies. Estimating propensity score in multiple-treatment group studies and
implementing that in causal inference can be statistically and mathematically
challenging. In this chapter, we provided an example of multiple-treatment group
propensity score analysis using machine-learning algorithm. The concepts explored
in this chapter can be easily implemented in any two-treatment group studies. We
also provided an example of two treatment group propensity score analysis in the
sensitivity analyses of our study by performing pair-wise comparison between
different treatment groups. Propensity score analysis can be a powerful way to
achieve causal inference and dimension reduction in studies utilizing EHRs.

23.9 Next Steps

The data analysis strategy employed in this project may be particularly helpful in
answering a range of research questions in the ICU setting. Critical care clinicians
frequently have to select from a range of interventions or pharmacologic agents. As
opposed to traditional propensity matching approaches where only two groups are
compared, this model allows for the simultaneous comparison of three independent
groups. Examples where this analysis approach could be useful include comparing
the effectiveness of different vasopressors in the treatment of shock or different
sedative agents for intubated patients with ARDS.

Given the degree of clinical equipoise with regards to the treatment of Afib with
RVR in the ICU, the above results are powerful in providing some direction to
clinicians faced with this complex clinical problem. Still, many questions remain. It
is not clear, for instance, whether higher doses of diltiazem may have been more
effective and thereby avoided relatively increased rates of treatment failure. We did
not look at doses provided in this study. We also did not explore the oral versus
intravenous versus combined routes of administration. Atrial fibrillation during
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critical illness is a common phenomenon whose management requires further
investigation.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used:

• database_query.sql: used to extract data from the MIMIC II database.
• data_extraction.m: used to extract variables for analysis.
• propensity_score_analysis.r: used for propensity score analysis.
• propensity_score_matching.r: used for propensity score matching.
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