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Take Home Messages

• Clinical medicine relies on a strong research foundation in order to build the
necessary evidence base to inform best practices and improve clinical care,
however, large-scale randomized controlled trials (RCTs) are expensive and
sometimes unfeasible. Fortunately, there exists expansive data in the form of
electronic health records (EHR).

• Data can be overwhelmingly complex or incomplete for any individual, there-
fore we urge multidisciplinary research teams consisting of clinicians along with
data scientists to unpack the clinical semantics necessary to appropriately ana-
lyze the data.

1.1 Introduction

The healthcare industry has rapidly become computerized and digital. Most health-
care delivered in America today relies on or utilizes technology. Modern healthcare
informatics generates and stores immense amounts of detailed patient and clinical
process data. Very little real-world patient data have been used to further advance the
field of health care. One large barrier to the utilization of these data is inaccessibility to
researchers. Making these databases easier to access as well as integrating the data
would allow more researchers to answer fundamental questions of clinical care.

1.2 Current Research Climate

Many treatments lack proof in their efficacy, and may, in fact, cause harm [1].
Various medical societies disseminate guidelines to assist clinician decision-making
and to standardize practice; however, the evidence used to formulate these guide-
lines is inadequate. These guidelines are also commonly derived from RCTs with
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limited patient cohorts and with extensive inclusion and exclusion criteria resulting
in reduced generalizability. RCTs, the gold standard in clinical research, support
only 10–20 % of medical decisions [2] and most clinical decisions have never been
supported by RCTs [3]. Furthermore, it would be impossible to perform random-
ized trials for each of the extraordinarily large number of decisions clinicians face
on a daily basis in caring for patients for numerous reasons, including constrained
financial and human resources. For this reason, clinicians and investigators must
learn to find clinical evidence from the droves of data that already exists: the EHR.

1.3 Power of the Electronic Health Record

Much of the work utilizing large databases in the past 25 years have relied on
hospital discharge records and registry databases. Hospital discharge databases
were initially created for billing purposes and lack the patient level granularity of
clinically useful, accurate, and complete data to address complex research ques-
tions. Registry databases are generally mission-limited and require extensive
extracurricular data collection. The future of clinical research lies in utilizing big
data to improve the delivery of care to patients.

Although several commercial and non-commercial databases have been created
using clinical and EHR data, their primary function has been to analyze differences
in severity of illness, outcomes, and treatment costs among participating centers.
Disease specific trial registries have been formulated for acute kidney injury [4],
acute respiratory distress syndrome [5] and septic shock [6]. Additionally, databases
such as the Dartmouth Atlas utilize Medicare claims data to track discrepancies in
costs and patient outcomes across the United States [7]. While these coordinated
databases contain a large number of patients, they often have a narrow scope (i.e.
for severity of illness, cost, or disease specific outcomes) and lack other significant
clinical data that is required to answer a wide range of research questions, thus
obscuring many likely confounding variables.

For example, the APACHE Outcomes database was created by merging
APACHE (Acute Physiology and Chronic Health Evaluation) [8] with
Project IMPACT [9] and includes data from approximately 150,000 intensive care
unit (ICU) stays since 2010 [1]. While the APACHE Outcomes database is large
and has contributed significantly to the medical literature, it has incomplete phys-
iologic and laboratory measurements, and does not include provider notes or
waveform data. The Phillips eICU [10], a telemedicine intensive care support
provider, contains a database of over 2 million ICU stays. While it includes pro-
vider documentation entered into the software, it lacks clinical notes and waveform
data. Furthermore, databases with different primary objectives (i.e., costs, quality
improvement, or research) focus on different variables and outcomes, so caution
must be taken when interpreting analyses from these databases.
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Since 2003, the Laboratory for Computational Physiology at the Massachusetts
Institute of Technology partnered in a joint venture with Beth Israel Deaconess
Medical Center and Philips Healthcare, with support from the National Institute of
Biomedical Imaging and Bioinformatics (NIBIB), to develop and maintain the
Medical Information Mart for Intensive Care (MIMIC) database [11]. MIMIC is a
public-access database that contains comprehensive clinical data from over 60,000
inpatient ICU admissions at Beth Israel Deaconess Medical Center. The
de-identified data are freely shared, and nearly 2000 investigators from 32 countries
have utilized it to date. MIMIC contains physiologic and laboratory data, as well as
waveform data, nurse verified numerical data, and clinician documentation. This
high resolution, widely accessible, database has served to support research in
critical care and assist in the development of novel decision support algorithms, and
will be the prototype example for the majority of this textbook.

1.4 Pitfalls and Challenges

Clinicians and data scientists must apply the same level of academic rigor when
analyzing research from clinical databases as they do with more traditional methods
of clinical research. To ensure internal and external validity, researchers must
determine whether the data are accurate, adjusted properly, analyzed correctly, and
presented cogently [12]. With regard to quality improvement projects, which fre-
quently utilize hospital databases, one must ensure that investigators are applying
rigorous standards to the performance and reporting of their studies [13].

Despite the tremendous value that the EHR contains, many clinical investigators
are hesitant to use it to its full capacity partly due to its sheer complexity and the
inability to use traditional data processing methods with large datasets. As a
solution to the increased complexity associated with this type of research, we
suggest that investigators work in collaboration with multidisciplinary teams
including data scientists, clinicians and biostatisticians. This may require a shift in
financial and academic incentives so that individual research groups do not compete
for funding or publication; the incentives should promote joint funding and
authorship. This would allow investigators to focus on the fidelity of their work and
be more willing to share their data for discovery, rather than withhold access to a
dataset in an attempt to be “first” to a solution.

Some have argued that the use of large datasets may increase the frequency of
so-called “p-hacking,” wherein investigators search for significant results, rather
than seek answers to clinically relevant questions. While it appears that p-hacking is
widespread, the mean effect size attributed to p-hacking does not generally
undermine the scientific consequences from large studies and meta-analyses. The
use of large datasets may, in fact, reduce the likelihood of p-hacking by ensuring
that researchers have suitable power to answer questions with even small effect
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sizes, making the need for selective interpretation and analysis of the data to obtain
significant results unnecessary. If significant discoveries are made utilizing big
databases, this work can be used as a foundation for more rigorous clinical trials to
confirm these findings. In the future, once comprehensive databases become more
accessible to researchers, it is hoped that these resources can be used as hypothesis
generating and testing ground for questions that will ultimately undergo RCT. If
there is not a strong signal observed in a large preliminary retrospective study,
proceeding to a resource-intensive and time-consuming RCT may not be advisable.

1.5 Conclusion

With advances in data collection and technology, investigators have access to more
patient data than at any time in history. Currently, much of these data are inac-
cessible and underused. The ability to harness the EHR would allow for continuous
learning systems, wherein patient specific data are able to feed into a population-
based database and provide real-time decision support for individual patients based
on data from similar patients in similar scenarios. Clinicians and patients would be
able to make better decisions with those resources in place and the results would
feed back into the population database [14].

The vast amount of data available to clinicians and scientists poses daunting
challenges as well as a tremendous opportunity. The National Academy of
Medicine has called for clinicians and researchers to create systems that “foster
continuous learning, as the lessons from research and each care experience are
systematically captured, assessed and translated into reliable care” [2]. To capture,
assess, and translate these data, we must harness the power of the EHR to create
data repositories, while also providing clinicians as well as patients with data-driven
decision support tools to better treat patients at the bedside.
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