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Warning of Clinical Deterioration
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Learning Objectives
Design and evaluate early warning score (EWS) algorithms which fuse vital signs
with additional physiological parameters commonly available in hospital electronic
health records (EHRs).

1. Extract physiological, demographic and biochemical variables from the
MIMIC II database.

2. Extract patient outcomes from the MIMIC II database.
3. Prepare EHR data for analysis in Matlab®.
4. Design data fusion algorithms in Matlab®.
5. Compare the performances of data fusion algorithms.

22.1 Introduction

Acutely-ill hospitalized patients are at risk of clinical deteriorations such as
infection, congestive heart failure and cardiac arrest [1]. The early detection and
management of such deteriorations can improve patient outcomes, and reduce
healthcare resource utilization [2, 3]. Currently, early warning scores (EWSs) are
used to assist in the identification of deteriorating patients. EWSs were designed for
use at the bedside: they can be calculated by hand, and the required inputs (vital
signs) can be easily measured at the bedside. Now that EHRs are becoming more
widespread in acute hospital care there is scope to develop improved EWSs by
using more complex algorithms calculated by computer, and by incorporating
additional physiological data from the EHR.

Most methods for detection of deteriorations are based on the assumption that
changes in physiology are manifested during the early stages of deteriorations. This
assumption is well documented. Schein et al. published landmark results in 1990
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that 84 % of patients “had documented observations of clinical deterioration or new
complaints” in the eight hours preceding cardiac arrest [4]. This was further sup-
ported by a study by Franklin et al. [5]. Physiological abnormalities have also been
observed prior to other deteriorations such as unplanned Intensive Care Unit
(ICU) admissions [6] and preventable deaths [7]. Evidence of deterioration can be
observed 8–12 h before major events [8, 9].

It was proposed that the incidence of deteriorations could be reduced by
recognising and responding to early changes in physiology [10–12]. Subsequently,
EWSs were developed to allow timely recognition of patients at risk of deteriora-
tion. EWSs are aggregate scores calculated from a set of routinely and frequently
measured physiological parameters, known as vital signs. The higher the score, the
more abnormal the patient’s physiology, and the higher the risk of future deterio-
ration. EWSs are now in widespread use in acute hospital wards [13].

Current EWSs correlate with important patient-centered endpoints such as levels
of intervention [14], hospital mortality [14, 15], and length of stay [15], and have
been shown to be a better predictor of cardiac arrest than individual parameters
[16]. However, there is scope for improving their performance since most EWSs
use simple formulae which can be calculated by hand at the bedside, and use only a
limited set of vital signs as inputs [17]. Now that electronic health records (EHRs)
are becoming widely used in acute hospital care, there is opportunity to use more
complex, automated algorithms and a broader range of inputs. Consequently,
algorithms have been proposed in the literature which improve performance by
using data fusion techniques to combine vital signs with other parameters such as
biochemistry and demographic data [18, 19].

The remainder of this chapter is designed to equip the reader with the necessary
tools to develop and evaluate data fusion algorithms for prediction of clinical
deteriorations.

22.2 Study Dataset

Data was extracted from the MIMIC II database (v. 2.26) [21], which is publicly
available on PhysioNet [22]. This database was chosen because it contains routinely
recorded EHR data for thousands of patients who, being critically-ill, are at high
risk of deterioration. Data extraction was performed using the three SQL queries
cohort_labs.sql, cohort_vitals.sql, and cohort_selection.
sql. For ease of analysis data were extracted from only 500 patients. Only adult
data were extracted since paediatrics have different normal physiological ranges to
those of adults. The parameters extracted from the database, listed in Table 22.1,
were chosen in line with those used previously in the literature [18, 19].

Traditionally the performance of EWSs has been assessed using three outcome
measures with which rapid response systems have been assessed: mortality, car-
diopulmonary arrest and ICU admission rates [20]. However, cardiopulmonary
arrests are difficult to reliably identify in the MIMIC II dataset, and the dataset only
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contains data from patients already staying on the ICU. Therefore, mortality, which
can be reliably and easily extracted from the dataset, was chosen as the outcome
measure for this case study.

22.3 Pre-processing

Data analysis was conducted in Matlab®. The first pre-processing step was to
import the CSV files generated by the SQL query into Matlab® (using LoadData.
m). The purpose of this step was to create:

1. A design matrix of predictor variables (the parameters listed in Table 22.1): This
MxN matrix contained values for each of the N parameters at each of M time
points. This was performed using the methodology in [19]: the time-points were
calculated as the end times of successive four-hour periods spanning each
patient’s ICU stay; parameter values at the time-points were set to the last
measured value during that time period.

2. An Mx3 response matrix of the three easily acquired dependent variables,
namely, binary variables of death in ICU and death in ICU within the next 24 h,
and a continuous variable of time to ICU death.

The remaining pre-processing steps and analyses were conducted using only
data from within these matrices.

Further pre-processing was required to prepare the data for analysis
(PreProcessing.m). Firstly, it was observed that the temperature values
exhibited a bimodal distribution centred on 37.1 and 98.8 °C, indicating that some
had been measured in Celsius, and others in Fahrenheit. Those measured in

Table 22.1 EHR Parameters extracted from the MIMIC II database records for input into data
fusion algorithms

Biochemisty Vital signs

Albumin
Anion gap
Arterial pCO2

Arterial pH
Aspartate aminotransferase (AST)
Bicarbonate
Blood urea nitrogen (BUN)
Calcium
Creatinine
Glucose
Hemoglobin
Platelets
Potassium
Sodium
Total bilirubin
White blood cell count (WBC)

Respiratory rate
Heart rate
Blood pressure—systolic and diastolic
Temperature
Oxygen saturation
Level of consciousness

Demographics
Age
Gender
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Fahrenheit were converted to Celcius. Secondly, the dataset contained blood
pressures (BPs) acquired invasively and non-invasively. Invasive measurements
were retained since they had been acquired more frequently. Non-invasive mea-
surements were replaced with surrogate invasive values by correcting for the
observed biases between the two measurement techniques when both had been used
in the same four-hour periods (the median differences between invasive and
non-invasive measurements were 2, 7 and 6 mmHg for systolic, diastolic and mean
BPs respectively). Finally, the dataset contained missing values where parameters
had not been measured within particular four-hour periods. These missing data had
to be imputed since the analysis technique to be used, logistic regression, requires a
complete data set. To do so, we followed the approach proposed previously of
imputing the last measured value, unless no value had yet been measured in which
case the population median value was imputed [19]. Note that this approach could
be applied to a dataset in real-time.

22.4 Methods

Novel data fusion algorithms were created using CreateDataFusionAlgs.m.
Generalized linear models were used to fuse both continuous and binary variables
to provide an output indicative of the patient’s risk of deterioration. A training
dataset, containing 50 % of the data, was used to create the algorithms.

Logistic regression was used to estimate the probability of each of the binary
response variables of “death in ICU”, and “death in ICU within 24 h” being true.
Logistic regression differs from ordinary linear regression in that it bounds the output
to be between 0 and 1, thus making it suitable for estimation of the probability of a
response variable being true. Logistic regression provides an estimate for

y ¼ ln
pðxÞ

1� pðxÞ
� �

where p(x) is the probability of the response variable being true and x is a vector of
predictor variables. Notice that p(x) is constrained to be between 0 and 1 for all real
values of y.

When using logistic regression one must decide how to model the relationships
between the n predictor variables contained within x, and the output, y. The simplest
method is to assume that y is linearly related to the predictor variables as

y ¼ aþ Pn
i¼1

bixi; where α is the intercept term, and β is a vector of coefficients. For

variables such as diastolic blood pressure the assumption of a linear relationship is
reasonable because they consistently change in one particular direction during a
deterioration. However, other variables such as sodium level could change in either
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direction away from normality. For these variables a non-linear relationship is more
appropriate, such as the quadratic

y ¼ aþ
Xn
i¼1

bixi þ
Xn
i¼1

cix
2
i ;

where ɣ is a vector of coefficients for the squares of the predictor variables. Note
that this ‘purely quadratic’ relationship does not contain interaction terms such as
xixj. The importance of the choice of relationship between the predictor variables
and the estimate is demonstrated in Fig. 22.1.

In this case study separate algorithms were created using linear and quadratic
relationships. Firstly, only the parameters which are used in EWSs (vital signs) were
included. Secondly, all the extracted EHR parameters were included. Thirdly, step-
wise regression was used to avoid including terms which do not increase the per-
formance of the model. This consisted of building a model by including terms until no
further terms would increase the performance of the model, and then removing terms
whose removal would not significantly decrease the performance of the model.
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Fig. 22.1 A comparison of the contributions of input variables to the algorithm output, Y, under
the assumptions of either a linear or a non-linear relationship between the input variables and
Y. The choice of relationship had little impact on the contribution of Diastolic Blood Pressure
(above left), since it tended to be reduced in those patients who died (below left). However, a
quadratic relationship provided a very different contribution for Sodium Level (above right), since
the Sodium Levels of those patients who died exhibited a biomodal distribution indicating either
an increase or a decrease away from the normal range (below right)
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22.5 Analysis

EWS algorithms must trigger an effective clinical response in order to impact patient
outcomes. Typically, a particular response is mandated when the algorithm’s output
is elevated above a threshold value. The response may include clinical review by
ward staff or a centralised rapid response team. The following analysis is based on
the assumption that the algorithms would be used to mandate responses such as this.

The performance of each algorithm was analysed using the latter 50 % of the
data—the validation dataset. At all 4 h time points the model was used to estimate
the probability of a patient dying during their ICU stay. Figure 22.2 shows
exemplary plots of the output for four patients throughout their ICU stays.
Throughout the analysis, each time point was classified as either positive or neg-
ative, indicating that the model predicted that the patient either subsequently died
on ICU, or survived to ICU discharge. Hence, a true positive is identified at a
particular time point when the model correctly predicts the death of a patient who
died on ICU, whereas a false positive is identified when the model incorrectly
predicts the death of a patient who survived to ICU discharge. True and false
negatives were similarly identified.

Table 22.2 shows the performances of each algorithm assessed using the area
under the receiver operating characteristic (ROC) curve (AUROC). The algorithm
with the highest AUROC of 0.810 used stepwise inclusion of parameters and the
quadratic relationship. The ROC curves for this algorithm and the corresponding
algorithm using vital signs alone are shown in Fig. 22.3. Algorithms using all
available parameters as inputs had higher AUROCs than those using vital signs
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Fig. 22.2 Exemplary plots of the output of algorithm outputs (Y) over the duration of patients’
ICU stays. The left hand plots show patients who survived their ICU stays, whereas the right hand
plots show patients who died. The upper plots show examples in which the algorithm performed
well, whereas the lower plots show examples in which the algorithm did not perform well
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alone, demonstrating the benefit of fusing vital signs with additional parameters. In
most instances the use of a quadratic relationship resulted in a higher AUROC.
Furthermore, stepwise selection of parameters did reduce the number of parameters
required, whilst maintaining or improving the AUROC.

Table 22.2 The performances of data fusion algorithms for prediction of death in ICU, given as
the area under the receiver-operator curve (AUROC), and the maximum sensitivities when the
algorithms were constrained to satisfy the clinical requirements of a PPV ≥ 0.33, and an alert rate
of ≤ 17 %

Relationship between
predictor variables
and output

Candidate
predictor
variables

Number of
predictor
variables
included

AUROC Maximum Sensitivities
[%]

PPV ≥ 0.33 Alert
rate ≤ 17 %

Linear Vital signs
only

6 0.757 14.4 42.5

Linear All 25 0.800 46.6 49.7

Linear Stepwise
inclusion of
all

23 0.800 45.8 48.9

Purely quadratic Vital signs
only

6 0.774 13.2 41.4

Purely quadratic All 25 0.799 55.5 53.9

Purely quadratic Stepwise
inclusion of
all

21 0.810 59.3 56.3

1 - specificity
0 0.2 0.4 0.6 0.8 1

S
en

si
tiv

ity

0

0.2

0.4

0.6

0.8

1

vital signs
stepwise all params

Fig. 22.3 Receiver operating
characteristic curves showing
the performances of the best
algorithms using stepwise
inclusion of all parameters,
and vital signs alone. These
algorithms assumed a
quadratic relationship
between the predictor
variables and the output
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Other metrics for comparison of algorithms have been suggested including
sensitivity, positive predictive value (PPV) and alert rate [23]. However, these are
more difficult to use since each metric varies according to the threshold value.
A useful method for comparing algorithms using these metrics is to compare their
sensitivities when a threshold is used which provides algorithmic performance in
line with clinical requirements. In the case of EWS algorithms, key clinical
requirements are that the PPV is at or above a minimum acceptable level, and the
alert rate is at or below a maximum acceptable level. In the absence of
evidence-based values, for demonstration purposes we used a minimally acceptable
PPV of 0.33, indicating that one in three alerts is a true positive, and a maximally
acceptable alert rate of 17 %, indicating that one in six observation sets results in an
alert. Table 22.2 shows the sensitivities provided by each algorithm when con-
strained to satisfy these clinical requirements. The PPVs and alert rates at all
thresholds are shown in Fig. 22.4 for the best performing algorithms using vital
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Fig. 22.4 A comparison of
the PPVs and alert rates for
algorithms using vital signs
alone and using all
parameters. Exemplary
clinical requirements of a
PPV ≥ 0.33 and an alert
rate ≥17 % are shown by the
dashed lines. The quadratic
algorithm using vital signs
alone has a much lower
sensitivity of 13.2 % than the
equivalent algorithm using
stepwise inclusion of all
parameters, at 59.3 % when
the PPV criterion is met.
Similarly, when the alert rate
criterion is used, the
sensitivity of the vital signs
algorithm is 41.4 %, also
lower than that of the
algorithm using stepwise
inclusion of all parameters, at
56.3 %
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signs alone and using stepwise inclusion of all parameters. The highest sensitivities
were achieved when using stepwise inclusion of all parameters, with a purely
quadratic relationship. The benefit of using additional parameters beyond vital signs
is clearly shown by the algorithms’ sensitivities at the minimum acceptable PPV,
which were 13.2 % when using vital signs alone, and 59.3 % when using stepwise
inclusion of all parameters.

In [19] additional visualisations were used to demonstrate the effect of choosing
different thresholds. Firstly, the dependent variable of time before death on ICU was
used to examine how the output changed with time before death, as shown in
Fig. 22.5. This shows that a lower threshold results in more advanced warning of
deterioration. Secondly, the proportion of patients who reached each output during
their stay was presented, as shown in Fig. 22.6. This suggests that a lower threshold
results in more false alerts and fewer true alerts.

22.6 Discussion

The introduction of EHRs has provided opportunity to improve the clinical algo-
rithms used to identify deteriorations. The data fusion algorithms described in this
chapter estimate the probability of a patient dying during their ICU stay every 4 h.
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Fig. 22.5 Mean algorithm
outputs during the 48 h prior
to death on ICU (after
exponential smoothing).
A lower choice of threshold
for alerting results in more
advanced warning of
deterioration
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survivors and non-survivors
who reached each algorithm
output value during their ICU
stay. A lower choice of
threshold for alerting results
in more false alerts, and fewer
true alerts
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The inclusion of additional physiological parameters beyond vital signs alone
resulted in improvements in algorithm performance in this study when assessed
using the AUROC, as also observed previously [18, 19], and when assessed using
the minimum sensitivities corresponding to clinical requirements.

This case study has demonstrated the fundamental steps required to design and
evaluate data fusion algorithms for prediction of deteriorations. During
pre-processing the required data were extracted from the raw data files, and pro-
cessed into matrices ready for analysis. It was important to perform this step sep-
arately to the analysis to reduce the time required for algorithm design. During this
step we identified deficiencies in the dataset. Unfortunately, there is no systematic
way to ensure that all deficiencies have been identified. We recommend that firstly
the distributions of each variable are inspected to identify obvious discrepancies
such as the different units used for temperature in this dataset. Secondly, it is helpful
to plot the raw data over time to identify any changes in practice that may have
occurred during data acquisition. Thirdly, it is often valuable to seek the guidance
of a clinician or database curator at the host institution, or a researcher who has
worked with the dataset before.

The results presented here cannot be generalised to a hospital-wide patient
population for two reasons. Firstly, the dataset consists of data from critically-ill
patients, whereas EWSs are primarily designed to identify deteriorations in
acutely-ill patients. Since the disease processes of critically-ill patients are more
advanced and they have additional clinical interventions such as mechanical ven-
tilation and organ support, both the baseline physiology and the physiological
changes accompanying deteriorations may differ in this population compared to
acutely-ill patients. Secondly, death in ICU was used as the dependent variable in
this study. Death is the latest possible stage of deterioration, and therefore an
algorithm which predicts death may not predict the onset of deteriorations early
enough to be of clinical utility in acutely-ill patients.

The choice of statistical methods to assess the performance of EWSs is the
subject of debate [23]. The AUROC has often been used to quantify the perfor-
mance of EWS algorithms, such as in [17]. This statistic is calculated from an
algorithm’s sensitivities and specificities at a range of threshold values. However, it
has been recently suggested that the AUROC is misleading due to the low preva-
lence of deteriorations [23]. In [23] alternative statistical measures were proposed to
account for the clinical requirements of EWS algorithms. Statistical measures
should firstly assess the benefits and costs of using EWSs. The benefit is that EWSs
can act as a safety net to catch deteriorating patients who have been missed in
routine clinical assessments. This requires a high sensitivity (the proportion of EWS
assessments of deteriorating patients which do alert). The cost of EWSs is the time
taken to respond to false alerts. This cost is relatively small, since the additional
clinical assessment triggered by an alert takes only a short amount of time. This
means that a high specificity (the proportion of negative tests which are true neg-
atives) is not of great importance. Secondly, it is important to ensure that the
positive predictive value (the proportion of alerts which are true) is high enough to
prevent caregivers suffering from desensitisation to alerts, which may result in less
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effective responses to patients who are correctly identified as deteriorating [24].
Thirdly, the alert rate must be manageable to avoid excessive resource utilization. In
this case study we presented the AUROC and the maximum sensitivities when
algorithms were constrained to a minimally acceptable PPV and a maximally
acceptable alert rate [23].

22.7 Conclusions

This case study has demonstrated the potential utility of data fusion techniques to
predict clinical deteriorations. Currently identification of deteriorations is achieved
using EWSs which take vital signs as inputs. The performance of the data fusion
algorithms assessed in this study was improved by increasing the set of inputs to
include physiological parameters which are routinely available in EHRs, but are not
measured at the bedside.

The fundamental techniques for design and evaluation of data fusion algorithms
have been demonstrated. Logistic regression algorithms were used to predict a
binary response variable, death in ICU. The use of both linear and quadratic
relationships between the predictor and response variables were demonstrated as
well as the use of stepwise inclusion of variables. A range of statistical measures
were presented for evaluation of algorithms, illustrating the benefits of using
alternative statistical measures to the commonly used AUROC.

The results should not be interpreted as representative of the results that could be
expected when EWSs are used in acute settings since the study dataset consists of
critically-ill patients, and death in ICU was used as the dependent variable.
However, the techniques used to design and evaluate algorithms can be easily
applied to a wide range of patient settings, providing a basis for further work.

22.8 Further Work

Two particular areas have been identified for further research. Firstly, the work
could be repeated using a dataset acquired from acutely-ill, rather than critically-ill
patients, and by using a dependent variable other than death. This would facilitate
design of algorithms that are generalisable to the target hospital population.
Secondly, a range of additional functions could be explored to model the rela-
tionship between the predictor variables and the output. More complex functions
than the linear or purely quadratic functions such as higher order polynomials or
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logistic functions may improve performance. In addition it would be prudent to
investigate the effect of the inclusion of interaction terms to account for the rela-
tionships between predictor variables.

22.9 Personalised Prediction of Deteriorations

The algorithms presented here are limited in scope by the input parameters.
Currently they obtain a detailed description of a patient’s physiological state from
the vital signs and biochemistry values, which make up 23 out of the 25 inputs.
However, these parameters provide very little differentiation between individual
patients according to their state on admission to hospital. In contrast, additional
information present upon hospital admission is used by clinicians during a patient’s
hospital stay to contextualise physiological assessments.

To illustrate this, consider the response of the algorithms to two fictional 65-year
old males, patients A and B. Patient A has a history of hypertension, and a high
systolic blood pressure (SBP) prior to hospital admission of 147 mmHg. Patient B
has led an active life, has a healthy diet, and has a relatively low SBP prior to
admission of 114 mmHg. During their hospital stay, the SBP of both patients is
measured to be 114 mmHg. The algorithms cannot distinguish whether this is
representative of patient A during a significant deterioration, such as the early
stages of hypotension preceding septic shock, or whether it is representative of
patient B’s usual state in the absence of any deterioration. If the algorithms used a
wider range of inputs indicative of patient state prior to admission, such as the
presence or absence of co-morbidities (existing medical conditions) including
hypertension, they might be able to differentiate between patients A and B in this
situation.

This illustrates the potential benefit of incorporating additional inputs indicating
co-morbidities. Even greater benefit may be derived by also personalising EWS
algorithms according to physiological state prior to admission. Personalised EWS
algorithms would not only stratify patients using additional inputs to contextualise
physiology, but would also personalise the regression coefficients according to a
patient’s physiological state measured previously at a time of relative health.
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used to extract data from the MIMIC II database:

• cohort_selection.sql: used to identify a cohort of patients for whom
data would be extracted.

• cohort_labs.sql: used to extract laboratory test results.
• cohort_vitals.sql: used to extract vital signs.

Data was extracted in CSV format. Subsequent analysis was performed in
Matlab® using RunFusionAnalysis.m. It contains the following script:

• SetupUniversalParams: used to set universal parameters (in this case, file
paths), which are used to load and save files throughout the analysis). These
parameters should be adapted when using the code.

It then called the following scripts:

• LoadData.m: used to load CSV data into Matlab® for analysis.
• PreProcessing.m: performs pre-processing to prepare data for analysis.
• CreateDataFusionAlgs.m: creates data fusion algorithms using training

data.
• AnalysePerformances.m: analyses the performances of data fusion

algorithms using validation data.
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