Lightweight Multi-language Bindings
for Apache Spark

Luca Salucci'®) | Daniele Bonetta?, and Walter Binder!

! Faculty of Informatics, Universita della Svizzera italiana (UST),
Lugano, Switzerland
{Luca.Salucci,Walter.Binder}@usi.ch
2 Oracle Labs, VM Research Group, Lugano, Switzerland
daniele.bonetta@oracle.com

Abstract. Apache Spark has emerged as one of the most promi-
nent frameworks for distributed high-performance data analysis. Among
Spark’s most appealing features are its bindings for dynamic languages
such as Python and R. Despite of the great flexibility of such languages,
they often cannot match the performance of statically typed languages
such as Java or Scala. However, this limitation is not only due to the
intrinsic nature of dynamically typed languages. Largely, the perfor-
mance gap is caused by the way the language runtimes interact with
Spark. In this paper we describe a new approach to integrating Python
and R into data-intensive Spark applications. Our approach significantly
reduces the performance gap between such languages and their statically
typed counterpart, making dynamic languages an attractive alternative
for the implementation of big-data applications.

1 Introduction

In the context of big-data frameworks [22], Apache Spark [3] has emerged as
one of the most popular solutions for writing complex data-analytics applica-
tions. The reasons for this success are manifold, spanning from Spark’s conve-
nient high-level programming model, to its rich plugins ecosystem and its very
active developer community. Arguably, one of the key aspects of such success
is the extensive support for several different analytics techniques and domains:
started as a research project targeting data-intensive applications in a distrib-
uted cluster [29], Spark has rapidly evolved and is now supporting also other,
more complex application domains such as graph analytics [27], stream-based
computations [30], and machine learning [24]. Spark is entirely written in Scala
and runs on the Java Virtual Machine (JVM). Hence, Spark also considers Java
as a first class citizen, and allows developers to write applications in Java, too.
Scala and Java, however, are not popular languages in many of the scientific com-
munities targeted by Spark. For this reason, Spark also offers support for other
languages, providing native built-in support for Python (i.e., PySpark [12]), and
recently also for R (i.e., SparkR [13]). Both languages are very popular among
data scientists, as they provide extensive support and abstractions for specifying

© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 281-292, 2016.
DOI: 10.1007/978-3-319-43659-3_21

282 L. Salucci et al.

complex data analyses. Python and R are often considered complemental to each
other, as they offer extensive support for closely related domains, namely, sta-
tistical computing (using R) and numerical computing (using Python with pop-
ular libraries such as NumPy [10]). Hence, both languages are often combined
together to develop complex analyses. The support of high-level, dynamically
typed languages (such as Python or R) in Spark, however, comes at the expense
of performance. The reasons for this performance difference are twofold. Firstly,
dynamically typed languages are inherently slower than statically typed ones.
Despite of the progress in dynamic compilation techniques [18,26], languages
such as Python still cannot match the performance of Java due to the intrin-
sic nature of their semantics, which requires the language runtime to perform
additional checks for common operations such as function calls and property
lookups. Secondly, the runtimes of such languages are not executed within the
JVM process of the Spark runtime. If a dynamically typed language is used
to express an analysis, several independent language runtimes need to be exe-
cuted in separate processes, imposing significant additional runtime overheads.
In particular, the language runtime driving the analysis (i.e., the JVM) has to
exchange data between processes executing another language runtime (e.g., the
Python engine). Exchanging data between processes is expensive, as it intro-
duces marshalling, unmarshalling, and communication overheads, and because
it prevents the just-in-time (JIT) compiler from optimizing the framework code
and the data-analysis code together. Moreover, the overhead imposed by mix-
ing multiple language runtimes grows significantly when developers need to use
more than one dynamically typed language in their analyses. For example, since
Spark does not provide any support for integrating Python with R within the
same Spark application, developers need to come up with custom, ad-hoc integra-
tion solutions. Typically, such solutions are based on very inefficient integration
techniques such as file-based data exchange (using HDFS [9]) between language
runtimes. The need to implement such custom integration solutions also imposes
a significant loss of developer productivity and may severely limit the benefits
that could be gained by combining multiple languages in a data analysis.

In this paper we show how the overheads of integrating multiple dynamic lan-
guage runtimes with Spark can be drastically reduced by hosting them within
the same JVM process. In this way, both the dynamic language runtimes (e.g.,
Python, R) and the Spark runtime execute in the same JVM, taking advantage
from the shared memory of the underlying multicore machine. Our approach is
based on a modified version of Spark called TruffleSpark, which supports any lan-
guage implemented with the Truffle [25] framework; in particular, in this paper
we are using the Truffle implementations of Python (ZipPy [14]) and R (FastR
[5]). Our approach not only reduces the performance gap between dynamically
typed and statically typed languages in Spark, but also allows for an efficient
integration of multiple dynamically typed language runtimes in the same JVM
process, enabling an efficient execution of multi-language Spark analyses. Thus,
we offer Spark programmers the possibility to directly combine functions written
in different languages within the same Spark application without sacrificing per-

Lightweight Multi-language Bindings for Apache Spark 283

formance. This paper makes the following contributions to the state-of-the-art
in the field of data analytics:

* We present TruffleSpark and show how Truffle-based languages can be effi-

ciently integrated into Spark. TruffleSpark is based on an earlier research

prototype discussed in [15], which we extend to support multiple languages
in the same Spark application.

Thanks to TruffleSpark, we enable multi-language support for Spark, allowing

the implementation of data analyses in multiple (statically and dynamically

typed) languages. TruffleSpark operates on spark’s RDD data types, enabling
low-overhead access to RDDs from dynamic languages.

* We evaluate TruffleSpark comparing it against the original Spark framework.
On the considered benchmarks TruffleSpark always outperforms the Spark
bindings for Python (i.e., PySpark), and has performance close to the ones
of equivalent analyses written in a statically typed language (i.e., Scala).

2 Background

Our approach is based on a modified version of the Spark runtime that supports
the execution of all the languages developed using the Truffle framework. In this
section we provide an overview of Spark and Truffle.

2.1 Apache Spark

Apache Spark [3] is a general-purpose framework for large-scale data processing
running on the JVM. One of the main programming abstractions in Spark are
Resilient Distributed Datasets (RDDs), a fault-tolerant collection of homoge-
neous data which can be operated on in parallel. Informally, Spark applications
based on RDDs consist of subsequent modifications to such data structures. Mod-
ifications can operate either on existing RDDs (e.g., by applying an operator to
all elements of an RDD), or on newly created ones. Spark supports the creation
of RDDs using multiple data formats, e.g., from a file in an external storage sys-
tem such as a shared filesystem, HDFS, HBase, or any data source supporting
the Hadoop input format. Applications that rely on the RDD abstraction can be
developed using both statically typed languages (e.g., Scala) and dynamically
typed ones. In the rest of this paper, we will focus on applications using RDDs
from dynamic languages such as Python.

At runtime, Spark executes as a set of JVM processes deployed on a clus-
ter in a master-slave fashion: one driver program orchestrates the computation
from the cluster’s master node, while other worker processes are responsible
for performing the actual distributed computation (i.e., one per cluster node).
Upon each Spark’s job submission, every worker spawns an executor process,
which executes the tasks submitted to by the master using a thread pool. Once
the executor is started, it communicates directly with the driver program, so
that worker processes are not effectively involved in the computation. Spark can

284 L. Salucci et al.

be deployed using a distributed and a standalone mode. While in the distrib-
uted deployment the driver, workers, and executors are running in distinct JVM
processes, in the local standalone deployment they run as threads within a sin-
gle JVM process. In both configurations, there is always one JVM per cluster
node that is responsible for executing all the analyses that have been submitted.
Therefore — when running with statically typed languages —, the interactions
between the parallel threads running an analysis can happen very efliciently
within the same JVM process. This is not the case with dynamically typed
languages, as we will discuss in the next section.

2.2 Spark Bindings for Dynamically Typed Languages

Spark features language bindings for Python and R, namely PySpark [12] and
SparkR [13]. Both languages are supported via an ad hoc runtime (internal to
Spark, but different than the one used when executing Scala or Java applica-
tions) which has the role of orchestrating the interaction between the Spark
runtime and the external language runtimes. Such an ad hoc runtime mimics
the original JVM-based runtime, adopting the same driver-worker architecture,
with the notable difference that executors do not use a thread-pool to accom-
plish their tasks, but instead, additionally spawn external Python processes. As a
consequence of this runtime architecture, a Python-based analysis in Spark may
require the execution of hundreds of independent processes, each one running
a dedicated Python runtime, communicating via inter-process communication
channels (e.g., using OS sockets). Such runtime architecture can sometimes be
inefficient, as the serialization, transmission and reconstruction of objects that
take place in the current system are unnecessary and avoidable, as the entities
involved run on the same shared-memory machine. Although such socket-based
communications may be optimized by the OS and be highly-efficient, they still
incur a cost which is considerably higher than the one of simply sharing an object
reference among threads sharing a common memory space. On the contrary, an
equivalent analysis using Java or Scala involves in the computation only a single
JVM process per cluster node, and can benefit from efficient in-memory com-
munication between JVM threads. More precisely, in the case of the standalone
deployment, ZipPy/Spark uses a single JVM process, while PySpark uses one
JVM process, plus N Python processes (where N is the number of available
cores). In the distributed deployment case, ZipPy/Spark uses one JVM process
per cluster node, for a total of M JVM processes (with M being the number
of nodes in the cluster). PySpark running in a cluster still requires to spawn
one JVM per cluster node, and additionally requires N Python processes per
node (resulting in M JVM processes plus M x N Python processes deployed
across the cluster). The Spark terminology lacks a term to refer to the threads
in the executor’s pool and to the Python (respectively, R) processes spawned
by PySpark (respectively, SparkR). These two entities fulfill the same role in
their runtimes, and we will call them task runners. Task runners are threads in
the Spark runtime, whereas they are Python (respectively, R) processes in the
PySpark (respectively, SparkR) runtime.

Lightweight Multi-language Bindings for Apache Spark 285

2.3 GraalVM and Truffle

Our modified version of Spark relies on Truffle and on the GraalVM runtime.
Graal [7] is a state-of-the-art JIT compiler for the JVM, written in Java and
focused on performance and language interoperability. Graal implements several
optimizations such as method inlining, eliding object allocations, and speculative
execution, and can apply them to dynamically typed languages developed with
the Truffle [25] language development framework. The GraalVM comes with
support for multiple Truffle-enabled languages:

* Graal.js: a JavaScript runtime supporting Node.js applications
* FastR: a fast JIT compiler-enabled R language runtime

* RubyTruffle: a Ruby language runtime

* ZypPy: a Python language runtime

Truffle is a language implementation framework that relies on the notion of self-
optimizing Abstract Syntax Tree (AST) interpreters [25]. A Truffle language is
defined in terms of AST nodes corresponding to the constructs available in the
language. A notable characteristic of such nodes is that they use the information
gathered during their execution to specialize (i.e., to rewrite themselves) for the
types observed at runtime. In this way, when running with GraalVM, a Truffle
AST can be compiled to efficient machine code via partial evaluation [25].

3 TruffleSpark

TruffleSpark is our modified version of Spark that supports Truffle-based lan-
guages. In this section we provide an overview of its architecture and of its
main components, that is, guest function wrappers and the mechanism for data-
type conversions between different language runtimes. TruffleSpark enables the
lightweight embedding of dynamically typed guest languages (e.g., Python) in
applications developed using the Spark standard API (based on Scala or Java).
TruffleSpark extends Spark with the following two main capabilities:

* New Python and R RDD Bindings. The two dynamic languages are inte-
grated in the Spark runtime at the level of the JVM, that is, without requiring
the integration of external language runtimes. As a consequence, TruffleSpark
does not need to execute Python or R code in independent processes, and
can execute the entire analysis in the same JVM process. This brings notable
advantages (in terms of performance), as the overhead due to inter-process
communication is substantially reduced. Moreover, this enables the JVM to
perform optimizations (e.g., JIT compilation) of Python code together with
the Spark runtime code. Finally, this approach has notable advantages in
terms of resource utilization, as Java threads are used instead of more heavy-
weight processes.

Language Interoperability. Since the Truffle framework and the GraalVM
support several languages, our integration allows one to combine multiple

286 L. Salucci et al.

of them in Spark in the same application, allowing developers to share the
infrastructure code and classes necessary to execute analyses that combine
multiple language runtimes.

The embedding of guest language functions in the runtime is achieved by
means of function wrappers (called also wrappers in the shorthand form); these
wrappers provide the functionality for parsing and compiling the Python or R
functions (by interacting with the GraalVM), as well as for invoking them once
parsed. Since wrappers are Java objects, they can be optimized together with the
Spark runtime and the function they wrap by the JVM’s JIT compiler. Being
able to execute Python or R code is a necessary but not sufficient condition
for integrating foreign languages in Spark. As the dynamically typed language
runtime is hosted on the same JVM where Spark runs, it is possible to directly
exchange object references between it and the Spark runtime. Exchanged objects,
however, have different data type representations and APIs (e.g., when accessed
from Python or Java). To support operating on data types belonging to different
language runtimes, we provide object adapters (called also adapters) for each of
such objects. In this way, data structures that offer the API enforced by the host
language (i.e., Scala or Java) are backed by the original guest object (e.g., in
Python). The same approach is used also for objects that are passed from Spark
to the dynamic language runtime, with different adapters enclosing a Java object
while offering the API expected from, e.g., a Python object. This approach avoids
deep copying of the objects exchanged between language runtimes, and greatly
reduces overhead.

An example TruffleSpark application combining multiple Truffle languages is
depicted in Fig. 1. The application corresponds to a typical word-count bench-
mark, expressed by combining Java, Python, and R. In the example, each lan-
guage is used to express a different part of the computation. Java is used to
specify how the RDDs are created, and what operations have to be applied to
them (e.g., flatMap). Python and R are used to express the functional part of the
analysis, that is, to split the input and to count words. Like with normal Spark
applications, it is the responsibility of the programmer to choose the proper
interface for the RDD data types involved in the analysis (e.g., JavaPairRDD
of strings). Different than plain Spark, expressions in such languages can be
directly embedded in the analysis code. To this end, we provide bindings for
Truffle-based languages using a function wrapper (e.g., PyFunction in Fig. 1).
Such wrappers enable the execution of the guest language (e.g., Python) in the
same JVM process running Spark, as they implement the methods used inter-
nally to construct, serialize, restore, and invoke the guest language function.

3.1 TruffleSpark Implementation

The TruffleSpark framework builds upon the Sparks’ Java RDD API, which
has been extended to support dynamically typed languages. The two main ele-
ments that compose our TruffleSpark framework are guest language wrappers
and the object adapters used to perform data-type conversion between the guest
languages (i.e., Python and R), and the host language (i.e., Java).

Lightweight Multi-language Bindings for Apache Spark 287

// A file is read from the disk and stored into an RDD
JavaRDD<String> lines = ctx.textFile("file:///wordcount/big-input.txt");
// The first part of the computation is expressed in Python
JavaRDD<String> words = lines.flatMap(new PyFlatMapFunction<String, String>(
"def splitLine(l) : return 1l.split();");
// The second part of the computation is expressed in R
JavaPairRDD<String, Integer> ones = words.mapToPair(
new RPairFunction<String, String, Integer >(
"tup <- function(x) { return(list(x, as.integer(1))) }"));
10 // Python is used again to accumulate the final result
11 JavaPairRDD<String, Integer> counts = ones.reduceByKey (
12 new PyFunction<Integer, Integer, Integer >(
13 "def reduce(cl,c2) : return cl + c2;"));

OO0~ UE WN —

Fig.1. An example word-count computation expressed in TruffleSpark, combining
Python, R, and Java code.

Guest Language Function Wrappers. The TruffleSpark runtime is composed of
multiple AST interpreters and a single JIT compiler (i.e., Graal [7]), shared
among all language runtimes. Each thread in the Spark runtime holds a thread-
local instance of a dynamically typed language parser, to avoid data races at the
language runtime level. During parsing, an AST for the code provided as input
is produced. The AST is implemented as a Java class, and can be used directly
from Java by invoking its methods and the API it provides. As described in
Sect. 2, when the type for the nodes in the AST stabilizes, the compilation of
the AST to machine code is triggered by the Graal compiler, which is shared
between threads. The guest language functions are hosted and embedded in Java
by means of function wrappers that provide the runtime support in order to exe-
cute the computation expressed in a dynamically typed language. By embedding
we mean that at runtime they resemble standard Java methods, and are therefore
optimized by the JVM together with the Spark runtime. Wrappers also imple-
ment the parsing and interpretation of guest language functions. This is achieved
by interacting with the GraalVM parser and compiler in the background.

Guest-to-host Datatype Conversions. Enabling the execution of guest language
code is not sufficient for completing the integration of the different runtimes.
The integration of guest languages in TruffleSpark does not require the expen-
sive serialization and reconstruction of objects: objects can be passed from one
language to the other freely, since they operate in the same address space. This
helps avoiding the transmissions of objects over OS pipes, or other means of IPC,
among processes running on the same shared-memory machine. Despite being
available and accessible by the other language runtime, such objects cannot be
used as they are out of their native context. It is necessary to make possible for
the foreign language (e.g., Python) to operate on objects generated by another
runtime (e.g., R). This has been achieved with a solution that involves object
adapters for the foreign language objects, which can consequently be used in
the host runtime as if it was a native object. This solution avoids deep copying
of the object to its closest equivalent in the target language. In this way, the
adapters offer the expected API to the hosting runtime while being backed by

288 L. Salucci et al.

the original object. Thus, with respect to the original system which involves the
serialization of the data, we only pay for the allocation of an adapter.

Function Wrappers and Guest Object Serializability. In order to be executable by
the Spark runtime, wrappers need to be serializable, as it is necessary, together
with the input data, to transmit the code to the Spark workers. To meet this
requirement we made the AST stored in a function wrapper transient, accord-
ing to the Java terminology (which causes the field and the object contained in it,
to be omitted in the serialization process). We transmit only the code of the func-
tion over the network. Once restored on the remote node, the remote instance of
the GraalVM will translate the code into its AST equivalent and store it back in
the newly constructed wrapper, thus restoring the original object. Moreover in
Spark, whenever a type is returned as the output of an RDD transformation and
has to be stored in the dataset, it is required to be serializable. As in the case of
the guest functions, the guest objects passed among the different stages of the
computation, could eventually be transmitted over the network if the framework
runs in a distributed deployment. To this end, we modified some of the guest
language types implementations (e.g., R tuples and lists or vectors, which are
frequently used as intermediate objects between stages of the computation), to
make them serializable.

4 FEvaluation

We performed an initial experimental evaluation of TruffleSpark with the main
goal of highlighting the performance of dynamic languages executed using our
approach. To this end, we compared our TruffleSpark framework against Spark
on common applications that use dynamic languages.

We first focused our evaluation on the Python bindings for Spark, comparing
the performance of some well-known Spark benchmarks (included in the Spark
distribution) against ZipPy/Spark. The performance of TruffleSpark in this setup
is expected to outperform Spark’s native Python bindings (i.e., PySpark). We
then focused on a single popular benchmark for data-intensive computations
(i.e., WordCount), and executed it with different configurations. Specifically, we
have re-implemented the benchmark using R, and using a combination of R
and Python. In this way, we can highlight the benefits of combining multiple
languages in a data-intensive benchmark. We use Spark 1.5.1, PySpark with
Python 2.7.3, we build ZipPy using Java 8 and execute on GraalVM 0.9 (the
release provided on the OTN website, which includes FastR). All experiments
are executed on a server-class machine running Ubuntu 14.04 LTS equipped with
two 8-core Intel Xeon CPUs E5-2680 (2.70 GHz) with 2 MB of L2 cache, 20 MB
of L3 cache, and 128 GB of RAM. Hyper-threading is enabled on the cores, Intel
Turbo Boost Technology is disabled, and the CPU driver is Acpi-cpufreq.

Python Performance. In evaluating the performance of Python, we considered
four popular Spark benchmarks: WordCount, a program that counts the distri-
bution of words in a text file; Grep, an analysis that scans a file searching for

Lightweight Multi-language Bindings for Apache Spark 289

(a) WordCount (b) Grep
400 “
= = 100
é 300 §
: \ :
o) 0
2 H. 05”» % > I 24 wZy =58 ey
£ 100 ﬂ ZeN mRZ oand Led ﬂ 22N =eN gfg os
& N 2aN 558 €< Zag 2 ﬂ N HE @
'. '- \ — '_“_‘N o ol .. 0o X
0 EIN HH neN =N Com 0 R H:'- ﬂﬂ ﬂﬂ HH
1 2 4 8 16 1 2 4 8 16
of task runners # of task runners
¢) PageRan means
PageRank d) K
2 300
= 2
< 900 %
E \ 200
i) § 0
5 N &8 5 - 4
£ 500 N 0 3z 2 3
g w.q 22 & | 100
<5} < <
g N —eN 2N ==} =of
& Z°N 3 ME ez 22N
JLIEN meN mAN peN meN |
1 2 4 8 16
of task runners # of task runners

‘ 00Spark B8 ZipPy /Spark 8§ PySpark ‘

Fig. 2. Python performance. (a) WordCount and (b) Grep use an input file of size
2.7G; (c) PageRank uses an input size of 42M (d) KMeans uses a file size of 400 K
(k = 10)

given patterns; PageRank, a famous graph algorithm [23]; and KMeans, a popu-
lar vector quantization method [20]. The performance of TruffleSpark is depicted
in Fig. 2, where the average execution time for each benchmark is reported for
an increasing number of parallel task runners. As the figure clearly shows, Truf-
fleSpark always outperforms the equivalent implementation in PySpark. More-
over, the performance of Python running with TruffleSpark (i.e., ZipPy/Spark)
is close to the same analysis written in Scala. This result suggests that our
approach makes Python an efficient alternative to Scala.

Combining R and Python. The R language has performance that often cannot
match Python. Still, the language offers very convenient data-analysis functional-
ities, making it a good choice for certain applications. With the goal of showing
the potential of a multi-language solution, we have adapted one of the previ-
ous benchmarks (i.e., WordCount) to use R for parts of the computation. The
performance for this experiment is depicted in Fig. 3, where the benchmark is
executed with different input files. As the picture shows, the performance of

290 L. Salucci et al.

(a) WordCount (b) WordCount - Scalability
= 200 . : - 1,000 . .
2 e E o & y
= ot B - 2R 3 ° g 2
2 100 2 500 | =nsgH R O B o
>< s e en 5 HY onGRE oK L B "8
A “sg 0 E @8k By o CrBE sicRT ConmT
bR E %" s M SR _BY RRTHE ezSRo Son
(0 Leos =iuiNe =ioiN| 0 18K WFIE =l E 5] H NEB
817M 1.1G 1.6G 2.7G 9 4 8 16
Varying input file size; 16 task runners Number of task runners

‘ 00Spark BB ZipPy/Spark N8 PySpark 8 8 FastR /Spark A2 MultiLang ‘

Fig. 3. WordCount performance using multiple languages. In (a) the number of task
runnners is fixed at 16. In (b) the input file size is 2.7 G.

R cannot match pure Scala or Python. Nevertheless, it is possible to express
the most CPU-demanding part of the computation in another language (Mul-
tilang, in the figure). By using Python, the performance of the data analysis
improves significantly. As the figure suggests, by combining multiple languages
it is possible to mitigate the performance impact of certain (slow) computations
by selectively replacing them with faster implementations. Combining languages
in this way is not possible in the current Spark framework, where users who
want to use R for their analysis must accept its high runtime overhead.

5 Related Work

Other frameworks exist that provide functionalities similar to Spark. Two
notable examples are Apache Flink [16], and Google Cloud Dataflow [6]. Both
frameworks offer bindings for multiple languages: Flink, for example, enables the
development of analyses in Scala and Java, and supports the integration of other
languages via inter-process communication. Another example of multi-language
integration is Apache Hadoop [1], a well-known open-source implementation of
MapReduce [19]. Hadoop’s standard way to express computation is to provide
map and reduce operations implemented in Java. To enable multi-language inte-
gration, Hadoop also enables to execute map and reduce operations as external
processes via Hadoop Streaming [8], allowing programmers to express map/re-
duce jobs using potentially any programming language with basic input-output
capabilities. In such configuration, the map and reduce functions are executed
by language runtimes that read the input from the standard input and produce
results by writing it to the standard output. Another relevant approach is the one
of Apache Pig [2], a high-level platform for creating MapReduce programs on top
of Hadoop that enables guest language integration through IPC. Multi-language
integration is enabled through a language called Pig Latin, which abstracts the

Lightweight Multi-language Bindings for Apache Spark 291

Java map/reduce idiom into a form similar to SQL. Users can extend Pig Latin
by writing user defined functions (UDFs in the shorthand form), using Java,
Python, Ruby, or other scripting languages, and then call them directly from Pig
Latin. Support for such UDF's requires a light-weight serialization/deserializa-
tion layer with bindings in the supported languages. Unlike all such frameworks,
SparkSQL [17] exemplifies an alternative approach for achieving external lan-
guage integration, which overcomes IPC and serialization. Built on the previous
experience with Shark [28], Spark SQL is the state-of-the-art API for query-
ing structured data in Spark. SparkSQL features a highly extensible optimizer
(i.e., Catalyst [4]) and offers much tighter integration between relational and
procedural processing. Thanks to Catalyst, Spark SQL uses a code generation
approach that involves the translation of SQL queries into equivalent Java byte-
code, using a domain-specific language (DSL) similar to R data frames [21] and
Python Pandas [11]. SparkSQL corresponds to a relevant improvement towards
the integration of foreign languages in Spark. Unlike our approach, it is focused
at structured data types (as opposed to RDDs), and supports only a subset of
the Python language. Unlike SparkSQL, TruffleSpark supports RDDs and aims
at supporting the entire Python language.

6 Conclusion

In this paper we have introduced TruffleSpark, a modified version of the Spark
runtime that supports the execution of Truffle-based languages. Thanks to Truf-
fleSpark, it is possible to develop data analyses in Spark that make extensive
use of dynamically typed languages, with performance comparable to the ones
of statically typed languages. TruffleSpark is based on the tight integration of
Truffle-based languages with the Spark runtime, and enables the execution of
data analyses that combine more than a single language. Our performance eval-
uation suggests that dynamically typed languages such as Python or R are a
valid alternative to Java or Scala for developing Spark applications.

Acknowledgments. Our research has been supported by Oracle (ERO project 1332)
and by the Swiss National Science Foundation (project 200021 153560). We thank
the VM Research Group at Oracle for their support. Oracle, Java, and HotSpot are
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

References

The Apache Hadoop distributed system. http://hadoop.apache.org

Apache Pig, high-level platform for MapReduce. https://pig.apache.org/

The Apache Spark engine. https://spark.apache.org

Catalyst: A Query Optimization Framework for Spark and Shark. https://github.
com/apache/spark/tree/master/sql/catalyst

5. FastR, an high performance R runtime. https://bitbucket.org/allr/fastr/overview

o =

http://hadoop.apache.org
https://pig.apache.org/
https://spark.apache.org
https://github.com/apache/spark/tree/master/sql/catalyst
https://github.com/apache/spark/tree/master/sql/catalyst
https://bitbucket.org/allr/fastr/overview

292

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. Salucci et al.

Google Cloud Dataflow. http://cloud.google.com/dataflow

The Graal project. http://openjdk.java.net/projects/graal/

Hadoop Streaming. https://hadoop.apache.org/docs/rl.2.1/streaming.html
HDFS distributed file system. https://hadoop.apache.org/docs/r1.2.1
NumPy, scientific computing with Python. http://www.numpy.org/

. Pandas, Python Data Analysis Library. http://pandas.pydata.org/

. PySpark. https://cwiki.apache.org/confluence/display /SPARK

. Spark on R. https://spark.apache.org/docs/1.6.0/sparkr.html

. ZipPy, a fast and lightweight Python implementation. https://bitbucket.org/

ssllab /zippy

. Efficient Embedding of Dynamic Languages in Big-data Analytics. In: Proceedings

of the 36th International Conference on Distributed Computing Systems Work-
shops. DCPerf 2016, IEEE (2016)

Alexandrov, A., Kunft, A., Katsifodimos, A., Schiiler, F., Thamsen, L., Kao, O.,
Herb, T., Markl, V.: Implicit parallelism through deep language embedding. In:
Proceedings of SIGMOD, pp. 47-61 (2015)

Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., et al.: Spark SQL: relational data processing
in spark. In: Proceedings of SIGMOD 2015, pp. 1383-1394. ACM (2015)

Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the Meta-level: PyPy’s
tracing JIT compiler. In: Proceedings of ICOOLPS, pp. 18-25 (2009)

Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

Thaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput.
Graph. Stat. 5(3), 299-314 (1996)

Nothaft, F.A., Massie, M., Danford, T., Zhang, Z., Laserson, U., Yeksigian, C.,
Kottalam, J., Ahuja, A., Hammerbacher, J., Linderman, M., Franklin, M.J.,
Joseph, A.D., Patterson, D.A.: Rethinking data-intensive science using scalable
analytics systems. In: Proceedings of SIGMOD 2015, pp. 631-646 (2015)

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report 1999-66, November 1999

Shanahan, J.G., Dai, L.: Large scale distributed data science using apache spark.
In: Proceedings of KDD, pp. 2323-2324 (2015)

Wiirthinger, T., Wimmer, C., W&8, A., Stadler, L., Duboscq, G., Humer, C.,
Richards, G., Simon, D., Wolczko, M.: One vm to rule them all. In: Proceedings
of Onward! 2013, pp. 187-204. ACM (2013)

Wiirthinger, T., W68, A., Stadler, L., Duboscq, G., Simon, D., Wimmer, C.: Self-
optimizing AST interpreters. SIGPLAN Not. 48(2), 73-82 (2012)

Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed
graph system on spark. In: Proceedings of GRADES, pp. 2:1-2:6 (2013)

Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark:
SQL and rich analytics at scale. In: Proceedings of SIGMOD 2013, pp. 13-24. ACM
(2013)

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of NSDI 2012, p. 2 (2012)
Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of SOSP, pp. 423—
438 (2013)

http://cloud.google.com/dataflow
http://openjdk.java.net/projects/graal/
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1
http://www.numpy.org/
http://pandas.pydata.org/
https://cwiki.apache.org/confluence/display/SPARK
https://spark.apache.org/docs/1.6.0/sparkr.html
https://bitbucket.org/ssllab/zippy
https://bitbucket.org/ssllab/zippy

	Lightweight Multi-language Bindings for Apache Spark
	1 Introduction
	2 Background
	2.1 Apache Spark
	2.2 Spark Bindings for Dynamically Typed Languages
	2.3 GraalVM and Truffle

	3 TruffleSpark
	3.1 TruffleSpark Implementation

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

