
Chapter 12
Data Pre-processing

Brian Malley, Daniele Ramazzotti and Joy Tzung-yu Wu

Learning Objectives

• Understand the requirements for a “clean” database that is “tidy” and ready for
use in statistical analysis.

• Understand the steps of cleaning raw data, integrating data, reducing and
reshaping data.

• Be able to apply basic techniques for dealing with common problems with raw
data including missing data inconsistent data, and data from multiple sources.

12.1 Introduction

Data pre-processing consists of a series of steps to transform raw data derived from
data extraction (see Chap. 11) into a “clean” and “tidy” dataset prior to statistical
analysis. Research using electronic health records (EHR) often involves the sec-
ondary analysis of health records that were collected for clinical and billing
(non-study) purposes and placed in a study database via automated processes.
Therefore, these databases can have many quality control issues. Pre-processing
aims at assessing and improving the quality of data to allow for reliable statistical
analysis.

Several distinct steps are involved in pre-processing data. Here are the general
steps taken to pre-process data [1]:

• Data “cleaning”—This step deals with missing data, noise, outliers, and
duplicate or incorrect records while minimizing introduction of bias into the
database. These methods are explored in detail in Chaps. 13 and 14.

• “Data integration”—Extracted raw data can come from heterogeneous sources
or be in separate datasets. This step reorganizes the various raw datasets into a
single dataset that contain all the information required for the desired statistical
analyses.

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_12

115

http://dx.doi.org/10.1007/978-3-319-43742-2_11
http://dx.doi.org/10.1007/978-3-319-43742-2_13
http://dx.doi.org/10.1007/978-3-319-43742-2_14

• “Data transformation”—This step translates and/or scales variables stored in a
variety of formats or units in the raw data into formats or units that are more
useful for the statistical methods that the researcher wants to use.

• “Data reduction”—After the dataset has been integrated and transformed, this
step removes redundant records and variables, as well as reorganizes the data in
an efficient and “tidy” manner for analysis.

Pre-processing is sometimes iterative and may involve repeating this series of
steps until the data are satisfactorily organized for the purpose of statistical analysis.
During pre-processing, one needs to take care not to accidentally introduce bias by
modifying the dataset in ways that will impact the outcome of statistical analyses.
Similarly, we must avoid reaching statistically significant results through “trial and
error” analyses on differently pre-processed versions of a dataset.

12.2 Part 1—Theoretical Concepts

12.2.1 Data Cleaning

Real world data are usually “messy” in the sense that they can be incomplete (e.g.
missing data), they can be noisy (e.g. random error or outlier values that deviate
from the expected baseline), and they can be inconsistent (e.g. patient age 21 and
admission service is neonatal intensive care unit).

The reasons for this are multiple. Missing data can be due to random technical
issues with biomonitors, reliance on human data entry, or because some clinical
variables are not consistently collected since EHR data were collected for non-study
purposes. Similarly, noisy data can be due to faults or technological limitations of
instruments during data gathering (e.g. dampening of blood pressure values mea-
sured through an arterial line), or because of human error in entry. All the above can
also lead to inconsistencies in the data. Bottom line, all of these reasons create the
need for meticulous data cleaning steps prior to analysis.

Missing Data
A more detailed discussion regarding missing data will be presented in Chap. 13.
Here, we describe three possible ways to deal with missing data [1]:

• Ignore the record. This method is not very effective, unless the record
(observation/row) contains several variables with missing values. This approach
is especially problematic when the percentage of missing values per variable
varies considerably or when there is a pattern of missing data related to an
unrecognized underlying cause such as patient condition on admission.

116 12 Data Pre-processing

http://dx.doi.org/10.1007/978-3-319-43742-2_13

• Determine and fill in the missing value manually. In general, this approach is the
most accurate but it is also time-consuming and often is not feasible in a large
dataset with many missing values.

• Use an expected value. The missing values can be filled in with predicted values
(e.g. using the mean of the available data or some prediction method). It must be
underlined that this approach may introduce bias in the data, as the inserted
values may be wrong. This method is also useful for comparing and checking
the validity of results obtained by ignoring missing records.

Noisy Data
We term noise a random error or variance in an observed variable—a common
problem for secondary analyses of EHR data. For example, it is not uncommon for
hospitalized patients to have a vital sign or laboratory value far outside of normal
parameters due to inadequate (hemolyzed) blood samples, or monitoring leads
disconnected by patient movement. Clinicians are often aware of the source of error
and can repeat the measurement then ignore the known incorrect outlier value when
planning care. However, clinicians cannot remove the erroneous measurement from
the medical record in many cases, so it will be captured in the database. A detailed
discussion on how to deal with noisy data and outliers is provided in Chap. 14; for
now we limit the discussion to some basic guidelines [1].

• Binning methods. Binning methods smooth a sorted data value by considering
their ‘neighborhood’, or values around it. These kinds of approaches to reduce
noise, which only consider the neighborhood values, are said to be performing
local smoothing.

• Clustering. Outliers may be detected by clustering, that is by grouping a set of
values in such a way that the ones in the same group (i.e., in the same cluster)
are more similar to each other than to those in other groups.

• Machine learning. Data can be smoothed by means of various machine learning
approaches. One of the classical methods is the regression analysis, where data
are fitted to a specified (often linear) function.

Same as for missing data, human supervision during the process of noise
smoothing or outliers detection can be effective but also time-consuming.

Inconsistent Data
There may be inconsistencies or duplications in the data. Some of them may
be corrected manually using external references. This is the case, for instance, of
errors made at data entry. Knowledge engineering tools may also be used to detect
the violation of known data constraints. For example, known functional depen-
dencies among attributes can be used to find values contradicting the functional
constraints.

12.2 Part 1—Theoretical Concepts 117

http://dx.doi.org/10.1007/978-3-319-43742-2_14

Inconsistencies in EHR result from information being entered into the database
by thousands of individual clinicians and hospital staff members, as well as cap-
tured from a variety of automated interfaces between the EHR and everything from
telemetry monitors to the hospital laboratory. The same information is often entered
in different formats by these different sources.

Take, for example, the intravenous administration of 1 g of the antibiotic van-
comycin contained in 250 mL of dextrose solution. This single event may be
captured in the dataset in several different ways. For one patient this event may be
captured from the medication order as the code number (ITEMID in MIMIC) from
the formulary for the antibiotic vancomycin with a separate column capturing the
dose stored as a numerical variable. However, on another patient the same event
could be found in the fluid intake and output records under the code for the IV
dextrose solution with an associated free text entered by the provider. This text
would be captured in the EHR as, for example “vancomycin 1 g in 250 ml”, saved
as a text variable (string, array of characters, etc.) with the possibility of spelling
errors or use of nonstandard abbreviations. Clinically these are the exact same
event, but in the EHR and hence in the raw data, they are represented differently.
This can lead to the same single clinical event not being captured in the study
dataset, being captured incorrectly as a different event, or being captured multiple
times for a single occurrence.

In order to produce an accurate dataset for analysis, the goal is for each patient to
have the same event represented in the same manner for analysis. As such, dealing
with inconsistency perfectly would usually have to happen at the data entry or data
extraction level. However, as data extraction is imperfect, pre-processing becomes
important. Often, correcting for these inconsistencies involves some understanding
of how the data of interest would have been captured in the clinical setting and
where the data would be stored in the EHR database.

12.2.2 Data Integration

Data integration is the process of combining data derived from various data sources
(such as databases, flat files, etc.) into a consistent dataset. There are a number of
issues to consider during data integration related mostly to possible different
standards among data sources. For example, certain variables can be referred by
means of different IDs in two or more sources.

In the MIMIC database this mainly becomes an issue when some information is
entered into the EHR during a different phase in the patient’s care pathway, such as
before admission in the emergency department, or from outside records. For
example, a patient may have laboratory values taken in the ER before they are

118 12 Data Pre-processing

admitted to the ICU. In order to have a complete dataset it will be necessary to
integrate the patient’s full set of lab values (including those not associated with the
same MIMIC ICUSTAY identifier) with the record of that ICU admission without
repeating or missing records. Using shared values between datasets (such as a
hospital stay identifier or a timestamp in this example) can allow for this to be done
accurately.

Once data cleaning and data integration are completed, we obtain one dataset
where entries are reliable.

12.2.3 Data Transformation

There are many possible transformations one might wish to do to raw data values
depending on the requirement of the specific statistical analysis planned for a study.
The aim is to transform the data values into a format, scale or unit that is more
suitable for analysis (e.g. log transform for linear regression modeling). Here are
few common possible options:

Normalization
This generally means data for a numerical variable are scaled in order to range
between a specified set of values, such as 0–1. For example, scaling each
patient’s severity of illness score to between 0 and 1 using the known range
of that score in order to compare between patients in a multiple regression
analysis.

Aggregation
Two or more values of the same attribute are aggregated into one value.
A common example is the transformation of categorical variables where mul-
tiple categories can be aggregated into one. One example in MIMIC is to define
all surgical patients by assigning a new binary variable to all patients with an
ICU service noted to be “SICU” (surgical ICU) or “CSRU” (cardiac surgery
ICU).

Generalization
Similar to aggregation, in this case low level attributes are transformed into
higher level ones. For example, in the analysis of chronic kidney disease
(CKD) patients, instead of using a continuous numerical variable like the patient’s
creatinine levels, one could use a variable for CKD stages as defined by accepted
guidelines.

12.2 Part 1—Theoretical Concepts 119

12.2.4 Data Reduction

Complex analysis on large datasets may take a very long time or even be infeasible.
The final step of data pre-processing is data reduction, i.e., the process of reducing
the input data by means of a more effective representation of the dataset without
compromising the integrity of the original data. The objective of this step is to
provide a version of the dataset on which the subsequent statistical analysis will be
more effective. Data reduction may or may not be lossless. That is the end database
may contain all the information of the original database in more efficient format
(such as removing redundant records) or it may be that data integrity is maintained
but some information is lost when data is transformed and then only represented in
the new form (such as multiple values being represented as an average value).

One common MIMIC database example is collapsing the ICD9 codes into broad
clinical categories or variables of interest and assigning patients to them. This
reduces the dataset from having multiple entries of ICD9 codes, in text format, for a
given patient, to having a single entry of a binary variable for an area of interest to
the study, such as history of coronary artery disease. Another example would be in
the case of using blood pressure as a variable in analysis. An ICU patient will
generally have their systolic and diastolic blood pressure monitored continuously
via an arterial line or recorded multiple times per hour by an automated blood
pressure cuff. This results in hundreds of data points for each of possibly thousands
of study patients. Depending on the study aims, it may be necessary to calculate a
new variable such as average mean arterial pressure during the first day of ICU
admission.

Lastly, as part of more effective organization of datasets, one would also aim to
reshape the columns and rows of a dataset so that it conforms with the following 3
rules of a “tidy” dataset [2, 3]:

1. Each variable forms a column
2. Each observation forms a row
3. Each value has its own cell

“Tidy” datasets have the advantage of being more easily visualized and
manipulated for later statistical analysis. Datasets exported from MIMIC usually are
fairly “tidy” already; therefore, rule 2 is hardly ever broken. However, sometimes
there may still be several categorical values within a column even for MIMIC
datasets, which breaks rule 1. For example, multiple categories of marital status or
ethnicity under the same column. For some analyses, it is useful to split each
categorical values of a variable into their own columns. Fortunately though, we do
not often have to worry about breaking rule 3 for MIMIC data as there are not often
multiple values in a cell. These concepts will become clearer after the MIMIC
examples in Sect. 12.3

120 12 Data Pre-processing

12.3 PART 2—Examples of Data Pre-processing in R

There are many tools for doing data pre-processing available, such as R, STATA,
SAS, and Python; each differs in the level of programming background required.
R is a free tool that is supported by a range of statistical and data manipulation
packages. In this section of the chapter, we will go through some examples
demonstrating various steps of data pre-processing in R, using data from various
MIMIC dataset (SQL extraction codes included). Due to the significant content
involved with the data cleaning step of pre-processing, this step will be separately
addressed in Chaps. 13 and 14. The examples in this section will deal with some R
basics as well as data integration, transformation, and reduction.

12.3.1 R—The Basics

The most common data output from a MIMIC database query is in the form of
‘comma separated values’ files, with filenames ending in ‘.csv’. This output file
format can be selected when exporting the SQL query results from MIMIC data-
base. Besides ‘.csv’ files, R is also able to read in other file formats, such as Excel,
SAS, etc., but we will not go into the detail here.

Understanding ‘Data Types’ in R
For many who have used other data analysis software or who have a programming
background, you will be familiar with the concept of ‘data types’.

R strictly stores data in several different data types, called ‘classes’:

• Numeric – e.g. 3.1415, 1.618
• Integer – e.g. -1, 0, 1, 2, 3
• Character – e.g. “vancomycin”, “metronidazole”
• Logical – TRUE, FALSE
• Factors/categorical – e.g. male or female under variable,

gender

R also usually does not allow mixing of data types for a variable, except in a:

• List – as a one dimensional vector, e.g. c(“vancomycin”,
1.618, “red”)

• Data-frame – as a two dimensional table with rows (obser-
vations) and columns (variables)

Lists and data-frames are treated as their own ‘class’ in R.

12.3 PART 2—Examples of Data Pre-processing in R 121

http://dx.doi.org/10.1007/978-3-319-43742-2_13
http://dx.doi.org/10.1007/978-3-319-43742-2_14

Query output from MIMIC commonly will be in the form of data tables with
different data types in different columns. Therefore, R usually stores these tables as
‘data-frames’ when they are read into R.

Special Values in R

• NA – ‘not available’, usually a default placeholder for
missing values.

• NAN – ‘not a number’, only applying to numeric vectors.
• NULL – ‘empty’ value or set. Often returned by expressions

where the value is undefined.
• Inf – value for ‘infinity’ and only applies to numeric

vectors.

Setting Working Directory
This step tells R where to read in the source files.

Command: setwd(“directory_path”)
Example: (If all data files are saved in directory “MIMIC_data_files” on the

Desktop)

setwd("~/Desktop/MIMIC_data_files")

List files in directory:
list.files()
[1] "c_score_sicker.csv" "comorbidity_scores.csv"
[3] "demographics.csv" "mean_arterial_pressure.csv"
[5] "population.csv"

Reading in .csv Files from MIMIC Query Results
The data read into R is assigned a ‘name’ for reference later on.

Command: set_var_name <- read.csv(“filename.csv”)
Example:

demo <- read.csv("demographics.csv")

122 12 Data Pre-processing

Viewing the Dataset
There are several commands in R that are very useful for getting a ‘feel’ of your
datasets and see what they look like before you start manipulating them.

• View the first and last 2 rows. E.g.:

head(demo, 2)

subject_id hadm_id marital_status_descr ethnicity_descr
1 4 17296 SINGLE WHITE
2 6 23467 MARRIED WHITE

tail(demo, 2)

subject_id hadm_id marital_status_descr ethnicity_descr
27624 32807 32736 MARRIED UNABLE TO OBTAIN
27625 32805 34884 DIVORCED WHITE

• View summary statistics. E.g.:

summary(demo)

subject_id hadm_id marital_status_descr
Min. : 3 Min. : 1 MARRIED :13447
1st Qu.: 8063 1st Qu.: 9204 SINGLE : 6412
Median :16060 Median :18278 WIDOWED : 4029
Mean :16112 Mean :18035 DIVORCED : 1623
3rd Qu.:24119 3rd Qu.:26762 : 1552
Max. :32809 Max. :36118 SEPARATED: 320
(Other) : 242
ethnicity_descr
WHITE :19360
UNKNOWN/NOT SPECIFIED : 3446
BLACK/AFRICAN AMERICAN: 2251
…

12.3 PART 2—Examples of Data Pre-processing in R 123

• View structure of data set (obs = number of rows). E.g.:

str(demo)

'data.frame': 27625 obs. of 4 variables:
$ subject_id : int 4 6 3 9 15 14 11 18 18 19 ...
$ hadm_id : int 17296 23467 2075 8253 4819 23919 28128
24759 33481 25788 ...
$ marital_status_descr: Factor w/ 8 levels "","DIVORCED",..: 6 4 4
1 6 4 4 4 4 1 ...
$ ethnicity_descr : Factor w/ 39 levels "AMERICAN INDIAN/ALASKA
NATIVE",..: 35 35 35 34 12 35 35 35 35 35 ...

• Find out the ‘class’ of a variable or dataset. E.g.:

class(demo)

[1] "data.frame"

• Viewnumber of rows and column, or alternatively, the dimensionof the dataset. E.g.:

nrow(demo)

[1] 27625

ncol(demo)

[1] 4

dim(demo)

[1] 27625 4

• Calculate length of a variable. E.g.:

x <- c(1:10); x

[1] 1 2 3 4 5 6 7 8 9 10

class(x)

[1] "integer"

124 12 Data Pre-processing

Subsetting a Dataset and Adding New Variables/Columns
Aim: Sometimes, it may be useful to look at only some columns or some rows in a
dataset/data-frame—this is called subsetting.

Let’s create a simple data-frame to demonstrate basic subsetting and other
command functions in R. One simple way to do this is to create each column of the
data-frame separately then combine them into a dataframe later. Note the different
kinds of data types for the columns/variables created, and beware that R is
case-sensitive.

Examples: Note that comments appearing after the hash sign (#) will not be
evaluated.

subject_id <- c(1:6) #integer
gender <- as.factor(c("F", "F", "M", "F", "M", "M"))#factor/categorical
height <- c(1.52, 1.65, 1.75, 1.72, 1.85, 1.78) #numeric
weight <- c(56.7, 99.6, 90.4, 85.3, 71.4, 130.5) #numeric
data <- data.frame(subject_id, gender, height, weight)

head(data, 4) # View only the first 4 rows

subject_id gender height weight
1 1 F 1.52 56.7
2 2 F 1.65 99.6
3 3 M 1.75 90.4
…

str(data) # Note the class of each variable/column

'data.frame': 6 obs. of 4 variables:
$ subject_id: int 1 2 3 4 5 6
$ gender : Factor w/ 2 levels "F","M": 1 1 2 1 2 2
$ height : num 1.52 1.65 1.75 1.72 1.85 1.78
$ weight : num 56.7 99.6 90.4 85.3 71.4 ...

To subset or extract only e.g., weight, we can use either the dollar sign ($) after
the dataset, data, or use the square brackets, []. The $ selects column with the
column name (without quotation mark in this case). The square brackets [] here
selected the column weight by its column number:

12.3 PART 2—Examples of Data Pre-processing in R 125

w1 <- data$weight; w1

[1] 56.7 99.6 90.4 85.3 71.4 130.5

w2 <- data[, 4]; w2

[1] 56.7 99.6 90.4 85.3 71.4 130.5

Generally one can subset a dataset by specifying the rows and column desired
like this: data[row number, column number]. For example:

dat_sub <- data[2:4, 1:3]; dat_sub

subject_id gender height
2 2 F 1.65
3 3 M 1.75
4 4 F 1.72

The square brackets are useful for subsetting multiple columns or rows. Note
that it is important to ‘concatenate’, c(), if selecting multiple variables/columns and
to use quotation marks when selecting with columns names

h_w1 <- data[, c(3, 4)]; h_w1

height weight
1 1.52 56.7
2 1.65 99.6
3 1.75 90.4
…

h_w2 <- data[, c("height", "weight")]; h_w2

height weight
1 1.52 56.7
2 1.65 99.6
3 1.75 90.4
…

To calculate the BMI (weight/height^2) in a new column—there are different
ways to do this but here is a simple method:

126 12 Data Pre-processing

data$BMI <- data$weight/data$height^2
head(data, 4)

subject_id gender height weight BMI
1 1 F 1.52 56.7 24.54120
2 2 F 1.65 99.6 36.58402
3 3 M 1.75 90.4 29.51837
4 4 F 1.72 85.3 28.83315

Let’s create a new column, obese, for BMI > 30, as TRUE or FALSE. This also
demonstrates the use of ‘logicals’ in R.

data$obese <- data$BMI > 30
head(data)

subject_id gender height weight BMI obese
1 1 F 1.52 56.7 24.54120 FALSE
2 2 F 1.65 99.6 36.58402 TRUE
3 3 M 1.75 90.4 29.51837 FALSE
…

One can also use logical vectors to subset datasets in R. A logical vector, named
“ob” here, is created and then we pass it through the square brackets [] to tell R to
select only the rows where the condition BMI > 30 is TRUE:

ob <- data$BMI > 30
data_ob <- data[ob,];data_ob

subject_id gender height weight BMI obese
2 2 F 1.65 99.6 36.58402 TRUE
6 6 M 1.78 130.5 41.18798 TRUE

Combining Datasets (Called Data Frames in R)
Aim: Often different variables (columns) of interest in a research question may
come from separate MIMIC tables and could have been exported as separate.csv files
if they were not merged via SQL queries. For ease of analysis and visualization,
it is often desirable to merge these separate data frames in R on their shared ID
column(s).

12.3 PART 2—Examples of Data Pre-processing in R 127

Occasionally, one may also want to attach rows from one data frame after rows
from another. In this case, the column names and the number of columns of the two
different datasets must be the same.

Examples: In general, there are a couple ways of combining columns and rows
from different datasets in R:

• merge()—This function merges columns on shared ID column(s) between the
data frames so the associated rows match up correctly.

Command: merging on one ID column, e.g.:

df_merged <- merge(df1, df2, by = “column_ID_name”)

Command: merging on two ID columns, e.g.:

df_merged <- merge(df1, df2, by = c(“column1”, “column2”))

• cbind()—This function simply ‘add’ together the columns from two data frames
(must have equal number of rows). It does not match up the rows by any
identifier.

Command: joining columns. E.g.:

df_total <- cbind(df1, df2)

• rbind()—The function ‘row binds’ the two data frames vertically (must have the
same column names).

Command: joining rows. E.g.:

df_total <- rbind(df1, df2)

Using Packages in R
There are many packages that make life so much easier when manipulating data in
R. They need to be installed on your computer and loaded at the start of your R
script before you can call the functions in them. We will introduce examples of of a
couple of useful packages later in this chapter.

128 12 Data Pre-processing

For now, the command for installing packages is:

install.packages("name_of_package_case_sensitive")

The command for loading the package into the R working
environment:

library(name_of_package_case_sensitive)

Note—there are no quotation marks when loading packages as compared to
installing; you will get an error message otherwise.

Getting Help in R
There are various online tutorials and Q&A forums for getting help in R.
Stackoverflow, Cran and Quick-R are some good examples. Within the R console, a
question mark, ?, followed by the name of the function of interest will bring up the
help menu for the function, e.g.

?head

12.3.2 Data Integration

Aim: This involves combining the separate output datasets exported from separate
MIMIC queries into a consistent larger dataset table.

To ensure that the associated observations or rows from the two different
datasets match up, the right column ID must be used. In MIMIC, the ID columns
could be subject_id, hadm_id, icustay_id, itemid, etc. Hence, knowing the context
of what each column ID is used to identify and how they are related to each other is
important. For example, subject_id is used to identify each individual patient, so
includes their date of birth (DOB), date of death (DOD) and various other clinical
detail and laboratory values in MIMIC. Likewise, the hospital admission ID,
hadm_id, is used to specifically identify various events and outcomes from an

12.3 PART 2—Examples of Data Pre-processing in R 129

unique hospital admission; and is also in turn associated with the subject_id of the
patient who was involved in that particular hospital admission. Tables pulled from
MIMIC can have one or more ID columns. The different tables exported from
MIMIC may share some ID columns, which allows us to ‘merge’ them together,
matching up the rows correctly using the unique ID values in their shared ID
columns.

Examples: To demonstrate this with MIMIC data, a simple SQL query is
constructed to extract some data, saved as: “population.csv” and “demographics.
csv”.

We will these extracted files to show how to merge datasets in R.

1. SQL query:

Note: Remove the – in front of the SELECT command to run the query.

WITH
population AS(
SELECT subject_id, hadm_id, gender, dob, icustay_admit_age,
icustay_intime, icustay_outtime, dod, expire_flg
FROM mimic2v26.icustay_detail
 WHERE subject_icustay_seq = 1
 AND icustay_age_group = 'adult'
 AND hadm_id IS NOT NULL
)
, demo AS(
SELECT subject_id, hadm_id, marital_status_descr, ethnicity_descr
FROM mimic2v26.demographic_detail
WHERE subject_id IN (SELECT subject_id FROM population)
)

--# Extract the the datasets with each one of the following line of
codes in turn:
--SELECT * FROM population
--SELECT * FROM demo

130 12 Data Pre-processing

2. R code: Demonstrating data integration

Set working directory and read data files into R::

setwd("~/Desktop/MIMIC_data_files")
demo <- read.csv("demographics.csv", sep = ",")
pop <- read.csv("population.csv", sep = ",")
head(demo)

subject_id hadm_id marital_status_descr ethnicity_descr
1 4 17296 SINGLE WHITE
2 6 23467 MARRIED WHITE
3 3 2075 MARRIED WHITE
…
head(pop)

subject_id hadm_id gender dob icustay_admit_age
1 4 17296 F 3351-05-30 00:00:00 47.84414
2 6 23467 F 3323-07-30 00:00:00 65.94048
3 3 2075 M 2606-02-28 00:00:00 76.52892
…

icustay_intime icustay_outtime dod
expire_flg
1 3399-04-03 00:29:00 3399-04-04 16:46:00
N
2 3389-07-07 20:38:00 3389-07-11 12:47:00
N
3 2682-09-07 18:12:00 2682-09-13 19:45:00 2683-05-02 00:00:00
Y
…

Merging pop and demo: Note to get the rows to match up correctly, we need to
merge on both the subject_id and hadm_id in this case. This is because each
subject/patient could have multiple hadm_id from different hospital admissions
during the EHR course of MIMIC database.

12.3 PART 2—Examples of Data Pre-processing in R 131

demopop <- merge(pop, demo, by = c("subject_id", "hadm_id"))
head(demopop)

subject_id hadm_id gender dob icustay_admit_age
1 100 445 F 3048-09-22 00:00:00 71.94482
2 1000 15170 M 2442-05-11 00:00:00 69.70579
3 10000 10444 M 3149-12-07 00:00:00 49.67315
…

icustay_intime icustay_outtime dod
expire_flg
1 3120-09-01 11:19:00 3120-09-03 14:06:00
N
2 2512-01-25 13:16:00 2512-03-02 06:05:00 2512-03-02 00:00:00
Y
3 3199-08-09 09:53:00 3199-08-10 17:43:00
N
…

marital_status_descr ethnicity_descr
1 WIDOWED UNKNOWN/NOT SPECIFIED
2 MARRIED UNKNOWN/NOT SPECIFIED
3 HISPANIC OR LATINO
4 MARRIED BLACK/AFRICAN AMERICAN
5 MARRIED WHITE
6 SEPARATED BLACK/AFRICAN AMERICAN

As you can see, there are still multiple problems with this merged database, for
example, the missing values for ‘marital_status_descr’ column. Dealing with
missing data is explored in Chap. 13.

12.3.3 Data Transformation

Aim: To transform the presentation of data values in some ways so that the new
format is more suitable for the subsequent statistical analysis. The main processes
involved are normalization, aggregation and generalization (See part 1 for
explanation).

Examples: To demonstrate this with a MIMIC database example, let us look at a
table generated from the following simple SQL query, which we exported as
“comorbidity_scores.csv”.

The SQL query selects all the patient comorbidity information from the mim-
ic2v26.comorbidity_scores table on the condition of (1) being an adult, (2) in

132 12 Data Pre-processing

http://dx.doi.org/10.1007/978-3-319-43742-2_13

his/her first ICU admission, and (3) where the hadm_id is not missing according to
the mimic2v26.icustay_detail table.

1. SQL query:

SELECT *
FROM mimic2v26.comorbidity_scores
WHERE subject_id IN (SELECT subject_id
 FROM mimic2v26.icustay_detail
 WHERE subject_icustay_seq = 1
 AND icustay_age_group = 'adult'
 AND hadm_id IS NOT null)

2. R code: Demonstrating data transformation:

setwd("~/Desktop/MIMIC_data_files")
c_scores <- read.csv("comorbidity_scores.csv", sep = ",")

Note the ‘class’ or data type of each column/variable and the total number of
rows (obs) and columns (variables) in c_scores:

str(c_scores)

'data.frame': 27525 obs. of 33 variables:
$ subject_id : int 2848 21370 2026 11890 27223 27520
17928 31252 32083 9545 ...
$ hadm_id : int 16272 17542 11351 12730 32530
32724 20353 30062 32216 10809 ...
$ category : Factor w/ 1 level "ELIXHAUSER": 1 1 1 1
1 1 1 1 1 1 ...
$ congestive_heart_failure: int 0 0 0 0 1 0 0 0 1 1 ...
$ cardiac_arrhythmias : int 0 1 1 0 1 0 0 0 0 1 ...
$ valvular_disease : int 0 0 0 0 1 0 0 0 0 1 ...
$ …

Here we add a column in c_scores to save the overall ELIXHAUSER. The rep()
function in this case repeats 0 for nrow(c_scores) times. Function, colnames(),
rename the new or last column, [ncol(c_scores)], as “ELIXHAUSER_overall”.

12.3 PART 2—Examples of Data Pre-processing in R 133

c_scores <- cbind(c_scores, rep(0, nrow(c_scores)))
colnames(c_scores)[ncol(c_scores)] <- "ELIXHAUSER_overall"

Take a look at the result. Note the new “ELIXHAUSER_overall” column added
at the end:

str(c_scores)

'data.frame': 27525 obs. of 34 variables:
$ subject_id : int 2848 21370 2026 11890 27223 27520
17928 31252 32083 9545 ...
$ hadm_id : int 16272 17542 11351 12730 32530
32724 20353 30062 32216 10809 ...
$ category : Factor w/ 1 level "ELIXHAUSER": 1 1 1 1
1 1 1 1 1 1 ...
$ congestive_heart_failure: int 0 0 0 0 1 0 0 0 1 1 ...
$ cardiac_arrhythmias : int 0 1 1 0 1 0 0 0 0 1 ...
$ valvular_disease : int 0 0 0 0 1 0 0 0 0 1 ...
$ …

Aggregation Step
Aim: To sum up the values of all the ELIXHAUSER comorbidities across each
row. Using a ‘for loop’, for each i-th row entry in column “ELIXHAUSER_
overall”, we sum up all the comorbidity scores in that row.

for (i in 1:nrow(c_scores)) {
 c_scores[i, "ELIXHAUSER_overall"] <- sum(c_scores[i,4:33])
}

Let’s take a look at the head of the resulting first and last column:

head(c_scores[, c(1, 34)])

subject_id ELIXHAUSER_overall
1 2848 1
2 21370 3
3 2026 3
…

134 12 Data Pre-processing

Normalization Step
Aim: Scale values in column ELIXHAUSER_overall to between 0 and 1, i.e. in [0,
1]. Function, max(), finds out the maximum value in column ELIXHAUSER
overall. We then re-assign each entry in column ELIXHAUSERoverall as a pro-
portion of the max_score to normalize/scale the column.

max_score <- max(c_scores[,"ELIXHAUSER_overall"])
c_scores[,"ELIXHAUSER_overall"] <- c_scores[,
"ELIXHAUSER_overall"]/max_score

We subset and remove all the columns in c_score, except for “subject_id”,
“hadm_id”, and “ELIXHAUSER_overall”:

c_scores <- c_scores[, c("subject_id", "hadm_id",
"ELIXHAUSER_overall")]
head(c_scores)

subject_id hadm_id ELIXHAUSER_overall
1 2848 16272 0.09090909
2 21370 17542 0.27272727
3 2026 11351 0.27272727
…

Generalization Step
Aim: Consider only the patient sicker than the average Elixhauser score. The
function, which(), return the row numbers (indices) of all the TRUE entries of the
logical condition set on c_scores inside the round () brackets, where the condition
being the column entry for ELIXHAUSER_overall � 0.5. We store the row indices
information in the vector, ‘sicker’. Then we can use ‘sicker’ to subset c_scores to
select only the rows/patients who are ‘sicker’ and store this information in
‘c_score_sicker’.

12.3 PART 2—Examples of Data Pre-processing in R 135

sicker <- which(c_scores[,"ELIXHAUSER_overall"]>=0.5)
c_score_sicker <- c_scores[sicker,]
head(c_score_sicker)

subject_id hadm_id ELIXHAUSER_overall
10 9545 10809 0.5454545
15 12049 27692 0.5454545
59 29801 33844 0.5454545
…

Saving the results to file: There are several functions that will do this, e.g. write.
table() and write.csv(). We will give an example here:

write.table(c_score_sicker, file = "c_score_sicker.csv", sep = ";",
row.names = F, col.names = F)

If you check in your working directory/folder, you should see the new
“c_score_sicker.csv” file.

12.3.4 Data Reduction

Aim: To reduce or reshape the input data by means of a more effective represen-
tation of the dataset without compromising the integrity of the original data. One
element of data reduction is eliminating redundant records while preserving needed
data, which we will demonstrate in Example Part 1. The other element involves
reshaping the dataset into a “tidy” format, which we will demonstrate in below
sections.

Examples Part 1: Eliminating Redundant Records
To demonstrate this with a MIMIC database example, we will look at multiple
records of non-invasive mean arterial pressure (MAP) for each patient. We will use
the records from the following SQL query, which we exported as “mean_arte-
rial_pressure.csv”.

The SQL query selects all the patient subject_id’s and noninvasive mean arterial
pressure (MAP) measurements from the mimic2v26.chartevents table on the con-
dition of (1) being an adult, (2) in his/her first ICU admission, and (3) where the
hadm_id is not missing according to the mimic2v26.icustay_detail table.

136 12 Data Pre-processing

1. SQL query:

SELECT subject_id, value1num
FROM mimic2v26.chartevents
WHERE subject_id IN (
SELECT subject_id
 FROM mimic2v26.icustay_detail
 WHERE subject_icustay_seq = 1
 AND icustay_age_group = 'adult'
 AND hadm_id IS NOT null)
AND itemid=456
AND value1num is not null

-- Export and save the query result as "mean_arterial_pressure.csv"

2. R code:

There are a variety of methods that can be chosen to aggregate records. In this
case we will look at averaging multiple MAP records into a single average MAP for
each patient. Other options which may be chosen include using the first recorded
value, a minimum or maximum value, etc.

For a basic example, the following code demonstrates data reduction by aver-
aging all of the multiple records of MAP into a single record per patient. The code
uses the aggregate() function:

setwd("~/Desktop/MIMIC_data_files")
all_maps <- read.csv("mean_arterial_pressure.csv", sep = ",")

str(all_maps)

'data.frame': 790174 obs. of 2 variables:
$ subject_id: int 4 4 4 4 4 4 4 4 3 4 ...
$ value1num : num 80.7 71.7 74.3 69 75 ...

This step averages the MAP values for each distinct subject_id:

avg_maps <- aggregate(all_maps, by=list(all_maps[,1]), FUN=mean,
na.rm=TRUE)

head(avg_maps)

Group.1 subject_id value1num
1 3 3 75.10417
2 4 4 88.64102
3 6 6 91.37357
…

12.3 PART 2—Examples of Data Pre-processing in R 137

Examples Part 2: Reshaping Dataset
Aim: Ideally, we want a “tidy” dataset reorganized in such a way so it follows these
3 rules [2, 3]:

1. Each variable forms a column
2. Each observation forms a row
3. Each value has its own cell

Datasets exported from MIMIC usually are fairly “tidy” already. Therefore, we
will construct our own data frame here for ease of demonstration for rule 3. We will
also demonstrate how to use some common data tidying packages.

R code: To mirror our own MIMIC dataframe, we construct a dataset with a
column of subject_id and a column with a list of diagnoses for the admission.

diag <- data.frame(subject_id = 1:6, diagnosis = c("PNA, CHF", "DKA",
"DKA, UTI", "AF, CHF", "AF", "CHF"))
diag
subject_id diagnosis
1 1 PNA, CHF
2 2 DKA
3 3 DKA, UTI
…

Note that the dataset above is not “tidy”. There are multiple categorical variables
in column “diagnosis”—breaks “tidy” data rule 1. There are multiple values in
column “diagnosis”—breaks “tidy” data rule 3.

There are many ways to “tidy” and reshape this dataset. We will show one way
to do this by making use of R packages “splitstackshape” [5] and “tidyr” [4] to
make reshaping the dataset easier.

R package example 1—“splitstackshape”:
Installing and loading the package into R console.

install.packages("splitstackshape")
library(splitstackshape)

The function, cSplit(), can split the multiple categorical values in each cell of
column “diagnosis” into different columns, “diagnosis_1” and “diagnosis_2”. If the
argument, direction, for cSplit() is not specified, then the function splits the original
dataset “wide”.

138 12 Data Pre-processing

diag2 <- cSplit(diag, "diagnosis", ",")
diag2

subject_id diagnosis_1 diagnosis_2
1: 1 PNA CHF
2: 2 DKA NA
3: 3 DKA UTI
…

One could possibly keep it as this if one is interested in primary and secondary
diagnoses (though it is not strictly “tidy” yet).

Alternatively, if the direction argument is specified as “long”, then cSplit split
the function “long” like so:

diag3 <- cSplit(diag, "diagnosis", ",", direction = "long")
diag3
subject_id diagnosis
1: 1 PNA
2: 1 CHF
3: 2 DKA
…

Note diag3 is still not “tidy” as there are still multiple categorical variables under
column diagnosis—but we no longer have multiple values per cell.

R package example 2—“tidyr”:
To further “tidy” the dataset, package “tidyr” is pretty useful.

install.packages("tidyr")
library(tidyr)

The aim is to split each categorical variable under column, diagnosis, into their
own columns with 1 = having the diagnosis and 0 = not having the diagnosis. To
do this we first construct a third column, “yes”, that hold all the 1 values initially
(because the function we are going use require a value column that correspond with
the multiple categories column we want to ‘spread’ out).

12.3 PART 2—Examples of Data Pre-processing in R 139

diag3$yes <- rep(1, nrow(diag3))
diag3

subject_id diagnosis yes
1: 1 PNA 1
2: 1 CHF 1
3: 2 DKA 1
…

Then we can use the spread function to split each categorical variables into their
own columns. The argument, fill = 0, replaces the missing values.

diag4 <- spread(diag3, diagnosis, yes, fill = 0)
diag4

subject_id AF CHF DKA PNA UTI
1: 1 0 1 0 1 0
2: 2 0 0 1 0 0
3: 3 0 0 1 0 1
…

One can see that this dataset is now “tidy”, as it follows all three “tidy” data
rules.

12.4 Conclusion

A variety of quality control issues are common when using raw clinical data col-
lected for non-study purposes. Data pre-processing is an important step in preparing
raw data for statistical analysis. Several distinct steps are involved in pre-processing
raw data as described in this chapter: cleaning, integration, transformation, and
reduction. Throughout the process it is important to understand the choices made in
pre-processing steps and how different methods can impact the validity and
applicability of study results. In the case of EHR data, such as that in the MIMIC
database, pre-processing often requires some understanding of the clinical context
under which data were entered in order to guide these pre-processing choices. The
objective of all the steps is to arrive at a “clean” and “tidy” dataset suitable for
effective statistical analyses while avoiding inadvertent introduction of bias into the
data.

140 12 Data Pre-processing

Take Home Messages

• Raw data for secondary analysis is frequently “messy” meaning it is not in a
form suitable for statistical analysis; data must be “cleaned” into a valid,
complete, and effectively organized “tidy” database that can be analyzed.

• There are a variety of techniques that can be used to prepare data for analysis,
and depending on the methods use, this pre-processing step can introduce bias
into a study.

• The goal of pre-processing data is to prepare the available raw data for analysis
without introducing bias by changing the information contained in the data or
otherwise influencing end results.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Son NH (2006) Data mining course—data cleaning and data preprocessing. Warsaw
University. Available at URL http://www.mimuw.edu.pl/*son/datamining/DM/4-preprocess.
pdf

2. Grolemund G (2016) R for data science—data tidying. O’Reilly Media. Available at URL
http://garrettgman.github.io/tidying/

3. Wickham H (2014) J Stat Softw 59(10). Tidy Data. Available at URL http://vita.had.co.nz/
papers/tidy-data.pdf

4. Wickham H (2016) Package ‘tidyr’—easily tidy data with spread() and gather() functions.
CRAN. Available at URL https://cran.r-project.org/web/packages/tidyr/tidyr.pdf

5. Mahto A (2014) Package ‘splitstackshape’—stack and reshape datasets after splitting
concatenated values. CRAN. Available at URL https://cran.r-project.org/web/packages/
splitstackshape/splitstackshape.pdf

12.4 Conclusion 141

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.mimuw.edu.pl/%7eson/datamining/DM/4-preprocess.pdf
http://www.mimuw.edu.pl/%7eson/datamining/DM/4-preprocess.pdf
http://garrettgman.github.io/tidying/
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
https://cran.r-project.org/web/packages/tidyr/tidyr.pdf
https://cran.r-project.org/web/packages/splitstackshape/splitstackshape.pdf
https://cran.r-project.org/web/packages/splitstackshape/splitstackshape.pdf

	12 Data Pre-processing
	12.1 Introduction
	12.2 Part 1—Theoretical Concepts
	12.2.1 Data Cleaning
	12.2.2 Data Integration
	12.2.3 Data Transformation
	12.2.4 Data Reduction

	12.3 PART 2—Examples of Data Pre-processing in R
	12.3.1 R—The Basics
	12.3.2 Data Integration
	12.3.3 Data Transformation
	12.3.4 Data Reduction

	12.4 Conclusion
	References

