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Learning Objectives

• What common methods for outlier detection are available.
• How to choose the most appropriate methods.
• How to assess the performance of an outlier detection method and how to

compare different methods.

14.1 Introduction

An outlier is a data point which is different from the remaining data [1]. Outliers are
also referred to as abnormalities, discordants, deviants and anomalies [2]. Whereas
noise can be defined as mislabeled examples (class noise) or errors in the values of
attributes (attribute noise), outlier is a broader concept that includes not only errors
but also discordant data that may arise from the natural variation within the pop-
ulation or process. As such, outliers often contain interesting and useful information
about the underlying system. These particularities have been exploited in fraud
control, intrusion detection systems, web robot detection, weather forecasting, law
enforcement and medical diagnosis [1], using in general methods of supervised
outlier detection (see below).

Within the medical domain in general, the main sources of outliers are equip-
ment malfunctions, human errors, anomalies arising from patient specific behaviors
and natural variation within patients. Consider for instance an anomalous blood test
result. Several reasons can explain the presence of outliers: severe pathological
states, intake of drugs, food or alcohol, recent physical activity, stress, menstrual
cycle, poor blood sample collection and/or handling. While some reasons may point
to the existence of patient-specific characteristics discordant with the “average”
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patient, in which case the observation being an outlier provides useful information,
other reasons may point to human errors, and hence the observation should be
considered for removal or correction. Therefore, it is crucial to consider the causes
that may be responsible for outliers in a given dataset before proceeding to any type
of action.

The consequences of not screening the data for outliers can be catastrophic. The
negative effects of outliers can be summarized in: (1) increase in error variance and
reduction in statistical power; (2) decrease in normality for the cases where outliers
are non-randomly distributed; (3) model bias by corrupting the true relationship
between exposure and outcome [3].

A good understanding of the data itself is required before choosing a model to
detect outliers, and several factors influence the choice of an outlier identification
method, including the type of data, its size and distribution, the availability of
ground truth about the data, and the need for interpretability in a model [2]. For
example, regression-based models are better suited for finding outliers in linearly
correlated data, while clustering methods are advisable when the data is not linearly
distributed along correlation planes. While this chapter provides a description of
some of the most common methods for outlier detection, many others exist.

Evaluating the effectiveness of an outlier detection algorithm and comparing the
different approaches is complex. Moreover, the ground-truth about outliers is often
unavailable, as in the case of unsupervised scenarios, hampering the use of quan-
titative methods to assess the effectiveness of the algorithms in a rigorous way. The
analyst is left with the alternative of qualitative and intuitive evaluation of results
[2]. To overcome this difficulty, we will use in this chapter logistic regression
models to investigate the performance of different outlier identification techniques
in the medically relevant case study.

14.2 Part 1—Theoretical Concepts

Outlier identification methods can be classified into supervised and unsupervised
methods, depending on whether prior information about the abnormalities in the
data is available or not. The techniques can be further divided into univariable and
multivariable methods, conditional on the number of variables considered in the
dataset of interest.

The simplest form of outlier detection is extreme value analysis of unidimen-
sional data. In this case, the core principle of discovering outliers is to determine the
statistical tails of the underlying distribution and assume that either too large or too
small values are outliers. In order to apply this type of technique to a multidi-
mensional dataset, the analysis is performed one dimension at a time. In such a
multivariable analysis, outliers are samples which have unusual combinations with
other samples in the multidimensional space. It is possible to have outliers with
reasonable marginal values (i.e. the value appears normal when confining oneself to
one dimension), but due to linear or non-linear combinations of multiple attributes
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these observations unveil unusual patterns in regards to the rest of the population
under study.

To better understand this, the Fig. 14.1 provides a graphical example of a sce-
nario where outliers are only visible in a 2-dimensional space. An inspection of the
boxplots will reveal no outliers (no data point above and below 1.5 IQR (the
interquartile range, refer to Chap. 15—Exploratory Data Analysis), a widely uti-
lized outlier identification method), whereas a close observation of the natural
clusters present in data will uncover irregular patterns. Outliers can be identified by
visual inspection, highlighting data points that seem to be relatively out of the
inherent 2-D data groups.

14.3 Statistical Methods

In the field of statistics, the data is assumed to follow a distribution model (e.g.,
normal distribution) and an instance is considered an outlier if it deviates signifi-
cantly from the model [2, 4]. The use of normal distributions simplifies the analysis,

Fig. 14.1 Univariable (boxplots) versus multivariable (scatter plot) outlier investigation
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as most of the existing statistical tests, such as the Z-score, can be directly inter-
preted in terms of probabilities of significance. However, in many real world
datasets the underlying distribution of the data is unknown or complex. Statistical
tests still provide a good approximation of outlier scores, but results of the tests
need to be interpreted carefully and cannot be expressed statistically [2]. The next
sections describe some of the most widely used statistical tests for outliers
identification.

14.3.1 Tukey’s Method

Quartiles are the values that divide an array of numbers into quarters. The (IQR) is
the distance between the lower (Q1) and upper (Q3) quartiles in the boxplot, that is
IQR = Q3 − Q1. It can be used as a measure of how spread out the values are.
Inner “fences” are located at a distance of 1.5 IQR below Q1 and above Q3, and
outer fences at a distance of 3 IQR below Q1 and above Q3 [5]. A value between
the inner and outer fences is a possible outlier, whereas a value falling outside the
outer fences is a probable outlier. The removal of all possible and probable outliers
is referred to as the Interquartile (IQ) method, while in Tukey’s method only the
probable outliers are discarded.

14.3.2 Z-Score

The Z-value test computes the number of standard deviations by which the data
varies from the mean. It presents a reasonable criterion for the identification of
outliers when the data is normally distributed. It is defined as:

zi ¼ xi � x
s

ð14:1Þ

where x and s denote the sample mean and standard deviation, respectively. In cases
where mean and standard deviation of the distribution can be accurately estimated
(or are available from domain knowledge), a good “rule of thumb” is to consider
values with zij j � 3 as outliers. Of note, this method is of limited value for small
datasets, since the maximum z-score is at most n� 1=

ffiffiffi
n

p
[6].

14.3.3 Modified Z-Score

The estimators used in the z-Score, the sample mean and sample standard deviation,
can be affected by the extreme values present in the data. To avoid this problem, the
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modified z-score uses the median ex and the median absolute deviation
(MAD) instead of the mean and standard deviation of the sample [7]:

Mi ¼ 0:6745ðxi � exÞ
MAD

ð14:2Þ

where

MAD ¼ medianfjxi � exjg ð14:3Þ

The authors recommend using modified z-scores with Mij j � 3:5 as potential
outliers. The assumption of normality of the data still holds.

14.3.4 Interquartile Range with Log-Normal Distribution

The statistical tests discussed previously are specifically based on the assumption
that the data is fairly normally distributed. In the health care domain it is common to
find skewed data, for instance in surgical procedure times or pulse oxymetry [8].
Refer to Chap. 15-Exploratory Data Analysis for a formal definition of skewness. If
a variable follows a log-normal distribution then the logarithms of the observations
follow a normal distribution. A reasonable approach then is to apply the ln to the
original data and they apply the tests intended to the “normalized” distributions. We
refer to this method as the log-IQ.

14.3.5 Ordinary and Studentized Residuals

In a linear regression model, ordinary residuals are defined as the difference
between the observed and predicted values. Data points with large residuals differ
from the general regression trend and may represent outliers. The problem is that
their magnitudes depend on their units of measurement, making it difficult to, for
example, define a threshold at which a point is considered an outlier. Studentized
residuals eliminate the units of measurement by dividing the residuals by an esti-
mate of their standard deviation. One limitation of this approach is it assumes the
regression model is correctly specified.

14.3.6 Cook’s Distance

In a linear regression model, Cook’s distance is used to estimate the influence of a
data point on the regression. The principle of Cook’s distance is to measure the
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effect of deleting a given observation. Data points with a large distance may rep-
resent outliers. For the ith point in the sample, Cook’s distance is defined as:

Di ¼
Pn

j¼1ðŷjŷjðiÞÞ2
ðkþ 1Þs2 ð14:4Þ

Where ŷjðiÞ is the prediction of yj by the revised regression model when the ith
point is removed from the sample, and s is the estimated root mean square error.
Instinctively, Di is a normalized measure of the influence of the point i on all
predicted mean values ŷj with j = 1, …, n. Different cut-off values can be used for
flagging highly influential points. Cook has suggested that a distance >1 represents
a simple operational guideline [9]. Others have suggested a threshold of 4/n, with
n representing the number of observations.

14.3.7 Mahalanobis Distance

This test is based on Wilks method designed to detect a single outlier from a normal
multivariable sample. It approaches the maximum squared Mahalanobis Distance
(MD) to an F-distribution function formulation, which is often more appropriate
than a v2 distribution [10]. For a p-dimensional multivariate sample xi (i = 1,…,n),
the Mahalanobis distance of the ith case is defined as:

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � tÞTC�1ðxi � tÞ

q
ð14:5Þ

where t is the estimated multivariate location, which is usually the arithmetic mean,
and C is the estimated covariance matrix, usually the sample covariance matrix.

Multivariate outliers can be simply defined as observations having a large
squared Mahalanobis distance. In this work, the squared Mahalanobis distance is
compared with quantiles of the F-distribution with p and p − 1 degrees of freedom.
Critical values are calculated using Bonferroni bounds.

14.4 Proximity Based Models

Proximity-based techniques are simple to implement and unlike statistical models
they make no prior assumptions about the data distribution model. They are suitable
for both supervised and unsupervised multivariable outlier detection [4].

Clustering is a type of proximity-based technique that starts by partitioning a N–
dimensional dataset into c subgroups of samples (clusters) based on their similarity.
Then, some measure of the fit of the data points to the different clusters is used in
order to determine if the data points are outliers [2]. One challenge associated with
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this type of technique is that it assumes specific shapes of clusters depending on the
distance function used within the clustering algorithm. For example, in a
3-dimensional space, the Euclidean distance would consider spheres as equidistant,
whereas the Mahalanobis distance would consider ellipsoids as equidistant (where
the length of the ellipsoids in one axis is proportional to the variance of the data in
that direction).

14.4.1 k-Means

The k-means algorithm is widely used in data mining due to its simplicity and
scalability [11]. The difficulty associated with this algorithm is the need to deter-
mine k, the number of clusters, in advance. The algorithm minimizes the
within-cluster sum of squares, the sum of distances between each point in a cluster
and the cluster centroid. In k-means, the center of a group is the mean of mea-
surements in the group. Metrics such as the Akaike Information Criterion or the
Bayesian Information Criterion, which add a factor proportional to k to the cost
function used during clustering, can help determine k. A k value which is too high
will increase the cost function even if it reduces the within-cluster sum of squares
[12, 13].

14.4.2 k-Medoids

Similarly to k-means, the k-medoids clustering algorithm partitions the dataset into
groups so that it minimizes the sum of distances between a data point and its center.
In contrast to the k-means algorithm, in k-medoids the cluster centers are members
of the group. Consequently, if there is a region of outliers outside the area with
higher density of points, the cluster center will not be pushed towards the outliers
region, as in k-means. Thus, k-medoids is more robust towards outliers than
k-means.

14.4.3 Criteria for Outlier Detection

After determining the position of the cluster center with either k-means or
k-medoids, the criteria to classify an item as an outlier must be specified, and
different options exist:

Criterion 1: The first criterion proposed to detect outliers is based on the
Euclidean distance to the cluster centers C, such that points more distant to their
center than the minimum interclusters distance are considered outliers:
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x 2 Ck is outlier if d x;Ckð Þ[ min
k 6¼jfdðCk;CjÞg � w ð14:6Þ

where dðx;CkÞ is the Euclidean distance between point x and Ck center, dðCk;CjÞ is
the distance between Ck and Cj centers and w ¼ f0:5; 0:7; 1; 1:2; 1:5; . . .g is a
weighting parameter that determines how aggressively the method will remove
outliers.

Figure 14.2 provides a graphical example of the effect of varying values of w in
the creation of boundaries for outlier detection. While small values of w aggres-
sively remove outliers, as w increases the harder it is to identify them.

Criterion 2: In this criterion, we calculate the distance of each data point to its
centroid (case of k-means) or medoid (case of k-medoids) [14]. If the ratio of the
distance of the nearest point to the cluster center and these calculated distances are
smaller than a certain threshold, than the point is considered an outlier. The
threshold is defined by the user and should depend on the number of clusters
selected, since the higher the number of clusters the closer are the points inside the
cluster, i.e., the threshold should decrease with increasing c.

Fig. 14.2 Effect of different weights w in the detection of cluster-based outliers, using criterion 1
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14.5 Supervised Outlier Detection

In many scenarios, previous knowledge about outliers may be available and can be
used to label the data accordingly and to identify outliers of interest. The methods
relying on previous examples of data outliers are referred to as supervised outlier
detection methods, and involve training classification models which can later be
used to identify outliers in the data. Supervised methods are often devised for
anomaly detection in application domains where anomalies are considered occur-
rences of interest. Examples include fraud control, intrusion detection systems, web
robot detection or medical diagnosis [1]. Hence, the labels represent what an analyst
might be specifically looking for rather than what one might want to remove [2].
The key difference comparing to many other classification problems is the inherent
unbalanced nature of data, since instances labeled as “abnormal” are present much
less frequently than “normal” labeled instances. Interested readers can find further
information about this topic in the textbook by Aggarwal, for instance [2].

14.6 Outlier Analysis Using Expert Knowledge

In univariate analyses, expert knowledge can be used to define thresholds of values
that are normal, critical (life-threatening) or impossible because they fall outside
permissible ranges or have no physical meaning [15]. Negative measurements of
heart rate or body temperatures are examples of impossible values. It is very
important to check the dataset for these types of outliers, as they originated
undoubtedly from human error or equipment malfunction, and should be deleted or
corrected.

14.7 Case Study: Identification of Outliers
in the Indwelling Arterial Catheter
(IAC) Study

In this section, various methods will be applied to identify outliers in two “real
world” clinical datasets used in a study that investigated the effect of inserting an
indwelling arterial catheter (IAC) in patients with respiratory failure. Two datasets
are used, and include patients that received an IAC (IAC group) and patients that
did not (non-IAC). The code used to generate the analyses and the figures is
available in the GitHub repository for this book.
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14.8 Expert Knowledge Analysis

Table 14.1 provides maximum and minimum values for defining normal, critical
and permissible ranges in some of the variables analyzed in the study, as well as
maximum and minimum values present in the dataset.

14.9 Univariate Analysis

In this section, univariate outliers are identified for each variable within pre-defined
classes (survivors and non-survivors), using the statistical methods described above.

Table 14.2 summarizes the number and percentage of outliers identified by each
method in the Indwelling Arterial Catheter (IAC) and non-IAC groups. Overall,
Tukey’s and log-IQ are the most conservative methods, i.e., they identify the

Table 14.1 Normal, critical and impossible ranges for the selected variables, and maximum and
minimum values present in the datasets

Reference value Analyzed data

Variable Normal
range

Critical Impossible IAC Non-IAC Units

Age – – <17
(adults)

15.2–99.1 15.2–97.5 Years

SOFA – – <0
and >24

1–17 0–14 No units

WBC 3 9–10.7 � 100 <0 0.3–86.0 0 2–109.8 �109 cells/L

Hemoglobin Male:
13.5–17.5

� 6
and � 20

<0 Male:
3 2–19.0

4.9–18.6 g/dL

Female:
12–16

Female:
2.0–18.l

4.2–18.1

Platelets 150–400 � 40
and � 1000

<0 7.0–680.0 9.0–988.0 �l09/L

Sodium 136–145 � 120
and � 160

<0 105 0–
165.0

111.0–
154.0

mmol/L

Potassium 3.5–5 � 2.5
and � 6

<0 1 9–9.8 1.9–8.3 mmol/L

TCO2 22–28 � 10
and � 40 [4]

<0 2.0–62.0 5.0–52.0 mmol/L

Chloride
[29]

95–105 � 70
and � 120

<0
and � 160

81.0–133.0 78.0–127.0 mmol/L

BUN 7–18 � 100 [1] <0 2.0–139.0 2.0-126.0 mg/dL

Creatinine 0.6–1.2 � 10 <0 0.2–12 5 0.0–18.3 mg/dL

PO2 75–105 � 40 <0 25 0–594.0 22.0–634.0 mmHg

PCO2 33–45 � 20
and � 70

<0 8.0–141.0 14.0–158.0 mmHg
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smallest number of points as outliers, whereas IQ identifies more outliers than any
other method. With a few exceptions, the modified z-score identifies more outliers
than the z-score.

A preliminary investigation of results showed that values falling within reference
normal ranges (see Table 14.1) are never identified as outliers, whatever the
method. On the other hand, critical values are often identified as such. Additional
remarks can be made as in general (1) more outliers are identified in the variable
BUN than in any other and (2) the ratio of number of outliers and total number of
patients is smaller in the class 1 cohorts (non-survivors). As expected, for variables
that approximate more to lognormal distribution than to a normal distribution, such
as potassium, BUN and PCO2, the IQ method applied to the logarithmic trans-
formation of data (log-IQ method) identifies less outliers than the IQ applied to the
real data. Consider for instance the variable BUN, which follows approximately a
lognormal distribution. Figure 14.3 shows a scatter of all data points and the
identified outliers in the IAC group.

Fig. 14.3 Outliers identified by statistical analysis for the variable BUN, in the IAC cohort. Class
0: survivors; Class 1: non survivors
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On the other hand, when the values follow approximately a normal distribution,
as in the case of chloride (see Fig. 14.4), the IQ method identifies less outliers than
log-IQ. Of note, the range of values considered outliers differs between classes, i.e.,
what is considered an outlier in class 0 is not necessarily an outlier in class 1. An
example of this is values smaller than 90 mmol/L in the modified z-score.

Since this is a univariate analysis, the investigation of extreme values using
expert knowledge is of interest. For chloride, normal values are in the range of 95–
105 mmol/L, whereas values <70 or >120 mmol/L are considered critical, and
concentrations above 160 mmol/L are physiologically impossible [15]. Figure 14.4
confirms that normal values are always kept, whatever the method. Importantly,
some critical values are not identified in both z-score and modified z-score (espe-
cially in class 1). Thus, it seems that the methods identify outliers that should not be
eliminated, as they likely represent actual values in extremely sick patients.

Fig. 14.4 Outliers identified by statistical analysis for the variable chloride, in the IAC cohort.
Class 0: survivors; Class 1: non survivors
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14.10 Multivariable Analysis

Using model based approaches, unusual combination of values for a number of
variables can be identified. In this analysis we will be concerned with multivariable
outliers for the complete set of variables in the datasets, including those that are
binary. In order to investigate multivariable outliers in IAC and non-IAC patients,
the Mahalanobis distance and cluster based approaches are tested within pre-defined
classes. Table 14.3 shows the average results in terms of number of clusters c de-
termined by the silhouette index, and the percentage of patients identified as

Table 14.3 Multivariable outliers identified by k-means, k-medoids and Mahalanobis distance

Criterion Weight c % of outliers Class 0

Class 0 Class 1 Class 0 Class 1

IAC

K-means,
silhouette
index

1 1.2 4 ± 3.1 2 ± 0.0 25.2 ± 7.4 20.9 ± 11.0

1 1.5 3 ± 2.9 2 ± 0.0 7.9 ± 4.6 3.3 ± 5.9

1 1.7 3 ± 2.6 2 ± 0.0 3.6 ± 2.5 0.4 ± 2.2

1 2.0 4 ± 3.1 2 ± 0.0 1.0 ± 1.1 0.1 ± 0.3

K-means,
c = 2

2 0.05 2 ± 0.0 2 ± 0.0 28.5 ± 4.8 21.4 ± 11.9

2 0.06 2 ± 0.0 2 ± 0.0 9.3 ± 4.2 2.9 ± 5.2

K-medoids,
silhouette
index

1 1.2 4 ± 3.0 2 ± 0.0 4.1 ± 2.2 0.8 ± 3.1

1 1.5 3 ± 2.6 2 ± 0.0 1.1 ± 1.0 0.1 ± 0.3

1 1.7 3 ± 2.9 2 ± 0.0 0.2 ± 0.2 0.0 ± 0.0

1 2.0 4 ± 3.0 2 ± 0.0 0.7 ± 0.4 0.0 ± 0.0

K-medoids,
c = 2

2 0.01 2 ± 0.0 2 ± 0.0 34.6 ± 8.6 2.5 ± 0.0

2 0.02 2 ± 0.0 2 ± 0.0 20.8 ± 6.1 0.0 ± 0.0

Mahalanobis – – – – 16.7 ± 5.5 0.0 ± 0.0

Non-IAC

K-means,
silhouette
index

1 1.2 9 ± 1.8 7 ± 2.4 12.8 ± 4.1 13.0 ± 9.5

1 1.5 9 ± 1.7 7 ± 2.5 2.8 ± 1.8 1.0 ± 1.7

1 1.7 9 ± 1.8 7 ± 2.5 0.9 ± 1.2 0.0 ± 0.2

1 2.0 9 ± 2.4 7 ± 2.5 0.2 ± 0.7 0.0 ± 0.0

K-means,
c = 2

2 0.05 2 ± 0.0 2 ± 0.0 25.5 ± 4.5 41.0 ± 11.9

2 0.06 2 ± 0.0 2 ± 0.0 10.6 ± 2.6 4.8 ± 7.2

K-medoids,
silhouette
index

1 1.2 9 ± 1.5 7 ± 2.5 3.8 ± 1.6 1.4 ± 1.6

1 1.5 9 ± 2.0 7 ± 2.4 0.9 ± 1.9 0.0 ± 0.0

1 1.7 9 ± 2.0 7 ± 2.4 0.3 ± 0.6 0.0 ± 0.0

1 2.0 9 ± 1.3 7 ± 2.5 0.4 ± 0.9 0.0 ± 0.0

K-medoids,
c = 2

2 0.01 2 ± 0.0 2 ± 0.0 19.7 ± 4.0 2.7 ± 8.8

2 0.02 2 ± 0.0 2 ± 0.0 11.0 ± 2.8 1.0 ± 5.0

Mahalanobis – – – – 6.8 ± 2.6 0.8 ± 4.0

Results are presented as mean ± standard deviation
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outliers. In order to account for variability, the tests were performed 100 times. The
data was normalized for testing the cluster based approaches only.

Considering the scenario where two clusters are created for the complete IAC
dataset separated by classes, we investigate outliers by looking at multivariable
observations around cluster centers. Figure 14.5 shows an example of the outliers
detected using k-means and k-medoids with the criterion 1 and weight equal to 1.5.
For illustrative purposes, we present only the graphical results of patients that died
in the IAC group (class 1). The x-axis represents each of the selected features (see
Table 14.1) and the y-axis represents the corresponding values normalized between
0 and 1. K-medoids does not identify any outlier, whereas k-means identifies 1
outlier in the first cluster and 2 outliers in the second cluster. This difference can be
attributed to the fact that the intercluster distance is smaller in k-medoids than in
k-means.

The detection of outliers seems to be more influenced by binary features than by
continuous features: red lines are, with some exceptions, fairly close to black lines
for the continuous variables (1 to 2 and 15 to 25) and distant in the binary variables.
A possible explanation is that clustering was essentially designed for multivariable
continuous data; binary variables produce a maximum separation, since only two
values exist, 0 and 1, with nothing between them.

Fig. 14.5 Outliers identified by clustering based approaches for patients that died after IAC.
Criterion 1, based on interclusters distance, with c = 2 and w = 1.5 was used. K-medoids does not
identify outliers, whereas k-means identifies 1 outlier in cluster 1 and 2 outliers in cluster 2
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14.11 Classification of Mortality in IAC and Non-IAC
Patients

Logistic regression models were created to assess the effect of removing outliers
using the different methods in the classification of mortality in IAC and non-IAC
patients, following the same rationale as in Chap. 13-Missing Data. A 10-fold cross
validation approach was used to assess the validity and robustness of the models. In
each round, every outlier identification method was applied separately for each
class of the training set, and the results were averaged over the rounds. Before
cross-validation, the values were normalized between 0 and 1 using the min-max
procedure. For the log-IQ method, the data was log-transformed before normal-
ization, except for variables containing null values (binary variables in Table 14.1,
SOFA and creatinine). We also investigate the scenario where only the 10 % worst
examples detected by each statistical method within each class are considered, and
the case where no outliers were removed (all data is used). In the clustering based
approaches, the number of clusters c was chosen between 2 and 10 using the
silhouette index method. We also show the case where c is fixed as 2. The weight of
the clustering based approaches was adjusted according to the particularities of the
method. Since a cluster center in k-medoids is a data point belonging to the dataset,
the distance to its nearest neighbor is smaller than in the case of k-means, especially
because a lot of binary variables are considered. For this reason, we chose higher
values of w for k-means criterion 2.

The performance of the models is evaluated in terms of area under the receiver
operating characteristic curve (AUC), accuracy (ACC, correct classification rate),
sensitivity (true positive classification rate), and specificity (true negative classifi-
cation rate). A specific test suggested by DeLong and DeLong can then test whether
the results differ significantly [16].

The performance results for the IAC group are shown in Table 14.4, and the
percentage of patients removed using each method in Table 14.5. For conciseness,
the results for the non-IAC group are not shown. The best performance for IAC is
AUC = 0.83 and ACC = 0.78 (highlighted in bold). The maximum sensitivity is
87 % and maximum specificity is 79 %, however these two do not occur simul-
taneously. Overall, the best AUC is obtained when all the data is used and when
only a few outliers are removed. The worst performances are obtained using the
z-score without trimming the results and k-means and k-medoids using c = 2,
criterion 1 and weight 1.2. As for non-IAC, the best performance corresponds to
AUC = 0.88, ACC = 0.84, sensitivity = 0.85 and specificity = 0.85. Again, the
best performance is achieved when all the data is used and in the cases where less
outliers are removed. The worst performance by far is obtained when all outliers
identified by the z-score are removed. Similarly to IAC, for k-means and k-medoids
criterion 1, increasing values of weight provide better results.
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Table 14.4 IAC logistic regression results using 10-fold cross validation, after removal of outliers
and using the original dataset

Statistical Cutoff AUC ACC Sensitivity Specificity

IQ – 0.81 ± 0.05 0.76 ± 0.05 0.71 ± 0.14 0.76 ± 0.06

10 0.82 ± 0.06 0.77 ± 0.06 0.76 ± 0.11 0.77 ± 0.07

Tukey’s – 0.82 ± 0.05 0.75 ± 0.06 0.76 ± 0.09 0.75 ± 0.06

10 0.83 – 0.06 0 78 ± 0.05 0.75 ± 0 10 0.78 ± 0.06

Log-IQ – 0.82 ± 0.06 0.76 ± 0.05 0.74 ± 0 14 0.76 ± 0.06

10 0.83 – 0.06 0.78 – 0.04 0.73 ± 0 10 0.79 ± 0.05

Z-score – 0.78 ± 0.03 0.67 ± 0.06 0.85 ± 0 09 0.64 ± 0.08

10 0.81 ± 0.07 0.75 ± 0.06 0.74 ± 013 0.75 ± 0.07

Modified z-score – 0.82 ± 0.05 0.76 ± 0.05 0.77 ± 0 14 0.76 ± 0.05

10 0.82 ± 0.06 0.77 ± 0.06 0.75 ± 0 10 0.77 ± 0.06

Mahalanobis – 0.81 ± 0.08 0.75 ± 0.06 0.73 ± 0 10 0.76 ± 0.07

Cluster based Weight AUC ACC Sensitivity Specificity

K-means
silhouette
criterion 1

1.2 0.81 ± 0.08 0.72 ± 0.05 0.80 ± 0.12 0.70 ± 0.06

1.5 0.82 ± 0.05 0.76 ± 0.06 0.76 ± 011 0.76 ± 0.06

1.7 0.83 – 0.06 0.78 – 0.05 0.77 ± 0 10 0.78 ± 0.06

2 0.83 – 0.06 0.78 – 0.05 0.74 ± 0.09 0.78 ± 0.06

K-means c = 2
criterion 1

1.2 0.79 ± 0.08 0.66 ± 0.05 0.84 ± 0 10 0.63 ± 0.06

1.5 0.82 ± 0.06 0.73 ± 0.06 0.79 ± 0 09 0.72 ± 0.07

1.7 0.82 ± 0.06 0.75 ± 0.06 0.78 ± 0.08 0.75 ± 0.08

2 0.83 – 0.07 0.78 – 0.06 0.76 ± 0 09 0.78 ± 0.06

K-means
criterion 2

0 05 0.83 – 0.07 0.77 ± 0.05 0.74 ± 0.09 0.78 ± 0.06

0.06 0.83 – 0.06 0.77 ± 0.06 0.75 ± 0 10 0.78 ± 0.06

K-medoids
silhouette
criterion 1

1.2 0.81 ± 0.04 0.68 ± 0.04 0.85 ± 0 09 0.64 ± 0.05

1.5 0.83 – 0.05 0.74 ± 0.04 0.80 ± 0 10 0.73 ± 0.06

1.7 0.83 ± 0.05 0.75 ± 0.06 0.78 ± 0 10 0.74 ± 0.07

2 0.83 ± 0.06 0.77 ± 0.05 0.77 ± 0 09 0.77 ± 0.06

K-medoids
c = 2 criterion 1

1.2 0.78 ± 0.06 0.62 ± 0.07 0.87 ± 0 08 0.57 ± 0.07

1.5 0.81 ± 0.06 0.70 ± 0.06 0.83 ± 0 10 0.68 ± 0.08

1.7 0.82 ± 0.06 0.72 ± 0.06 0.80 ± 0 10 0.71 ± 0.08

2 0.83 – 0.07 0.76 ± 0.06 0.77 ± 0 10 0.75 ± 0.07

K-medoids
criterion 2

0.01 0.83 ± 0.07 0.74 ± 0.07 0.77 ± 0 10 0.74 ± 0.08

0 02 0.81 ± 0.06 0.67 ± 0.06 0.85 ± 0 09 0.63 ± 0.08

All data – 0.83 – 0.06 0.78 – 0.05 0.76 ± 0.11 0.79 ± 0.06

Results are presented as mean ± standard deviation
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14.12 Conclusions and Summary

The univariable outlier analysis provided in the case study showed that a large
number of outliers were identified for each variable within the predefined classes,
meaning that the removal of all the identified outliers would cause a large portion of

Table 14.5 Percentage of IAC patients removed by each method in the train set, during
cross-validation

Statistical Cutoff Class 0 Class 1 Total

IQ – 23.1 ± 1.4 33.3 ± 1.9 24.8 ± 1.4

10 3.3 ± 0.2 5.2 ± 0.3 3.6 ± 0.2

Tukey’s – 8.7 ± 0.05 10.1 ± 1.1 9.0 ± 0.5

10 1.2 ± 0.1 1.3 ± 0.2 1.3 ± 0 1

Log-IQ – 22.8 ± 1.1 25.4 ± 2.0 23.2 ± 1.1

10 3.1 ± 0.2 3.7 ± 0.5 3.2 ± 0 1

Z-score – 35.0 ± 1.6 0.67 ± 0.06 32.6 ± 1.4

10 5.3 ± 0.2 2.9 ± 1.3 4.9 ± 0.3

Modified z-score – 18.3 ± 0.05 24.5 ± 1.3 19.4 ± 0.5

10 2.4 ± 0.1 3.5 ± 0.4 2.6 ± 0.1

Mahalanobis – 19.6 ± 9.6 17.4 ± 3.0 19.2 ± 8.1

Cluster based Weight Class 0 Class 1 Total

K-means silhouette criterion 1 1.2 19.6 ± 9.6 17.4 ± 3.0 19.2 ± 8.1

1.5 6.1 ± 5.1 1.9 ± 0.5 5.4 ± 4.2

1.7 2.5 ± 2.6 0.3 ± 0.3 2.2 ± 2.2

2 0.7 ± 0.9 0.0 ± 0.0 0.6 ± 0.8

K-means c = 2 criterion 1 1.2 29.7 ± 3.5 17.4 ± 3.0 27.6 ± 2.9

1.5 11.9 ± 3.0 1.9 ± 0.5 10.2 ± 2.5

1.7 5.5 ± 2.0 0.3 ± 0.3 4.7 ± 1.6

2 1.7 ± 0.8 0.0 ± 0.0 1.4 ± 0 7

K-means criterion 2 0 05 0.3 ± 0.2 0.0 ± 0.0 0.3 ± 0.2

0.06 1.1 ± 0.5 0.0 ± 0.0 0.9 ± 0 4

K-medoids silhouette criterion 1 1.2 25.0 ± 10.7 3.8 ± 2.0 21.5 ± 8.8

1.5 12.9 ± 7.4 0.0 ± 0.0 10.8 ± 6.2

1.7 9.5 ± 6.1 0.0 ± 0.0 7.9 ± 5.1

2 3.1 ± 2.3 0.0 ± 0.0 2.5 ± 1.9

K-medoids c = 2 criterion 1 1.2 34.7 ± 0.7 3.8 ± 2.0 29.5 ± 0.7

1.5 19.6 ± 0.6 0.0 ± 0.0 16.3 ± 0 5

1.7 14.9 ± 1.1 0.0 ± 0.0 12.4 ± 0 9

2 5.1 ± 0.4 0.0 ± 0.0 4.2 ± 0 4

K-medoids criterion 2 0.01 8.3 ± 2.1 0.0 ± 0.0 6.9 ± 1.7

0 02 28.9 ± 3.9 1.8 ± 3.8 24.4 ± 3.6

Results are presented as mean ± standard deviation
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data to be excluded. For this reason, ranking the univariate outliers according to
score values and discarding only those with highest scores provided better classi-
fication results.

Overall, none of the outlier removal techniques was able to improve the per-
formance of a classification model. As it had been cleaned these results suggest that
the dataset did not contain impossible values, extreme values are probably due to
biological variation rather than experimental mistakes. Hence, the “outliers” in this
study appear to contain useful information in their extreme values, and automati-
cally excluding resulted in a loss of this information.

Some modeling methods already accommodate for outliers so they have minimal
impact in the model, and can be tuned to be more or less sensitive to them. Thus,
rather than excluding outliers from the dataset before the modeling step, an alter-
native strategy would be to use models that are robust to outliers, such as robust
regression.

Take Home Messages

1. Distinguishing outliers as useful or uninformative is not clear cut.
2. In certain contexts, outliers may represent extremely valuable information that

must not be discarded.
3. Various methods exist and will identify possible or likely outliers, but the expert

eye must prevail before deleting or correcting outliers.

Open Access This chapter is distributed under the terms of the Creative Commons
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Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.
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