Exploiting Task-Parallelism in Message-Passing
Sparse Linear System Solvers Using OmpSs

José I. Aliaga!, Marfa Barreda!®),
Matthias Bollhéfer?, and Enrique S. Quintana-Orti?

! Dpto. de Ingenierfa y Ciencia de Computadores,
Universidad Jaume I, Castellén, Spain
{aliaga,mvaya,quintana}@icc.uji.es

2 Institute of Computational Mathematics,
TU Braunschweig, Braunschweig, Germany
m.bollhoefer@tu-bs.de

Abstract. We introduce a parallel implementation of the precondi-
tioned iterative solver for sparse linear systems underlying ILUPACK
that explores the interoperability between the message-passing MPI pro-
gramming interface and the OmpSs task-parallel programming model.
Our approach commences from the task dependency tree derived from
a multilevel graph partitioning of the problem, and statically maps the
tasks in the top levels of this tree to the cluster nodes, fixing the inter-
node communication pattern. This mapping induces a conformal parti-
tioning of the tasks in the remaining levels of the tree among the nodes,
which are then processed concurrently via the OmpSs runtime system.
The experimental analysis on a cluster with high-end Intel Xeon
processors explores several configurations of MPI ranks and OmpSs
threads per process showing that, in general, the best option matches
the internal architecture of the nodes. The results also report significant
performance gains for the MPI4+OmpSs version over the initial MPI code.

Keywords: Programming models -+ Sparse linear systems
Preconditioned iterative solvers + Task-level parallelism - ILUPACK -
MPI - OmpSs

1 Introduction

The solution of large sparse systems of linear equations is a key linear algebra
problem arising in many scientific and engineering applications that involve the
discretization of partial differential equations (PDEs) [18]. Moreover, the con-
nection between sparse linear algebra and graph algorithms has turned this type
of problem into an appealing means to mine the vast amount of information in
social networks and other big data analytic processes [13].

ILUPACK! (Incomplete LU decomposition PACKage) is a numerical pack-
age that contains efficient multilevel ILU factorization solvers, based on Krylov

! http://ilupack.tu-bs.de.

© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 631-643, 2016.
DOI: 10.1007/978-3-319-43659-3_46

http://ilupack.tu-bs.de

632 J.I. Aliaga et al.

subspace methods [18], for large-scale sparse linear systems with up to mil-
lions of equations [10,19,21]. In previous work, we exploited the task-parallelism
exposed by the task dependency graph (TDG) associated with the sparse
matrix to develop parallel versions of ILUPACK’s preconditioned Conjugate
Gradient (PCG) solver. The target platforms for these past efforts included
shared-memory multiprocessors via OpenMP [2,3], multicore architectures with
OmpSs? [1], and clusters using MPI [1,4].

Unfortunately, the previous MPI version of ILUPACK [1,4] could only map
one leaf of the TDG to each MPI rank, impeding the exploitation of other types
of parallelism internally to the nodes. This is a strong limitation for clusters
consisting of “fat” nodes equipped with a significant numbers of cores per node,
as the static correspondence between tasks and MPI ranks may result in an
unbalanced distribution of the workload and, therefore, inefficiency.

In this work, we present a new implementation of ILUPACK which merges
MPI and OmpSs to exploit the benefits of each programming model, and allows
the execution of the solver with more than one leaf per MPI process. In addition,
we perform an experimental evaluation in order to assess the impact of the
MPI4+OmpSs configuration, problem dimension, and number of leaves per core
on the performance of the iterative solve. Our results on a cluster equipped with
16 Intel Xeon cores per node reveals that the MPI+OmpSs version consistently
outperforms the initial MPI code in terms of both strong and weak scaling.

There exist other packages also based on ILU factorizations and Krylov sub-
space methods. For example, pARMS [15] is an MPI-based library of parallel
solvers for solving general sparse linear systems where the preconditioner is based
on an algebraic recursive multilevel ILU. In contrast to ILUPACK, it relies on
an independent set strategy for partitioning the leading systems into small diag-
onal blocks and then it re-applies the strategy recursively. In [7] a completely
different parallel approach to ILUs was presented treating the error between the
ILU and the original matrix as sequences of nonlinear equations to be improved
in parallel rather than decomposing the system into a hierarchy of independent
blocks. In [9], a parallel incomplete factorization approach uses direct solver
techniques based on the level-of-fill and the underlying graph properties Beside
ILU-based techniques, efficient parallel direct solvers [11,12,14,17,20] based on
OpenMP /MPI rely on tree—parallelism and a variety of sophisticated techniques.
Moreover, there are certainly many further parallel preconditioning methods,
e.g., those based on approximate inverses or algebraic multigrid methods just to
mention a few of them.

The rest of the paper is organized as follows. Section 2 offers a brief review
of ILUPACK and the strategy to extract task-parallelism from this applica-
tion. Section 3 describes the different parallelization approaches, based on either
OmpSs or MPI only, and the new solution that combines both parallel pro-
gramming interfaces. Section4 analyzes the performance and scalability of the
different parallel versions. Finally, Sect. 5 summarizes our work and offers several
concluding remarks.

2 https://pm.bsc.es/ompss.

https://pm.bsc.es/ompss

Exploiting Task-Parallelism in Message-Passing Sparse 633
2 Exposing Task-Parallelism in ILUPACK

Introduction to ILUPACK. The C and Fortran routines included in ILU-
PACK can be leveraged to solve sparse linear systems of the form Az = b via
Krylov subspace methods [18]. This library provides multilevel preconditioners
that improve the numerical properties of the linear system, reducing the number
of steps of the iterative solver. Concretely, the procedure obtains an efficient
preconditioner from the ILU factorization of the system matrix, dropping the
small entries of the factors, while relying on pivoting to bound the norm of the
inverse triangular factors, yielding a numerical multilevel hierarchy of partial
inverse-based approximations [5,6].

s1: Compute the preconditioner A — M ~ LU

s2: Initialize xo, 70, 20, do, Bo, To

S3: k:=0

s4: while (7, > Tmax) Iterative PCG solve
S5: wy = Ady (spmv)

S6: Pk = ﬁk/dfwk (pOT product)

S7: Tht1 := Tk + prdy (AXPY)

S8: Tk+1 ‘= Tk — PrWk (AXPY)

S9: Zhgr =Mt~ U L7 g Apply preconditioner
S10: Brt1 = rgﬂzkﬂ (pOT product)

S11: Qf = ﬁk+1/ﬁk

S12: di41 := 21 + ardi (axpy-like)

S13: Trg1 = Tey1 |2 (2-norm)

S14: k:=k+1

s15: endwhile

Fig. 1. Algorithmic formulation of the PCG method. Here, Tmax is an upper bound on
the relative residual for the computed approximation to the solution.

For the particular case of a symmetric positive definite (s.p.d.) linear system,
Fig. 1 illustrates a simplified version of the PCG solver underlying ILUPACK.
The most challenging operations in this algorithm are the computation of the
preconditioner (S1), before the iteration commences, and its application at each
iteration (S9). We will describe in detail the task-parallelism implicit in these
two operations.

Nested Dissection. Exploiting the relationship between sparse matrices and
adjacency graphs, nested dissection can be recursively applied to permute a
sparse matrix, yielding a collection of diagonal blocks that are linked to certain
subgraphs and separators [3]. Moreover, the hierarchy of subgraphs and sepa-
rators fixes the order in which the diagonal blocks have to be factorized. This
process renders a TDG with the structure of a tree, where the subgraphs occupy
the leaves and the separators correspond to the internal nodes. For example,

634

0
0
0

A 0 0 O

A 0 0
0 A2 O
0 0 Ass

J.I. Aliaga et al.

A04 0

Ay O
0 Ass
0 A35

AOG]
A16
A26
ASG

Aso
0

Ay 00
0 Asz Ass

Ags O
0 Ass

A46
A56

Oae0

offoXo]

Fig. 2. Partitioning (left) and task dependency tree of the diagonal blocks (right). Task
T; is in charge of processing the diagonal block A;;.

L A60 A61 A62 AGS A64 A65 A66

Fig. 2 (left) reflects the structure of a sparse matrix on which two nested dis-
section steps have been applied, yielding 4 subgraphs and 3 separators. Figure 2
(right) shows the TDG of the permuted matrix, where the edges of this directed
acyclic graph define the dependencies between the diagonal blocks (tasks).

Computation of the Preconditioner. In order to improve the concurrency of
this computation, the permuted matrix can be disassembled into one submatrix
per leaf of the TDG. For instance, the submatrices for the graph in Fig.2 are
decomposed as

Ago| Aoa Ao A | Ay Ase Agg| Ags Age Ass| Ass Asg
Ao [AL]A%s | | Aar [ALs|AlLs | o | Asz | AZ[AZ%6 | | Ass | A35[A36 | (1)
Ago | AQy[ABs | [Ae1 | Aga]Ags | [Ao | ABs|A%s | [Aes | Ads|AGs

where

Agg =AY+ ALy, Ass = Al + A}y | Age = A + Ags + Ade + Ads. (2)

Thus, the factorizations of the leading blocks of these four submatrices can pro-
ceed in parallel, while the modified blocks A?j/ 1/2/3 are needed to solve the depen-

dencies of the ancestor tasks. This process continues traversing the dependency
tree, until the root task factorizes its local submatrix.

Application of the Preconditioner. The application of the preconditioner
requires the solution of two triangular systems, corresponding to the lower and
the upper incomplete triangular factors. The TDG for the former triangular sys-
tem presents the same structure and dependencies as that associated with the
computation of the preconditioner. In the latter triangular solve, the structure
is preserved but dependencies are reversed, pointing top-down from the root to
the leaves. Therefore, concurrency increases/decreases as we move towards/away
from the leaves.

Other Kernels in the PCG Iteration. The remaining operations of PCG
conform the computation/application of the preconditioner. The matrix is dis-
assembled following (1) and the vectors are partitioned in a conformal manner,

Exploiting Task-Parallelism in Message-Passing Sparse 635

but the operation on vectors does not always fulfill (2). With this formulation
all these computations only involve the leaves of the TDG and, therefore, can be
computed fully in parallel, except for the dot products, which require an atomic
addition (reduction) of the values locally computed in each leaf.

Degree of Concurrency. The number of leaves of the TDG grows exponen-
tially with the number of nested dissection steps, so that the degree of con-
currency can be easily increased by expanding additional levels. However, each
dissection step introduces additional numerical levels in the computation yield-
ing both a different TDG and a distinct preconditioner. While the numerical
properties of all these preconditioners are similar, in practice the number of iter-
ations of the PCG solver increases significantly after a few levels (8 and more)
are expanded.

3 Exploiting Task-Parallelism with OmpSs and MPI

In this section, we first briefly review how to exploit the task-parallelism explic-
itly exposed by the TDG@G, using either OmpSs or MPI, to then introduce our app-
roach that combines both parallel programming models to yield a task-parallel
MPI+OmpSs solution.

3.1 Parallelization Using OmpSs

OmpSs is a task-based parallel programming model developed at Barcelona
Supercomputing Center (BSC) [8,16]. At execution time, the runtime system
underlying OmpSs detects data dependencies between tasks, with the help of
OpenMP-like compiler directives (pragmas) annotated with clauses that indi-
cate the task operands’ directionality (input, output or input/output). OmpSs
then generates a task graph during the execution, which is leveraged to sched-
ule the tasks to the cores, exploiting the inherent task-level parallelism while
fulfilling the dependencies embedded in the graph.

The opportunities to exploit task-level parallelism in ILUPACK’s PCG
method lie within the computations that involve the preconditioner (compu-
tation and application) as well as the vector operations. The introduction of
OmpSs in the operations with the preconditioner is quite intricate, mostly due
to the complexity of ILUPACK itself. Nonetheless, it is possible to create a
“skeleton” structure that explicitly exposes/governs the dependencies associated
with the TDG while requiring only minor modifications in the routines included
in the OpenMP version of ILUPACK [1,2]. In contrast, as the sparse matrix
and the vectors in the PCG iteration are disassembled conformally, according
to (1), the operations on the latter can be decomposed into a number of inde-
pendent vector suboperations, which are easily parallelized using OmpSs. The
only exception are the dot products which, after the reduction of the subvectors
local to each thread, involve an atomic addition and, therefore, a synchroniza-
tion/barrier [1,2]. Although nested parallelism could be applied to optimize the
operations related to each node, our experience with this technique is negative.

636 J.I. Aliaga et al.

3.2 Parallelization with MPI

The original MPI-based parallel version of ILUPACK, introduced in [4], spawns
one MPI rank per leaf (task) of the TDG, with a one-to-one static mapping
between leaves and ranks. This task-rank correspondence is fixed before the
preconditioner computation, by the root process, which sends the information
for each leaf to the appropriate MPI rank. The same mapping is then maintained
during the complete execution, for all computations and iterations, including the
preconditioner computation/application and vector operations.

The operations with the preconditioner potentially transform the dependen-
cies of the TDG into communications among MPI ranks. To reduce the number
of transfers, an inner task is always mapped to one of the two MPI ranks where
the two “children” tasks were mapped to. For example, consider a TDG consist-
ing of 4 leaves mapped to 4 MPI ranks: RO-R3. Then, in order to collapse the
first level when the graph is traversed bottom-up during the lower triangular
system solve, ranks R0, R2 send their data to R1, R3, respectively. Next, the
receivers accumulate this information with the results from their own computa-
tions, and process the tasks in the next higher level, while the senders block till
the top-down traversal of the TDG during the upper triangular system solve. Fol-
lowing this strategy, traversing the TDG only requires a communication between
“sibling” tasks/“neighbour” MPI ranks.

Disassembling the matrix and the vectors, according to (1), allows all the
other computations in PCG to operate with the leaves, avoiding any communica-
tion, except for the dot operations, which require an MPI reduction (MPI_Reduce)
to accumulate the values computed in each node.

3.3 Combining MPI4+OmpSs

In general, a strong motivation for mixing OmpSs with MPI is to unleash a
higher level of asynchronism, for example in order to overlap communication with
computation reducign the number of global synchronizations. In this particular
work, the major advantage of combining both programming models is to exploit
dynamic scheduling within the cluster nodes via OmpSs.

The first step to obtain an MPI+OmpSs solution is to develop a new MPI
version of ILUPACK where an MPI rank can handle a subtree of the TDG
comprising several leaves and the related inner tasks. With this version, OmpSs
can then be used to process the tasks mapped to each MPI rank, dynamically
distributing the work between several OmpSs threads. For example, consider
a 2-level TDG composed of one root task and two leaves to be executed on a
processor with two cores. If the computational cost associated with the leaves is
unbalanced, this can be tackled by expanding an additional level of the TDG,
yielding a 3-level tree consisting of four leaves. Now, if the parallelization is
based on MPI only, an optimal mapping of the tasks to MPI ranks requires a
prior knowledge of the computational costs of the tasks. Compared with this, an
OmpSs parallel version with 2 threads features a dynamic mapping of tasks to

Exploiting Task-Parallelism in Message-Passing Sparse 637

threads that is more flexible and can use the resources more efficiently by, e.g.,
prioritizing the execution of the more expensive tasks.

The MPI4+OmpSs version still requires an initialization where the root
process distributes the data corresponding to (the leaves of) the subtrees among
the MPI ranks. The MPI+OmpSs version of ILUPACK is then divided into a
sequence of interleaved OmpSs and MPI stages, with the former ones computing
the tasks internal to the subtrees local to the MPI ranks, and the latter requir-
ing communication between MPI ranks. In particular, the computation of the
preconditioner comprises only one stage of each type, but its application in the
loop body of PCG has two OmpSs stages per iteration because the TDG is tra-
versed twice. Figure 3 illustrates the initial distribution for a TDG with 8 leaves,
together with a scheme of the execution of the two stages in the preconditioner
computation. In that example, the OmpSs threads process the tasks within the
bottom two levels, with no MPI communication involved. For the top two levels,
the OmpSs threads remain inactive and it is the MPI ranks that are in charge
of processing the tasks. The dot operations also exhibit the same two stages: On
the leaves, the OmpSs threads accumulate their local subvectors, and an atomic
reduction is then applied to compute the reduction inside each MPI rank. These
local values are then reduced using an MPI collective primitive. The remain-
ing vector computations of the PCG iteration operate in the bottom level only
and, therefore, are computed by OmpSs threads with no MPI communication
involved.

MPI Local
communication data

R1 \
MPI /Local MPI Local
communication g data communication Q data

OmpSs OmpSs
threads threads

RO R1 R2

-«

OmpSs;| OmpSs
threads| threads

Fig. 3. Mapping of a TDG to 4 MPI ranks (R0O-R3) with 2 OmpSs threads per rank.

638 J.I. Aliaga et al.

4 Experimental Results

4.1 Setup and Preliminaries

The experiments in this section were performed using IEEE754 double-precision
arithmetic on MareNostrum, a large-scale computing infrastructure at BSC. This
platform connects 3,056 compute nodes via an Infiniband Mellanox FDR10 net-
work. Each node contains two Intel Xeon E5-2670 processors for a total of 16
cores per server (2.6 GHz). The nodes employed in our experiments were also
equipped with 64 Gbytes of DDR3 RAM.

For the experimental analysis, we employed an s.p.d. linear system arising
from the finite difference discretization of a 3D Laplace problem, with instances
of different size; see Table1. In the experiments, all entries of the right-hand
side vector b were initialized to 1, and the PCG iterate was started with the
initial guess x¢g = 0. For the tests, the parameters that control the fill-in and
convergence of the iterative process in ILUPACK were set as droptool = 1.0E-2,
condest = 5, elbow = 10, and restol = 1.0E-6.

Table 1. Matrices employed in the experimental evaluation, where n, only includes
the non-zeros in the upper triangular part.

Matrix | Dimension n | #non-zeros n. | Density (%)
Laplace | A159 | 4,019,679 16,002,873 9.90E-7
A200 | 8,000,000 31,880,000 4.98E-7
A252 | 16,003,008 63,821,520 2.49E-7
A318 | 32,157,432 128,326,356 1.24E-7
A400 | 64,000,000 255,520,000 6.23E-8

In the following we analyze the performance of two parallel versions of the
PCG solver in ILUPACK: one based on MPI that can handle several leaves per
MPT rank, with no intervention of OmpSs (hereafter, referred to as MPI-only);
and an alternative variant that combines MPI+OmpSs also capable of processing
several leaves per MPI rank, but which does so via OmpSs threads internally
to each node. The MPI4+OmpSs code was compiled using Mercurium C/C++
(1.99.8), with the OpenMPI (1.8.1) flags ~showme: compile and -showme:1link.
The MPI-only variant was compiled with the same version of OpenMPI. Other
software included OmpSs (15.06), ILUPACK (2.4), and ParMetis® (4.0.2) for
the graph reorderings. In the executions with the MPI-only version, we spawned
one MPI rank per core (i.e., 16 per node). For MPI+OmpSs, we tested distinct
combinations of MPI ranks and OmpSs threads, with the numbers of ranks
multiplied by the number of threads always being equal to 16 per node.

In the following, we consider the behaviour of the iterative PCG solver only,
without the preconditioner computation, because the computational cost of the

3 http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download.

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download

Exploiting Task-Parallelism in Message-Passing Sparse 639

PCG solver on Laplace A400 problem with 1 leaf/core

> 14 T T T
5 1R/16T
& 1.3 - 2R/8T mmmm B
s 4R/AT
= 1.2 8R2T mmmmm
2 16R/1T
£
5 1.0 | i
—
o
5 oal 1l Iﬂ 1 *
; 11
o 0.8
1 2 4 8 16
Number of nodes
PCG solver on Laplace A400 problem with 2 leaves/core

> 14 T T T T T
g 1R/16T
= 1.3 2R/8T mmmmm |
= 4R/AT
= 12 r 8R/2T |
s 16R/1T mmmm

1.1
£
= 1.0
‘s
o 09
©
< 0.8

1 2 4 8 16
Number of nodes

Fig. 4. Execution time per PCG iteration for the Laplace A400 problem for different
configurations, using 1 leaf per core (top) and 2 leaves per core (bottom). (Color figure
online)

latter is in general smaller and we observed no significant performance differences
between the MPI-only and MPI+OmpSs parallel versions of this procedure. In
addition, several previous experiments (for brevity, not shown here) revealed that
the best performance was obtained when splitting the sparse matrix via nested
dissection to generate a TDG with a number of leaves that equals or doubles
the number of cores. Therefore, for simplicity, in the following we analyze only
these two cases.

4.2 Analysis of Configurations

In order to assess the performance of the parallel MPI+OmpSs version of ILU-
PACK, we first evaluate different combinations of MPI ranks and OmpSs threads
per node (configurations). Given the node target architecture, with 2 sockets/8
cores per socket, we employ 1, 2, 4, 8 or 16 MPI ranks per node and the cor-
responding number OmpSs threads that fill all cores per node: 16, 8, 4, 2 or
1, respectively. We will denote these configurations as 1R/16T, 2R/8T, 4T /4T,
8R/2T, and 16R/1T (#Ranks/#Threads). Figure 4 reports the ratio of execution

640 J.I. Aliaga et al.

time of these configurations normalized with respect to the MPI-only implemen-
tation for the A400 problem, splitting the problem to obtain one leaf per core and
two leaves per core. Both graphs reveal that, for almost all cases, the best option
is 2R/8T, which mimics the internal socket/core architecture of the servers. Fur-
thermore, we also notice that the extreme configurations, 1R/16T and 16R/1T,
deliver the lowest performance. In the case that employs 1 rank and 16 OmpSs
threads, this is due to the intersocket implicit communications. In the alternative
with 16 MPI ranks and 1 thread per rank the reason is the overhead introduced
by the OmpSs runtime system. In order to avoid this, when exploiting the hard-
ware concurrency using MPI ranks only, we will not employ the OmpSs runtime
system in the following.

4.3 Analysis of Scalability

We first evaluate the strong scalability of the parallel solvers. Figure5 shows
the execution time per iteration of the PCG solve for the A400 problem as the
resources are increased from 16 cores/1 node to 256 cores/16 nodes. In gen-
eral, as expected, there is a decrease in the iteration time as the number of
cores grows. If we compare the two versions, the results demonstrate that the
MPI+OmpSs variant consistently outperforms the MPI version (with no under-
lying OmpSs runtime system), by a margin that is around 5-10%. Moreover,
there is a slight difference between the cases with one or two leaves per core that
is enlarged with the number of cores, revealing the TDG with one leaf per core
as the best choice for 32 or more cores. The reason is that, as the amount of
computational resources grows, the additional concurrency explicitly exposed by
further splitting the computational load (sparse matrix/adjacency graph) does
not compensate the overhead that is introduced for this particular (moderate)
problem dimension.

The next experiment aims to provide an evaluation of weak scaling for the
parallel solvers. Unfortunately, for ILUPACK’s PCG solve it is not possible to

Strong scalability. PCG solver on Laplace A400 problem
2.5 \ \

T T
MPI+OmpSs. 1 leaf/core
20 - MPI+0mpSs. 2 leaves/core mmmmm

MPI. 1 leaf/core mm=m
MPI. 2 leaves/core mmmmm

15

1.0

Time (seconds)

0.5

0.0
16 32 64 128 256

Number of cores

Fig. 5. Execution time per PCG iteration for the Laplace A400 problem. (Color figure
online)

Exploiting Task-Parallelism in Message-Passing Sparse 641

Weak scalability. PCG solver on Laplace problems
0.7

T T T
MPI+OmpSs. 1 leaf/core
0.6 - MPI+0OmpSs. 2 leaves/core
MPI. 1 leaf/core mmmmm
MPI. 2 leaves/core

0.5

Time (seconds)

16/A159 32/A200 64/A252 128/A318 256/A400
Number of cores/Matrix

Fig. 6. Execution time per PCG iteration for different Laplace problems. (Color figure
online)

generate an instance of the Laplace problem with a computational complexity
that grows exactly in proportion to the number of resources. To approximate
this scenario, we set the number of non-zeros of the sparse matrix (n,) to be
roughly proportional to the number of cores. However, we emphasize that n,
only offers an estimation of the computational cost, as other factors such as the
fill-in/quality of the preconditioner may play a relevant role. Figure 6 reports the
performance of the parallel implementations of the PCG solve (per iteration) for
the different matrices in Table 1. These results show that the execution times
grow with the number of cores/problem dimension. The reason is that the num-
ber of actual floating-point arithmetic operations per iteration increases faster
than n,. Comparing both implementations, the MPI+OmpSs version outper-
forms the MPI variant; and the difference between the cases with one or two
leaves per core also grows with the number of cores.

5 Concluding Remarks

We have presented a new parallel version of the complete method underlying
ILUPACK for solving symmetric positive definite linear systems on clusters of
multicore processors. The approach extracts task-parallelism by splitting the
sparse matrix into multiple levels, yielding a directed acyclic graph, with the
form of a binary tree, where the nodes represent tasks, the arrows indicate data
dependencies, and most computational work is performed in the leaf tasks. This
graph is then traversed from bottom-up for the computation of the precondi-
tioner and one of the triangular solves during its application, and top-down for
the second triangular solve. In principle, the tree can be expanded into fur-
ther levels to expose any number of tasks and, therefore, degree of concurrency.
However, doing so yields different preconditioners and, from a certain depth,
incurs into a significant overhead. In general, the best compromise is to generate
up to two leaves per core, to allow the OmpSs scheduler optimize the compu-
tation. The experimental results confirm this assert for configurations with a

642 J.I. Aliaga et al.

reduced number of nodes, where the overhead is compensated by the OmpSs
optimization. For unstructured matrices, the OmpSs runtime system accelerates
the computation in most scenarios, due to the irregularity of the node sizes.

The solver combines the MPI and OmpSs programming models, with the
best solution corresponding to a configuration that maps one MPI rank and
eight OmpSs threads per socket, mimicking the internal architecture of the clus-
ter nodes. With these parameters, the new MPI+OmpSs version of ILUPACK
outperforms the initial implementation for clusters, which was based on MPI
and could only process one leaf per rank.

Acknowledgements. This work was supported by the CICYT project TIN2014-
53495-R of the MINECO and FEDER, and the H2020 EU FETHPC Project 671602
“INTERTWinE”. Maria Barreda was supported by the FPU program of the Ministerio
de Educacion, Cultura y Deporte. The authors thankfully acknowledge the computer
resources provided by BSC-CNS (Centro Nacional de Supercomputacion).

References

1. Aliaga, J.I., Badia, R.M., Barreda, M., Bollhéfer, M., Dufrechou, E., Ezzatti, P.,
Quintana-Orti, E.S.: Exploiting task and data parallelism in ILUPACK’s precon-
ditioned CG solver on NUMA architectures and many-core accelerators. Parallel
Comput. 54, 97-107 (2016)

2. Aliaga, J.I., Badia, R.M., Barreda, M., Bollhofer, M., Quintana-Orti, E.S.: Lever-
aging task-parallelism with OmpSs in ILUPACK’s preconditioned cg method. In:
26th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD 2014), pp. 262-269 (2014)

3. Aliaga, J.I., Bollhofer, M., Martin, A.F., Quintana-Orti, E.S.: Exploiting thread-
level parallelism in the iterative solution of sparse linear systems. Parallel Comput.
37(3), 183—202 (2011)

4. Aliaga, J.I., Bollhofer, M., Martin, A.F., Quintana-Orti, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Joénasson, K. (ed.) PARA 2010, Part I. LNCS, vol. 7133, pp. 162-172. Springer,
Heidelberg (2012)

5. Bollhofer, M., Grote, M.J., Schenk, O.: Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media. STAM J. Sci. Comput. 31(5), 3781—
3805 (2009)

6. Bollhofer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based
ILUs. SIAM J. Sci. Comput. 27(5), 1627-1650 (2006). Special issue on the 8-th
Copper Mountain Conference on Iterative Methods

7. Chow, E., Patel, A.: Fine-grained parallel incomplete lu factorization. STAM J.
Sci. Comput. 37(2), C169-C193 (2015)

8. Duran, A., Ferrer, R., Ayguadé, E., Badia, R.M., Labarta, J.: A proposal to extend
the OpenMP tasking model with dependent tasks. Int. J. Parallel Program. 37(3),
292-305 (2009)

9. Gaidamour, J., Hénon, P.: A parallel direct/iterative solver based on a schur com-
plement approach. In: 11th IEEE International Conference on Computational Sci-
ence and Engineering, CSE 2008, pp. 98-105. IEEE (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Exploiting Task-Parallelism in Message-Passing Sparse 643

George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of
preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1-24:30
(2012)

Hénon, P., Ramet, P., Roman, J.: PaStiX: a high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Comput. 28(2), 301-321 (2002)
Irony, D., Shklarski, G., Toledo, S.: Parallel, fully recursive multifrontal supernodal
sparse Cholesky. Future Gener. Comput. Syst. 20(3), 425-440 (2004). Special issue:
Selected numerical algorithms archive

Kepner, J., Gilbert, J. (eds.) Graph Algorithms in the Language of Linear Algebra.
SIAM (2011)

Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface.
ACM Trans. Math. Software 31(3), 302-325 (2005)

Li, Z., Saad, Y., Sosonkina, M.: pARMS: a parallel version of the algebraic recursive
multilevel solver. Numerical Lin. Alg. W. Appl. 10, 485-509 (2003)

The OmpSs programming model. http://pm.bsc.es/ompss

Amestoy, J.K.P.R., Duff, I.S., L'Excellent, J.-Y.: A fully asynchronous multifrontal
solver using distributed dynamic scheduling. STAM J. Matrix Anal. Appl. 23(1),
15-41 (2001)

Saad, Y.: Iterative Methods for Sparse Linear Systems. STAM (2003)

Schenk, O., Bollhtfer, M., Rémer, R.A.: On large scale diagonalization techniques
for the Anderson model of localization. SIAM Rev. 50, 91-112 (2008)

Schenk, O., Géartner, K.: On fast factorization pivoting methods for symmetric
indefinite systems. Electr. Trans. Num. Anal. 23(1), 158-179 (2006)

Schenk, O., Wéchter, A., Weiser, M.: Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939-960
(2009)

http://pm.bsc.es/ompss

	Exploiting Task-Parallelism in Message-Passing Sparse Linear System Solvers Using OmpSs
	1 Introduction
	2 Exposing Task-Parallelism in ILUPACK
	3 Exploiting Task-Parallelism with OmpSs and MPI
	3.1 Parallelization Using OmpSs
	3.2 Parallelization with MPI
	3.3 Combining MPI+OmpSs

	4 Experimental Results
	4.1 Setup and Preliminaries
	4.2 Analysis of Configurations
	4.3 Analysis of Scalability

	5 Concluding Remarks
	References

