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Learning Objectives
In this case study we Illustrate how to

• Estimate causal effects of a potential intervention when there is an instrumental
variable available.

• Identify appropriate model classes with which to estimate effects using instru-
mental variables.

• Examine potential sources of treatment effect heterogeneity.

19.1 Introduction

The goal of observational research is to identify the causal effects of exposures or
treatments on clinical outcomes of interest. The availability of data derived from
electronic health records (EHRs) has improved the feasibility of large-scale
observational studies. However, both treatments and patient characteristics (co-
variates) affect outcomes. Since in general the two are dependent, it is not accurate
to simply compare the outcomes of those receiving different treatments to decide
which treatment is more effective. While regression analysis can account for the
variation in those covariates that can be observed, estimates remain biased if there
are unobservable covariates that affect treatment propensity and outcomes.

Idealized randomized controlled experiments overcome the problem of unob-
served covariates by virtue of them being randomly distributed in a balanced
manner between the treatment and control groups as the sample size becomes large.
In practice, however, such experiments are affected by participant non-compliance.
Instrumental variable techniques, which use treatment assignment as the instrument
and actual treatment taken as the endogenous variables (those that result from
choices that may be affected by unobservables), are useful in this setting.

Instrumental variable analyses (IVAs) attempt to exploit “natural experi-
ments”—sources of unintentional but effective randomization of subjects to
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different treatments. To take advantage of such natural experiments, subjects must
find themselves in a situation in which some observable characteristic makes them
more likely to receive a specified treatment, but does not otherwise affect the
outcome of interest, and is independent of unobservable covariates (see Fig. 19.1).
The estimation then relies on using only the variation caused by this observable
characteristic, called an instrument or instrumental variable (IV), to identify the
effect.

There are three key considerations in the selection of appropriate controls and
valid instruments:

1. Control variables should be pre-treatment characteristics of the patients or
providers: One should not control for outcomes or decisions that occur after the
treatment, even if they are not the outcome of interest, as this would bias results.
Drawing the causal model and analyzing the paths provides a principled way of
understanding the underlying assumptions that are being made. Web-based
software [1] is available to facilitate this.

2. The instrument must be correlated with the treatment and explain a sub-
stantial portion of the variation in the treatment: The less variation in the
treatment that the instrument explains (the “weaker” the instrument), the higher
the variance of the estimates obtained. This higher variance may deny any
benefits from bias reduction.

3. The instrument must be independent of the outcome through any mecha-
nism other than the treatment: This remains one of the greatest challenges of
employing IVAs accurately in medical data, as identifying instruments that have
no relationship with any unobservable clinical variation beyond the treatment is
difficult.

To illustrate these concepts we propose using an IVA to estimate the effect on
intensive care unit (ICU) mortality of receiving care in a “non-target” ICU, defined
as a unit that has a different specialty focus than the ICU to which patients would
have been assigned in the absence of capacity constraints. For example, patients
being cared for by a medical ICU team ideally care for their patients in a defined

Fig. 19.1 Instrumental
variable analyses employ
instruments that affect the
likelihood of the exposure but
do not otherwise affect the
outcome
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geographic area designated as the medical ICU (MICU), but when no beds are
available in that unit a patient may instead be assigned to an unoccupied bed in a
non-target ICU such as a surgical ICU (SICU). In this study, we define those
patients assigned beds in non-target ICUs as boarders.

Although the physicians of the MICU team retain responsibility for the care of
boarders, most other staff involved in the patient’s care (e.g. nurses, respiratory
therapists, physical therapists) will change as a result of boarding status. This is
because these staff are assigned to a specific geographically-defined ICU such as the
SICU. As a result, boarders are typically cared for by nurses and other staff who
possess expertise more appropriate for managing surgical patients than medical
patients. Additionally, since physicians and nurses who work in different ICUs may
not be as familiar with each other’s clinical practices, communication difficulties
can arise. Lastly, there are also greater geographic distances between boarders and
their physicians compared to non-boarders. This can contribute to delays in care
and impairment of a physician’s level of situational awareness. It therefore seems
reasonable to hypothesize that boarding may negatively impact upon clinical out-
comes, including survival.

19.2 Methods

19.2.1 Dataset

The Medical Information Mart for Intensive Care (MIMIC-III) database contains
clinical and administrative data on over 60,000 ICU stays at Beth Israel Deaconess
Medical Center (BIDMC) between 2001 and 2012. It includes operational-level
data on bed assignments and service transfers, as well as ICD-9-CM diagnoses and
several mortality measures (ICU stay mortality, hospital mortality, and survival
duration up to one year).

19.2.2 Methodology

Cohort Selection
We included all adult subjects, aged 18 years or older, cared for by the MICU at
any point during their admission. The study period was defined as June, 2002
through December, 2012. In order to ensure independence of observations only the
last ICU admission for each subject was included in the analysis.

Exclusion criteria included subjects whose primary hospital team at any point
during their admission was non-medical (i.e. surgical or cardiac), as this might
imply a specific reason aside from capacity constraints for a patient to be a boarder
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in a non-medical ICU (for example, a postoperative subject in the surgical ICU
being transferred from the surgical ICU team to the medical ICU team for persistent
respiratory failure).

The final study population included 8442 subjects, of whom 1881 (22 %) were
exposed to the effects of boarding.

Statistical Approach
A naive estimate of the effect of boarding on mortality would compare the out-
comes of patients who were boarders to those who were not. However, the decision
to board a patient is not random. It takes into account the level of severity of a given
patient’s condition, as well as how that compares with the severity levels of other
incoming patients also in need of an ICU bed. It is likely that much of the infor-
mation that informs this decision is unobservable. As a consequence, if we con-
ducted this study as a simple regression analysis we would obtain biased estimates
of the effect of boarding.

For example, assume that boarding increases mortality, but also that ICU staff
preferentially select less severely ill patients to be boarders. In this hypothetical
scenario, the observed association between boarding and mortality could appear
protective if the negative effect of boarding on mortality is smaller than the positive
effect on observed mortality of selecting healthier patients. While one may, and
should, control for patients’ severity of illness and pre-existing health levels, it is
not usually possible to observe these with the same granularity and accuracy as the
hospital staff who decide whether the patient will become a boarder. As a result,
boarders may still be healthier than non-boarders even after conditioning on a
measure of severity of illness.

An IVA is an attractive approach in this situation. In this study, we focus on
MICU patients. We propose that the number of remaining available beds in the
western campus MICU at time of patient intake (west_initial_remaining_beds) may
serve as a valid instrument for boarding status. It is important to note that
west_initial_remaining_beds does not include beds that are available outside of the
MICU (i.e. beds to which boarders can be assigned). The boarder status of the
patient is the causal variable and the outcome is death during ICU stay (Fig. 19.2).

The Oxford Acute Severity of Illness Score (OASIS) is employed to help
account for residual differences between the health status of boarders and
non-boarders at the time of their intake into the ICU. OASIS is an ICU scoring
system that has been shown to have non-inferior performance characteristics rela-
tive to APACHE (Acute Physiology and Chronic Health Evaluation), MPM
(Mortality Probability Model), and SAPS (Simplified Acute Physiology Score) [2].
We preferentially use OASIS for severity of illness adjustment because its scores
can be more accurately reconstructed in MIMIC-III in a retrospective manner than
the aforementioned alternatives.

At times when hospital load is high, the total number of patients being cared
for by the ICU team (west_initial_team_census) is likely to be high, and
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west_initial_remaining_beds is likely to be low. Furthermore, it is plausible that
higher values of west_initial_team_censusmight affect mortality as a relatively fixed
quantity of ICU resources (e.g. physicians) is stretched across a greater number of
patients.

At first it may be unclear why there is imperfect correlation between west_ini-
tial_team_census and west_initial_remaining_beds, as one might anticipate that the
number of remaining beds is simply inversely proportional to the total number of
patients being cared for by the ICU team. The source of variation between these
variables is two-fold. The primary driver is the stochastic pattern of ICU discharges.
It is improbable that all boarders will be discharged prior to any of the non-boarders.
Discharging a non-boarder while other patients remain as boarders creates a situation
where the total team census may continue to be higher than the bed capacity of the
MICU, yet the number of available beds in the MICU becomes non-zero. The
second, smaller source of variation is occupancy of MICU beds by patients being
cared for by other ICU teams (e.g a SICU patient boarding in the MICU).

Using west_initial_remaining_beds as an instrument is therefore valid, but we
must control for west_initial_team_census. To check that west_initial_remain-
ing_beds is correlated to the propensity of patients to board, we fit a generalized
additive model with a logistic link function.

Once a natural experiment has been identified and the validity of the instru-
mental variable confirmed, an IVA can be conducted to estimate the causal effect of
the treatment. The standard in the econometrics literature has been to use a two-step
ordinary least squares (OLS) regression. There are two important limitations to this
approach in biomedical settings. Firstly, it requires continuous treatment and out-
come variables, both of which tend to be discrete or binary in medical applications.

Fig. 19.2 Simplified causal
diagram illustrating
confounding of the
relationship between boarding
and mortality due to
unobservable heterogeneity in
patient risk, and potential
conditional instrument
west_initial_remaining_beds.
The diagram can be
manipulated at http://dagitty.
net/dags.html?id=AVKMi0
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Secondly, it requires knowledge of the functional form of the underlying rela-
tionships such that the data can be transformed to make the relationships linear in
the parameters of the estimated model. This is often beyond what is known in the
biomedical field.

Several approaches have been developed to address these limitations. Probit
models are part of a family of generalized linear models (GLM) that is well suited to
working with discrete data, thereby addressing the first aforementioned limitation.
Furthermore, use of a basis expansion may allow the functional form to be
approximated flexibly using penalized splines, substantially relaxing the second
limitation related to knowledge of functional forms. At least one statistical package,
SemiParBIVProbit for R, combines these two approaches in an accessible
implementation.

In addition to the probit model, we used the survival package for R to estimate a
non-instrumental Cox proportional hazards model as a robustness check. In order to
minimize selection bias in this non-instrumental model, we used a subset of the
dataset in which it is intuitive that selective pressures would be reduced or
non-existent: west_initial_remaining_beds equal to zero (all patients must board
irrespective of their severity of illness) or west_initial_remaining_beds greater than
or equal to three (no imminent capacity constraint exerting pressure on physicians to
board patients). The linear assumptions of the Cox models are strong and not jus-
tified a priori, therefore in order to test for potential nonlinearities in the instrumental
model we used the Vuong and Clarke tests of the SemiParBIVProbit package.

All of our models included controls for patient age, gender, OASIS and
Elixhauser comorbidity scores, length of hospital stay prior to ICU admission, and
calendar year. In addition to controlling for the west_initial_team_census, we also
controlled for the total number of boarders under the care of the MICU team.

19.2.3 Pre-processing

We used a software package called Chatto-Transform [3] that connects to a local
PostgreSQL instance of MIMIC-III and simplifies the process of importing table
data into an interactive Jupyter notebook [4]. Python 3 and the Pandas library [5]
were used for data extraction and analysis (see code supplement).

The publicly available version of MIMIC-III applies random time-shifts to
records to help prevent subjects from being identified. After institutional review
board approval, we obtained the exact dates and bed assignments for each subject’s
ICU stay and used this to reconstruct the entire hospital ICU census.

The services table in MIMIC-III documents the specific service (e.g. medicine,
general surgery, cardiology) responsible for a patient at a given moment in time.
The service providing MICU care is classified as ‘medicine’. Therefore general
medicine patients who are initially admitted to a ward and later require a MICU bed
will still only have one entry per admission in this table, provided that they are not
transferred to the care of a different service. We consider a refined copy of the
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services table (‘med_service_only’) that retains only those rows pertaining to
patients cared for exclusively by the medicine service during their stay. The
resulting table therefore has only one row per hospital admission.

The transfers table documents every change in a patient’s location during their
hospital admission, including exact bed assignments and timestamp data. A new
table df can be created by performing a left join between transfers and med_ser-
vice_only. In the resulting table, rows pertaining to the population of interest (i.e.
medicine patients who incurred a MICU stay at some point during their admission)
will have data corresponding to both the left (transfers) and right (med_ser-
vice_only) tables. Rows pertaining to all other patients will only have data from the
transfers table. We further subdivide this table into inboarders (which contains
rows pertaining to non-MICU patients occupying beds in the MICU) and df5
(which contains rows pertaining to our population of interest).

Looping through each row in df5, we identify rows in inboarders that represent a
MICU bed occupied by a non-MICU patient at the time a MICU patient began their
ICU stay. We also determine whether the new MICU patient was assigned a bed
outside the geographic confines of the MICU, in which case they were classified as
a boarder. Lastly, a count of the total number of patients being cared for by the
MICU team is generated and added to each row of df5. These variables allow for
calculation of the number of remaining MICU beds through the formula:

Remaining Beds ¼ ðMICU Capacity� No: of InboardersÞ � ðTeam Census
� No: of BoardersÞ

Death during ICU stay was determined a priori to be our primary outcome of
interest. We identified a number of instances in the dataset where death occurred
within minutes or hours of discharge from the ICU. This was most likely due to
combination of expected deaths (subjects transitioned to comfort-focused care who
were transferred out of the ICU shortly prior to death), unexpected deaths, and
minor time discrepancies inherent to large datasets that include administrative
details. Prior to data analysis it was decided that our preferred definition of death
during ICU stay would include those within 24 h of leaving the ICU.

19.3 Results

Looking at the fitted models, we observe an increase in mortality from boarding
across the different specifications. In the semiparametric bivariate probit model,
using the west_initial_remaining_beds as an instrument, the estimated causal [6]
average risk ratio is 1.44 (95 % interval: 1.17, 1.79). In the non-instrumental Cox
proportional hazards model we observe a similar estimate of 1.34 (1.06, 1.70).

Often treatments result in different effects of different patients, thus it is sensible
to think of average treatment effects (ATE). Instrumental variable analyses, how-
ever, restrict the estimation to the variation in the data that is attributable to the
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instrument. That is, the effect they estimate is the local effect on those patients
whose treatment is affected by the instrument. This is termed the Local Average
Treatment Effect (LATE), and is what is estimated by an IVA when there is
heterogeneity in treatment effects.

19.4 Next Steps

Much of the existing medical literature utilizing IVAs has addressed policy ques-
tions as opposed to the effect of medical treatments. This has been driven by the
interest in such questions by health care economists, as well as the greater avail-
ability and suitability of administrative—rather than clinical—data within the
medical field. In contrast, the growing adoption and increasing sophistication of
EHRs now presents us with an opportunity to investigate the effects of medical
treatments through their provision of a rich source of observable variables and
potential instruments. Examples include measurable variation in the number and
characteristics of hospital staff, as well as load levels that cause spillover between
units and thus are exogenous to a particular patient in a given unit. There is also a
large body of literature that has explored Mendelian randomization as a source of
instruments, however these usually create limited variation therefore instrument
weakness is a substantial concern.

Aside from serving as candidate instruments or controls, some variables easily
extracted from EHRs may be useful for checking the plausibility of a proposed
pseudo-randomization process: if an instrument is truly randomizing patients with
respect to a treatment then we would expect a balanced distribution of a wide range
of observable variables (e.g. patient demographics). This is akin to tables that
compare the baseline characteristics between groups in the results of randomized
controlled trial. Estimating causal effects from natural experiments is an important
part of the econometrics literature. For an influential practitioners reference, see
Mostly Harmless Econometrics [7]. A excellent counterpoint can be found in part
III of Shalizi [8].

Instrumental variables are powerful tools in the identification of causal rela-
tionships, but it is critical to remain mindful of potential sources of confounding.
Garabedian et al. reviewed the studies published in the medical literature using
IVAs and found that the four most commonly used instrument categories—distance
to facility, regional variation, facility variation, and physician variation—all suf-
fered from “potential unadjusted instrument–outcome confounders … including
patient race, socioeconomic status, clinical risk factors, health status, and urban or
rural residency; facility and procedure volume; and co-occurring treatments” [9].
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19.5 Conclusions

This case study demonstrates the steps involved in the identification and validation
of an instrumental variable. It also illustrates the process of conducting an IVA to
estimate effect sizes and infer causal relationships from observational data.

The results of our study support the hypothesis that boarding of critically ill
patients has deleterious effects on ICU survival. We recommend that institutions
take steps to minimize boarding among ICU patients and that further studies be
undertaken to more precisely characterize the effect size. Better understanding of
the mediators through which boarding influences mortality is also important, and
may help to identify groups of patients who are able to board without detrimental
effects, and those for whom boarding should be particularly avoided.
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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