Performance Prediction and Ranking
of SpMV Kernels on GPU Architectures

Christoph Lehnert!, Rudolf Berrendorf! (™,
Jan P. Ecker!, and Florian Mannuss?

! Computer Science Department, Bonn-Rhein-Sieg University of Applied Sciences,
Sankt Augustin, Germany
{christoph.lehnert,rudolf.berrendorf, jan.ecker}Ch-brs.de
2 EXPEC Advanced Research Center,

Saudi Arabian Oil Company, Dhahran, Saudi Arabia

florian.mannuss@aramco.com

Abstract. Predicting the runtime of a sparse matrix-vector multiplica-
tion (SpMV) for different sparse matrix formats and thread mappings
allows the dynamic selection of the most appropriate matrix format and
thread mapping for a given matrix. This paper introduces two new gener-
ally applicable performance models for SpMV — for linear and non-linear
relationships — based on machine learning techniques. This approach
supersedes the common manual development of an explicit performance
model for a new architecture or for a new format based on empirical data.
The two new models are compared to an existing explicit performance
model on different GPUs. Results show that the quality of performance
prediction results, the ranking of the alternatives, and the adaptability
to other formats/architectures of the two machine learning techniques is
better than that of the explicit performance model.

Keywords: SpMV - Performance prediction * Linear regression -
Gradient-boosting + KNN - Instance-based learning

1 Introduction

The sparse matrix-vector multiplication (SpMV) is the most time-consuming oper-
ation in iterative solvers [14]. Improving the efficiency of these operations is there-
fore important in many application fields [2], and many papers have been published
on different sparse matrix formats and related SpMV implementations. Besides
handling the sparsity as such, some formats try to utilize additional structural prop-
erties of a matrix. For example, work has been done on formats that do not rely
on certain properties of a matrix and are therefore generally applicable, e.g., CSR
[14], SELL-C-o [8]. Additional research has been conducted on other formats that
take advantage of the matrix structure (e.g., BCSR [7]) and/or a target architec-
ture (e.g., supported formats in the Intel MKL and Nvidia cuSPARSE). Even if
one format and target architecture is fixed, some formats/architectures have addi-
tional parameters, e.g., a slice size in the SELL-C-o format or grid/block size on

© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 90-102, 2016.
DOI: 10.1007/978-3-319-43659-3_7

Performance Prediction and Ranking of SpMV Kernels 91

Graphics Processor Units (GPUs) that need to be optimized for a given matrix or
an architecture.

However no sparse matrix format performs best for all matrices and all
processor architectures. Instead the formats differ significantly in their perfor-
mance between formats for certain matrix structures or when switching between
architectures. Choosing the right data format, parameter values, and possibly
even the target architecture for a given matrix is therefore extremely important.

Simple and fast heuristics have been developed (see related work in Sect. 2)
that try to predict which format or parameter values should be used for a given
matrix based on few parameters than can be efficiently determined with low
overhead. These heuristics have to be adapted to new formats, possibly to new
sparsity patterns, and if possible to new architectures. Instead of manually devel-
oping new heuristics for new configurations, the question is whether it is possible
to develop more general techniques to rank SpMV alternatives through runtime
prediction. These techniques could then be used as a basis for deciding on a
configuration for a given matrix.

This paper investigates three modeling techniques to predict the runtime of
an SpMV operation on a GPU. Based on such predictions, a ranking of alter-
natives is possible that lets a program choose the best ranked alternative or,
dependent on external parameters (prefer architecture X), choose the best ranked
alternative after applying a filter at runtime.

One runtime prediction technique used in this work is based on the work of
Guo et al. [6] and uses special benchmark matrices that determine two para-
meters in a simple linear model specific to some basic matrix formats. These
performance models themselves are specific to a matrix format and are there-
fore not transferable to other formats. The other two newly developed models
proposed in this paper use machine learning techniques and are more general.
These two models differentiate between whether a mostly linear relationship
exists between features and the SpMV runtime (using regression techniques) or
whether non-linear relationships have a non-neglecting influence on the runtime
(then using KNN). The three different approaches are evaluated using a set
of sparse matrices and 5 different matrix formats: 3 basic ones that were used
already in other papers (COO, CSR, ELL [14]) and 2 complex ones not used in
such investigations before (SELL-C-o [8], ELL-BRO [17]).

The paper is organized as follows. Section 2 gives an overview on related work.
Section 3 introduces the three performance modeling methods. Then Sect. 4 dis-
cusses in detail the evaluation and reliability of the runtime prediction/ranking.
The paper closes with a summary.

2 Related Work

Some papers [1,3,8,9,13] deal with simple explicit heuristics or provide empirical
modeling for a Central Processing Unit (CPU) or GPU. This allows a program
to choose at runtime which matrix format and/or which parameter values to
use. This type of system is mainly used for autotuning. Those papers work with

92 C. Lehnert et al.

empirically derived fixed heuristics that work reasonable well for the supported
simple matrix formats/architectures but need to be adapted for new and more
complex matrix formats and/or architectures.

Xu et al. [18] claim that the SpMV is a memory-bounded problem. They
suggest a prediction concept that estimates the memory access times needed to
load and store the matrix and vector data for the SpMV operation. Although
SpMYV is memory bound, there are others factors that influence the runtime of
this operation as well. Li et al. [10] published a probabilistic approach that takes
into account the distribution of non-zero elements in each row of the sparse
matrix. They use the model for the runtime prediction of the (simple) CSR,
COO, ELL and HYB formats. Sedaghati et al. [15] use decision tree algorithms
to select the most suitable format for a specific sparse matrix. Similar to our
work, they use machine learning techniques, but with important differences.
Their matrix formats are those supported by the vendor library and are fairly
regular/simple. We used in addition more complex formats (SELL-C-o, ELL-
BRO), that have a more complex performance behavior. Additionally we allow a
choice not only between the matrix formats but also between format/architecture
parameter values for a specific format.

Guo et al. [6] uses profiled data for benchmark matrices and a simple 2-
parameter linear model that is discussed and evaluated in detail in Sects. 3.1
and 4. Offline benchmark matrices and a heuristic performance model was also
used in Lee et al. [9] for the CSR matrix format only.

3 Performance Modeling

This work aim to develop performance models that are not explicitly specific
to a certain matrix format or a processor architecture but are more generally
applicable and do not need to be reworked for new configurations. We describe in
more detail below an existing benchmarking-based approach and then introduce
a linear regression technique and the k-nearest neighbors approach.

Table 1 summarizes all features of the platform and matrices we found to
be relevant for predicting performance in any of the described models on GPUs.
Further features were analyzed, but no relevance for the runtime prediction could
be identified. For some formats, there are several format specific parameters that
may also influence the runtime of the SpMV operation. Although we have not
included such format parameters, our work could be extended in that direction.

3.1 Benchmarking-Based Approach

The benchmarking approach we use in this paper is based on the work of
Guo et al. [6]. Their prediction method consists of two major phases. In the
instrumentation phase, platform information is gathered including the number of
available streaming multiprocessors (SMs) and the maximum number of threads
that can be processed by each SM at once. These are used to compute the so-
called strip size. A strip is a maximum submatrix that can be computed by the

Performance Prediction and Ranking of SpMV Kernels 93

Table 1. Platform and matrix features that are relevant for the presented approaches.

Feature Description

blocksize | The CUDA blocksize

nRows The number of rows (the dimension of the square matrix)

nnz The overall number of non zeros of the matrix

minNnz The minimum number of non-zero elements per row among all rows

maxNnz The maximum number of non-zero elements per row among all rows

modeNnz | The statistic mode of the number of non-zero elements per row among
all rows

medianNnz | The median of the number of non-zero elements per row among all rows

minDist The minimum distance between non-zero elements per row among all
rows

maxDist The maximum distance between non-zero elements per row among all
rows

bandwidth | The maximum distance of non-zero elements from the diagonal

dispersion | The standard deviation of the numbers of non-zero elements among all
TOwWS

density The fraction of the non-zero elements in the total number of array
elements

GPU in one iteration if the full parallelism is used. The number of matrix rows
that fit into a strip is therefore different for each of the used formats. Accord-
ing to Guo et al., one strip can be calculated in one step (simplified); therefore
the number of strips a matrix consists of has a major influence on the runtime.
Another important attribute in this model is the average number of non-zero
elements in the matrix rows. The execution of synthetical special benchmark
matrices is used to determine the relation between the number of strips and the
average number of non-zero elements per row to the execution time. The SpMV
operation is executed on multiple benchmark matrices:

— with a fixed size and an increasing number of non-zeros per row

— with a fixed number of non-zeros per row and an increasing number of strips

— multiple runs of matrices with (different) fixed numbers of non-zeroes per row
and an increasing number of strips (ELL format only)

The information gathered from these SpMV executions is used to create a 2-
parameter linear model [6]. In a program run, this model is parametrized with
the information from the target matrix, and the actual runtime is predicted.
This model is different for every matrix format and for a new matrix format an
appropriate linear relationship has to be explicitly specified.

94 C. Lehnert et al.

3.2 Linear Regression Techniques

Algorithms based on machine learning techniques are used in various scientific
fields. One such machine learning approach is linear regression. It is a technique
that relates a response vector of training instances, for example the measured
SpMV runtimes of several matrices, to the features of the matrix by assuming
that a linear relationship exists. The goal is to determine the relevance of these
predictors and apply linear coefficients to each of them so that the best approx-
imation of the responses for all (training) instances can be obtained. This goal
can be achieved by iteratively refining the linear regression model to minimize
the residual error between the modeled values and the actual responses [12].

Basic Model. In this step, the linear relation for the first training data record
(feature values and SpMV runtime of the first matrix) is established. The second
record is added, and the coefficients that have been identified in the first step are
adjusted until the squared error between the estimations of both instances (by
using the common coefficients) and the actual response is minimal. This process
is repeated for all training data records. The result of this training phase is
a linear model that leads to the best approximated responses for all training
instances. Its particular coefficients w; can be utilized to predict the result Tieg
for all new test instances with feature values a;. This prediction is obtained by
using Eq. (1) for an instance with m features. A linear intercept wy also results
from the procedure described in [12].

Trest = Wo + w1 X a1 +wo X Qg + ... + Wy X Qi (1)

Model Enhancements. This regression technique is applicable if linear rela-
tions exist between the features. For a SpMV operation, many but not all fea-
tures have such properties. An open question at the beginning of the research
was whether the linear features dominate the runtime or whether a linear model
is not suitable because the influence of non-linear features is too high.

The relationships between the matrix formats are certainly not linear, and
the thread mapping also behaves non-linearly. Therefore in the training phase,
distinct models are generated for different matrix formats and thread mappings.
First investigations have also shown that selecting proper features per format
(and only those) is an essential step. Table 2 presents the selected subset of fea-
tures for each format. Other features did not positively influence the quality of
the predictions. In a next step in the training phase, the feature values were log-
arithmized. These steps had proved to be sufficient to accurately predict SpMV
runtimes for the simple formats COO, CSR and ELL.

Gradient-Boosting. For the more complex matrix formats SELL-C-0 and
ELL-BRO, the prediction quality was less good. To be able to predict with a high
accuracy the SpMV runtimes even in cases where (1) some non-linear relation-
ship exists between the matrix features and SpMV execution times for a specific

Performance Prediction and Ranking of SpMV Kernels 95

Table 2. Features selection for the approaches linear regression/gradient-boosting (LR)
and k-Nearest Neighbors (KNN) and the selected formats.

Feature COO CSR ELL SELL-C-o | ELL-BRO
LR |KNN | LR |KNN LR |KNN|LR|KNN |LR | KNN
blocksize |X |X X X X X X X X X
nRows X X X X
nnz X X X X X X X X X
minNnz X X X X | X X | X
maxNnz X X X X X
modeNnz | X X X X
medianNnz | X X X X X X
minDist X X X X
maxDist X X | X
bandwidth | X X X X
dispersion | X X X X X X
density X X X X

format or (2) important features for this format have not been identified and can
thus not be represented in the modeling process, a gradient-boosting technique
was chosen as an alternative to the linear regression model. This technique was
then used for the formats SELL-C-o and ELL-BRO.

Gradient-boosting [5] is also a regression technique. To determine the
responses of completely new instances, a general function is approximated using
all available training samples. Here, the search is for the concrete function that
leads to a minimal estimated error among all training instances. As explained
in detail in [5], gradient-boosting approaches start with a simple and often weak
approximating model that only fits a small number of the training instances and
iteratively refine it by applying the same base learner to the previous intermedi-
ate results. In our approach, the base learner is a regression tree, parametrized
using several factors including its depth and the splitting rules at each non-
terminal node. The model is built by roughly fitting the training instances by
initially using a simple tree. The result is iteratively refined by applying fur-
ther regression trees on the particular residual errors of the prior iteration and
combining the intermediate results to a final complex model.

3.3 k-Nearest Neighbors

The k-Nearest Neighbors (KNN) [11] approach belongs to the instance-based
learning methods that are suitable for both regression and classification tasks.
The general idea behind such techniques is not to determine and store a con-
crete calculated function but to compare a new instance to all training records
or a subset of them. The desired response value for the new instance is then

96 C. Lehnert et al.

retrieved by identifying similar training instances and accounting for their indi-
vidual responses.

The KNN algorithm compares the feature values of the new instance with
those of the training instances. A distance measure is chosen to select the k
training records that are closest to the new instance, presuming that they are
the most similar ones among all training instances. For a regression problem,
the response value is (for example) retrieved by computing the mean of the k
neighbors responses [11].

To successfully use the KNN algorithm, an appropriate distance function as
well as a proper k-value have to be accommodated to different problem areas.
Further enhancements of the KNN technique are the distance-weighted and the
feature-weighted KNN approach. When using the first one, the calculated dis-
tances to the neighbors of a new instance are weighted. While neighbors with a
low distance have a high impact on the calculated value, the impact decreases
the greater the distances are [11]. The second technique applies weights to each
feature.

Model Specifics. We achieved the most accurate runtime predictions by using
k-values of 4 for the COO, CSR, ELL and BRO-ELL formats and 2 for the
SELL-C-o format. These differences are caused by the provided training sets
per kernel. Using a k-value of 4 for the SELL-C-o format leads to higher inaccu-
racies for a few test matrices, because only few neighbors for this kernel exists
for those matrices. Taking more neighbors into account diminishes the quality of
the runtime estimations. This problem can be dealt with by providing a bigger
set of training instances with a higher variety of features. As a distance function,
the euclidean distance was used. Manually derived weights were used for the pre-
selected features shown in Table2. The KNN approach has been shown to be
much more sensitive to the correct selection of features compared to the linear
regression approach. Furthermore, the feature values have been 0-1-normalized
since the data ranges of the features are too different. The distance weighting was
realized by using the inverse of the euclidean distance for computing the neigh-
bors contribution to the calculation of the response variables, i.e., the estimated
runtimes.

4 Evaluation

In this section, all three approaches are evaluated. First the evaluation method-
ology will be explained, followed by the evaluation of the runtime prediction
quality and the ranking quality.

4.1 Evaluation Methodology

The training and evaluation of the prediction approaches requires the measure-
ment of the runtimes of the different SpMV kernels on a GPU. The runtimes do
not include the data transfer times to the GPU. The measurements are performed

Performance Prediction and Ranking of SpMV Kernels 97

on GPUs with two different architectures (Nvidia M2050 and K80). Only one of
the two GPUs of the K80 is used. To minimize measurement inaccuracies and
startup overhead, all SpMV operations are executed 200 times and the median
is always used as the actual runtime.

Table 3. Set of used test matrices with some additional structure information.

| Matrix Rows/columns | nnz Bandwidth | nnz per row

min | max | mode | med
1 | Ga41As41H72 268096 18488476 22519 18 702 37 37
2 | PRO2R 161070 8185136 84250 1 92 66 66
3 | Si34H36 97569 5156379 18908 17 | 494 37 37
4 | crankseg_2 63838 14148858 61047 48 | 3423 | 195 195
5 | nd6k 18000 6897316 16766 130 514 | 468 416
6 | TSOPF_RS_b2383 38120 16171169 33353 2 983 4 6
7 | tmt_sym 726713 5080961 1921 3 9 7 7
8 | af_1.k101 503625 17550675 859 15 35 35 35
9 | af_shelll 504855 17588875 4909 20 40 | 35 35
10 | gsm_106857 589446 21758924 588744 12 106 32 32
11 | matrix_spelRef_a 900000 18612000 17999 12 21 21 21
12 | boneS10 914898 55468422 8969 12 81 81 66
13 | atmosmodd 1270432 8814880 21904 4 7 7
14 | kkt_power 2063494 14612663 | 2046911 1 96 3
15 | memchip 2707524 14810202 | 1647939 2 27 4
16 | Flan_1565 1564794 117406044 20702 24 81 81 81
17 | circuitbM.dc 3523317 19194193 | 2832158 1 27 4 5
18 | matrix_spel0_dpdp-a | 3506080 50928264 | 3378961 2 16 16 16

A set of 74 square matrices is used for the training and evaluation process.
Table 3 shows the 18 test matrices that are used as target- or test matrices where
the runtime must be predicted. The other matrices are the training matrices.
The matrices show a wide variety of feature values. All matrices originate from
the University of Florida Sparse Matrix Collection [4] or the SPE Comparative
Solution Project [16]. For the SELL-C-¢ format, a fixed C-value of 512 and o-
value of 2048 are used for all measurements. Likewise for the ELL-BRO format,
a slice size of 256 and symbol size of 64 bit are used.

An exhaustive search on the available formats and valid thread mappings
was performed for each matrix to determine the best achievable runtime for that
matrix and the corresponding format and thread mapping. Only the three basic
formats CSR, ELL and COO are used for the benchmarking-based approach,
while all five formats are used for the two machine learning approaches.

4.2 Prediction Quality

The prediction quality is determined by comparing the predicted runtime with
the actual measured runtime for the same format and same thread mapping.

98 C. Lehnert et al.

This was done with all matrices of Table3 using all supported formats and a
large set of thread mappings, in total about 8600 test instances for the machine
learning approaches and about 6100 ones for the benchmarking approach. Fig-
ures la and b present the divergence between the predicted and measured run-
times over all test instances of all three approaches on the M2050 and K80. They
show that the median divergence of the machine learning approaches is very low
at around 10 %. The average divergence of both these approaches is higher due
to some inaccurate predictions.

100 100
90 90
80 80

70

divergence in %
divergence in %
B
o

60
50
40
30
20 E 20
0 0

Benchmarking Linear Regression Benchmarking Linear Regression
Zmedian Eaverage Zmedian Eaverage
(a) M2050 (b) K80

Fig. 1. Comparison of the predicted runtimes and the actual measured runtimes.

The median divergence of the linear regression approach is higher compared
to the KNN approach, but its average is significantly better. This difference
is caused by an overall smaller number of predictions with greater inaccuracy.
The few high over- and underestimations of the KNN approach can be found
in a small number of matrices. Examples are matrices nd6ék, circuit5M_dc and
kkt_power. They have in common that some of their features have the smallest
values among all available training instances. The number of rows of matrix ndék,
for example, is much smaller than those of all training matrices. Since this value
is crucial for estimating the CSR-runtime, training instances with a significantly
higher number of rows may be chosen as the nearest neighbors, resulting in an
imprecise estimation. This problem can be dealt with by extending the training
set and including smaller matrices.

The figures also clearly show that the performance of the benchmarking-
based approach is much worse. The median divergence is about 25% and the
average accuracy only reaches 65 %. On the newer architecture of the K80, the
benchmarking-based approach performs even worse, which could indicate that
the relatively simple model is less suitable for the newer and more complex
Kepler architecture. In summary, both machine learning approaches deliver a
very high prediction quality with median divergences of around 10 %.

Performance Prediction and Ranking of SpMV Kernels 99

4.3 Ranking Quality

The runtime prediction is used as a tool, for ranking SpMV alternatives for a
given matrix. Even with a inaccurate prediction, correct ranking could still be
possible, e.g., with a continuous over estimation as long as the ranking order is
still correct. The evaluation of the quality of the ranking is done by comparing the
measured runtime of the predicted first ranked configuration with the overall best
measured runtime for that matrix over all configurations (formats and thread

mappings).

Share of matrices in %
(4]
o

Share of matrices in %
o
o

_

Benchmarking Linear Regression

\

Benchmarking Linear Regression
A<5% [0O5-20% O>20% 7<5% [05-20% 0>20%

(a) M2050 (b) K80

Fig. 2. Share of matrices where the divergence between the reached runtime and the
overall best runtime is between certain values.

Figure 2a presents the share of predictions where the divergence is below
5%, between 5% and 20 %, and over 20 % for all approaches on the M2050. The
figure shows that the machine learning approaches again deliver in total very
good results, and much better results than the benchmarking-based approach.
For the majority of matrices, the predictions of the machine learning approaches
result in runtimes that are only less than 5% slower than the best possible
runtimes. There was also no prediction of the linear regression/gradient-boosting
approach, which was more than 20 % slower than the optimal runtime. The real
runtimes of the benchmarking approach are more than 20% slower than the
optimum in most of the cases.

Figure 2b presents the same comparison for the K80 GPU. The linear regres-
sion on the K80 performs slightly worse than that on the M2050 and the KNN,
and the benchmarking approach perform slightly better than that on the M2050.
A more detailed comparison of the data revealed more details not easily pre-
sentable in plots:

— The benchmarking approach delivers very inconsistent results, and the run-
times for the same matrix on different architectures vary greatly.

— The quality of the predictions for a specific matrix is very consistent for the
linear regression and the KNN approaches and mostly independent of the
used architecture.

100 C. Lehnert et al.

— The KNN approach delivers very good predictions for the majority of matri-
ces, but also some highly inaccurate predictions with up to around 160 %
slower runtimes. The linear regression delivers better average predictions and
no such extreme outliers.

4.4 Other Aspects

Table4 shows the durations of the training-, modeling- and ranking-phases
for all approaches. The ranking was done for the matrix af_1 k101. While
the benchmarking-based and the pure linear regression and combined linear
regression/gradient-boosting approach each have a quite extensive offline train-
ing phase, the online prediction of a runtime itself is simple and fast (evaluat-
ing a linear function with given coefficients). The KNN approach, however, has
no training phase but a quite complex modeling phase for each single runtime
prediction since the neighbors among all existing training matrices have to be
identified and incorporated into the prediction value.

Table 4. Overhead (in msec). Results obtained by using R-tools are marked with *.

Phase Benchmarking | LR LR/Grad. boosting | KNN
Training (offline) 2,601,042 130.7* | 4,078* -
Modeling & ranking | 0.001 0.001 |0.013 153.4*

Table 5. SpMV-runtimes (in msec) per format of matrix af_1 k101

Format BRO-ELL | SELL-C-¢ | ELL |CSR | COO
Runtime (msec) | 1.029 1.187 1.3622.861 | 7.571

Table5 shows the measured SpMV execution times for the same matrix
using different formats. A comparison of the two tables shows that the
modeling /ranking-phases for all approaches other than KNN are even faster than
one SpMV execution with the most appropriate kernel for the given matrix.
Besides predicting an adequate format, the approaches can also be used for
selecting a proper thread mapping, simply by calculating the predictions for
a set of reasonable thread mappings. Regarding the prediction overhead, this
process is suitable for the benchmarking-based and linear regression techniques,
whereas the overhead for the KNN approach is quite high.

Performance Prediction and Ranking of SpMV Kernels 101

5 Summary and Outlook

We developed two new general models for performance prediction and rank-
ing of SpMV kernels on GPUs and compared these to a known explicit linear
model. The two new models both show better prediction and ranking results
than the simple explicit model. The linear regression model is most appropri-
ate if linearity of parameters dominates. This was the case for simple/regular
sparse matrix formats. The gradient-boosting regression technique could also
handle the two more complex formats. If parameters show non-linearity, a KNN
model is more suitable. This model delivers better results for formats with more
complex performance behavior, but it has a higher runtime overhead. Based on
the prediction, we were also able to use ranking to determine the most suitable
format and architecture parameters for a given matrix.

Our high quality results were only available after we fitted the general model
more specifically to the concrete problems; this procedure is common when using
these techniques. The procedure includes the proper selection of relevant fea-
tures and weights and the separation of models with respect to formats and
thread mapping. The approaches themselves are transferable to other formats
and (GPU) architectures.

There are several opportunities to further improve our models. For the lin-
ear regression, we used a least-square/gradient-boosting approach. Here different
regression techniques might deliver an even better quality. For the KNN app-
roach, the weights could be determined by the system itself. Applying the models
to a CPU-based systems would also be of interest.

Acknowledgements. We would like to thank the CMT team at Saudi Aramco
EXPEC ARC for their support and input. Especially we want to thank Ali H. Dogru
for making this research project possible. Additionally we appreciate the discussions
on modeling with Marlis von der Hude and Peter Becker.

References

1. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-
dimensional blocking strategy for sparse matrix-vector multiplication on GPUs.
In: Proceedings of the 28th ACM International Conference on Supercomputing
(ICS 2014), pp. 273-282. ACM (2014)

2. Berrendorf, R., Weierstall, M., Mannuss, F.: Program optimization strategies to
improve the performance of SpMV-operations. In: Proceedings of the 8th Inter-
national Conference on Future Computational Technologies and Applications, pp.
34-40 (2016)

3. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Proceedings of Principles and Practices of Parallel
Programming (PPoPP 2010), pp. 115-125. ACM, January 2010

4. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw. 38(1), 1:1-1:25 (2010)

5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189-1232 (2000)

102

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. Lehnert et al.

Guo, P., Wang, L., Chen, P.: A performance modeling and optimization analy-
sis tool for sparse matrix-vector multiplication on a GPUs. IEEE Trans. Parallel
Distrib. Syst. 25(5), 1112-1123 (2014)

Im, E.J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse matrix
kernels. Int. J. High Perform. Comput. Appl. 18(1), 135-158 (2004)

. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse

matrix data format for efficient general sparse matrix-vector multiply on modern
processors with wide SIMD units. STAM J. Sci. Comput. 26(5), C401-C423 (2014)
Lee, B.C., Vuduc, R.W., Demmel, J.W., Yelick, K.A.: Performance models for
evaluation and automatic tuning of symmetric spare matrix-vector multiply. In:
Proceedings of the International Conference on Parallel Processing, vol. 1, pp.
169-176. IEEE (2004)

Li, K., Yang, W., Li, K.: Performance analysis and optimization for SpMV on
GPU using probalistic modeling. IEEE Trans. Parallel Distrib. Syst. 26(1), 196—
205 (2015)

Mitchell, T.M.: Machine Learning, vol. 1. McGraw-Hill, Singapore (1997)
Murphy, K.P.: Machine Learning: A Probabilistic Perspective, vol. 1. The MIT
Press, Cambridge (2012)

Neelima, B., Reddy, G., Raghavendra, P.: Predicting an optimal sparse matrix
format for SpMV computation on GPU. In: Proceedings of International Parallel
& Distributed Processing Symposium Workshops (IPDPSW 2014), pp. 1427-1436.
IEEE (2014)

Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM,
Philadelphia (2003)

Sedaghati, N., Mu, T., Pouchet, L.N., Parthasarathy, S., Sadayappan, P.: Auto-
matic selection of sparse matrix representation on GPUs. In: Proceedings of the
25th International Conference on Supercomputing (ICS 2015). ACM (2015)
Society of Petroleum Engineers. http://www.spe.org/web/csp/: SPE Comparative
Solution Project

Tang, W., Tan, W., Ray, R., Wong, Y., Chen, W., Kuo, S., Goh, R., Turner, S.,
Wong, W.: Accelerating sparse matrix-vector multiplication on GPUs using bit-
representation-optimized schemes. In: Proceedings of Intrnational Conference on
High Performance Computing, Networking, Storage and Analysis (SC 2013). ACM
(2013) (article no. 26)

Xu, S., Xue, W., Lin, H.X.: Performance modeling and optimization of sparse
matrix-vector multiplication on NVIDIA CUDA platform. J. Supercomput. 63(3),
710-721 (2011)

http://www.spe.org/web/csp/

	Performance Prediction and Ranking of SpMV Kernels on GPU Architectures
	1 Introduction
	2 Related Work
	3 Performance Modeling
	3.1 Benchmarking-Based Approach
	3.2 Linear Regression Techniques
	3.3 k-Nearest Neighbors

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Prediction Quality
	4.3 Ranking Quality
	4.4 Other Aspects

	5 Summary and Outlook
	References

