
Scheduling MapReduce Jobs Under Multi-round
Precedences

D. Fotakis1, I. Milis2, O. Papadigenopoulos1, V. Vassalos2, and G. Zois2(B)

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece

fotakis@cs.ntua.gr, opapadig@corelab.ntua.gr
2 Department of Informatics,

Athens University of Economics and Business, Athens, Greece
{milis,vassalos,georzois}@aueb.gr

Abstract. We consider non-preemptive scheduling of MapReduce jobs
consisitng of multiple map-reduce rounds so as to minimize the aver-
age weighted completion time on identical and unrelated processors.
For identical processors, we present LP-based O(1)-approximation algo-
rithms, while for unrelated processors the approximation ratio naturally
depends on the maximum number of rounds of any job (a small constant
in practice). For the single-round case, we substantially improve on pre-
viously best known approximation ratios for both identical and unrelated
processors. Moreover, we conduct an experimental analysis and compare
the performance of our algorithms against a fast heuristic and a lower
bound on the optimal solution, thus demonstrating their promising prac-
tical performance.

1 Introduction

The sharp rise in Internet’s use has boosted the amount of data stored on the
web and processed daily. MapReduce [6], and its open-source implementation
Hadoop, is a fundamental platform for processing data sets on large clusters.
A MapReduce job starts by allocating (randomly or arbitrarily) data to a set of
processors. The computation over the dataset is broken into successive rounds,
where, during each round, a two-phase (map-reduce) process is executed, in
which the execution of any reduce task cannot begin until all of its corresponding
map tasks have finished. A key observation is that, while the map and reduce
phases in each round must be executed sequentially, the tasks in each phase
can be executed in parallel. In addition to the computation cost of map and
reduce phases, a significant cost is the communication cost of transmitting the
intermediate data of a job from each map task to every reduce task. Although

I. Milis was partially supported by the Research Center of Athens University of
Economics and Business (RC-AUEB). V. Vassalos and G. Zois were supported by
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 604102 (Human Brain Project).

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 209–222, 2016.
DOI: 10.1007/978-3-319-43659-3 16

210 D. Fotakis et al.

MapReduce is a distributed computation model, the scheduler of such a system is
operating in a centralized manner and its performance is crucial for the efficiency
of large MapReduce clusters shared by many users. These clusters typically deal
with many jobs that consist of many tasks and of several map-reduce rounds.
In such processing environments, the quality of a schedule is typically measured
by the jobs’ average completion time, which for a MapReduce job takes into
account the time when the last reduce task finishes its work.

In this work, we present a general model and an algorithmic framework for
scheduling a set of MapReduce jobs on parallel (identical or unrelated) proces-
sors with the goal to minimize their average weighted completion time. We con-
sider an offline setting for our model, where each job is represented by multiple
successive rounds, and each round consists of multiple map and reduce tasks cor-
responding to the map and reduce phases respectively. Each reduce task cannot
begin its execution before all map tasks of the same round are finished, while
the same also holds between reduce and map tasks of two successive rounds.
Moreover, the tasks are associated with positive processing times, depending
on the processor environment, and each job has a positive weight to represent
its priority value. Concerning the communication cost that is incurred in each
round, we assume that it is incorporated in the processing times of its reduce
task.
Related Work. In the distributed setting of MapReduce’s architecture, two
main models have been proposed for analyzing the efficiency of MapReduce
algorithms with respect to the number of rounds required. Karloff et al. [12]
presented a model inspired by PRAM and proved that a large class of PRAM
algorithms can be efficiently (i.e., the number of processors and their memory
should be sublinear and the running time in each round should be polynomial
in the input size) implemented in MapReduce. Recent results in this direction
[13] have proposed substantial improvements on the number of rounds for vari-
ous MapReduce algorithms. Afrati et al. [1] proposed a different model that is
inspired by BSP and focuses on the trade-off between communication and com-
putation cost. The main idea is that restricting the computation cost leads to a
greater amount of parallelism and to a larger communication cost between the
mappers and the reducers. In this context, [2] presents multi-round MapReduce
algorithms, trying to optimize the tradeoff between the communication cost and
the number of rounds.

In the context of MapReduce scheduling a significant volume of work focuses on
the experimental evaluation of scheduling heuristics, trying to achieve good trade-
offs between various criteria (see e.g., [19]). On the other hand theoretical work
(e.g., [4,8,15]) focuses on scheduling a set of MapReduce jobs on parallel proces-
sors to minimize the average (weighted) completion time, capturing the main prac-
tical insights in a MapReduce computation (e.g., task dependencies, data local-
ity), in the restricted case where each job is executed in a single round. [4] presents
approximation algorithmsusing simplemodels, equivalent to knownvariants of the
open-shop problem, taking into account task precedences and assuming that the
tasks are preassigned to processors. Moseley et al. [15] present a 12-approximation

Scheduling MapReduce Jobs Under Multi-round Precedences 211

algorithm for the case of identical processors, modeling in this way MapReduce
scheduling as a generalization of the so-called two-stage Flexible Flow-Shop prob-
lem. They also present a O(1/ε2)-competitive online algorithm, for any ε ∈ (0, 1),
under (1+ε)-speed augmentation. [8] studies the single-roundMapReduce schedul-
ing problem in the most general case of unrelated processors and present an LP-
based 54-approximation algorithm. They also show how to incorporate the com-
munication cost into their algorithm, with the same approximation ratio.
Contribution. Our model incorporates all the main features of the models in
[1,12], aiming at an efficient scheduling and assignment of tasks in MapReduce
environments. Note that, by assuming positive values for the tasks’ execution
times, which are polynomially bounded by the input size, we are consistent with
both computation models [1,12]. We refer to our problem as the multi-round
MapReduce scheduling problem or the single-round MapReduce scheduling prob-
lem (depending on the number of rounds). Our contribution is threefold. First, in
terms of modeling the MapReduce scheduling process: (i) We consider the prac-
tical scenario of multi-round multi-task MapReduce jobs and capture their task
dependencies, and (ii) we study both identical and unrelated processors, thus
dealing with data locality. Second, in terms of algorithm design and analysis: (i)
We propose an algorithmic framework for the multi-round MapReduce schedul-
ing problem with proven performance guarantees, distinguishing between the
case of indistinguishable and disjoint (map and reduce) sets of identical or unre-
lated processors, and (ii) our algorithms are based on natural LP relaxations
of the problem and improve on the approximation ratios achieved in previous
work [8,15]. Third, in terms of experimental analysis, we focus on the most gen-
eral case of unrelated processors and show that our algorithms have an excellent
performance in practice.

The rest of the paper is organized as follows. In Sect. 2, we formally define
our model and provide notation. In Sect. 3, we consider the multi-round MapRe-
duce scheduling problem on identical indistinguishable and disjoint processors
and we design a 4-approximation and an 11-approximation algorithm, respec-
tively. Moreover, for the single-round MapReduce scheduling problem on iden-
tical disjoint processors we substantially improve on the results proposed by
Moseley et al. [15], presenting an LP-based 8-approximation algorithm, instead
of 12-approximation. In Sect. 4, we consider the multi-round MapReduce schedul-
ing problem on the most general environment of unrelated processors and we
propose an LP-based O(rmax)-approximation algorithm, where rmax is the maxi-
mum number of rounds over all jobs. As a corollary, for the single-round MapRe-
duce scheduling problem, we show a 37.87-approximation, which significantly
improves on the previously proposed 54-approximation algorithm in [8]. Fur-
thermore, we comment on the hardness of the multi-round MapReduce schedul-
ing problem. In Sect. 5, we compare our algorithms via simulations of random
instances with a fast heuristic, proposed in [8], as well as with a lower bound on
the optimal value of the multi-round MapReduce scheduling problem.

212 D. Fotakis et al.

2 Problem Formulation

We consider a set J = {1, 2, . . . , n} of n MapReduce jobs to be scheduled on a
set P = {1, 2, . . . ,m} of m parallel processors. Each job j ∈ J is available at
time zero and comprises of rj ∈ N, rj ≥ 1 rounds of computation, with each
round consisting of a set of map tasks and a set of reduce tasks. Moreover, each
job is associated with a positive weight, let wj , indicating its significance and,
therefore, its relative priority to the system. Let M, R be the sets of all map
and reduce tasks respectively. Each task Tk,j ∈ M ∪ R of a job j ∈ J , where
k ∈ N, is associated with a positive processing time. Note that, by assuming
task processing times that are polynomially bounded by the input size we are
consistent with the two above computation models [1,12]. In every round, each
reduce task of a job can start its execution only after the completion of all map
tasks of the same job, while similar precedence constraints hold also between the
reduce and the map tasks of two successive rounds. In other words, except for
the precedence constraints emerged by the existence of map and reduce phases,
there are also precedence constraints between consecutive rounds, so a map task
of a round r ∈ {2, . . . rj}, of a job j, cannot start its execution unless all the
reduce tasks of the previous round, r − 1, have completed their execution. The
precedence constraints of a multi-round MapReduce job j can be represented by
an rj-partite-like directed acyclic graph, as the one depicted in Fig. 1, where rj

is the number of rounds and lj = 2rj − 1 is the length of a maximal path of
the tasks’ precedences. Throughout the analysis, in order to upper bound the
approximation ratio of our algorithms, the latter parameter is used instead of
the number of rounds. Note that, in order to refer to a precedence constraint
between two tasks, we use the standard notation, Tk,j ≺ Tk′,j .

· · ·

Map tasks
Reduce tasks

round 1 round 2 round rj

...
...

...
...

...
...

maximal path: lj = 2rj − 1

...
...

... ...
...

...
...

...
... ...

Fig. 1. A MapReduce job j of rj rounds, and length lj = 2rj − 1.

To better capture data locality issues in task assignment, we distinguish
between the standard identical processors environment, where the processing
time of each task Tk,j , let pk,j , is the same for every processor, and the most
general unrelated processors environment, where there is a vector of processing
times {pi,k,j}, one for each processor i ∈ P. Concerning the dedication of proces-
sors to either map or reduce tasks, we examine two cases: (a) The sets PM and
PR are indistinguishable and the processors in P are processing both map and
reduce tasks, and (b) the set P is divided into two disjoint sets PM and PR,

Scheduling MapReduce Jobs Under Multi-round Precedences 213

where P = PM ∪PR, where the processors of PM process only map tasks, while
the processors of PR process only reduce tasks.

For a given schedule we denote by Cj and Ck,j the completion times of
a job j ∈ J and a task Tk,j ∈ M ∪ R respectively. Note that, due to the
task precedences along the rj rounds of each job j, Cj = maxTk,j∈R{Ck,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the schedule, i.e. the comple-
tion time of the last finishing job. Our goal is to schedule non-preemptively all
tasks on processors of P, with respect to their precedences, so as to minimize
the average weighted completion time,

∑
j∈J wjCj .

3 Scheduling Tasks on Identical Processors

We first study the case of multi-round MapReduce scheduling on identical indis-
tinguishable or disjoint processors. For indistinguishable processors, reducing the
problem to standard job scheduling under precedence constraints, we immedi-
ately obtain a 4-approximation algorithm, a result that holds also for single-
round MapReduce scheduling. Then, we present an 11-approximation algorithm
for identical disjoint processors. For the same case, we also propose an improved
8-approximation algorithm for the single-round MapReduce scheduling problem,
which substantially improves on the 12-approximation algorithm proposed in
[15] for the same problem.

Indistinguishable Processors. We consider the multi-round MapReduce
scheduling problem on identical indistinguishable processors. Finding an algo-
rithm for this problem can be easily reduced to finding an algorithm for the
classic problem of scheduling a set of jobs on identical processors, under prece-
dence constraints of any kind, to minimize their average weighted completion
time. More specifically, for any instance of our problem we can create an equiv-
alent instance of the latter problem through the following transformation: For
every task Tk,j ∈ M ∪ R, we create a corresponding job jk of equal processing
time, pk,j , and zero weight, wjk

= 0. We maintain the same precedence con-
straints, emerged from the input of multi-round MapReduce scheduling problem,
to the new problem, i.e. for every Tk,j � Tk′,j we set jk � jk′ . For each MapRe-
duce job j, we create a dummy job jD of zero processing time and weight equal
to the weight of j, i.e. wjD

= wj , and for every job jk we demand that jk � jD.
In other words, since the corresponding dummy task of a MapReduce job j
has zero processing time, there exists an optimal schedule where it is executed
exactly after the completion time of all corresponding jobs jk and, therefore,
indicate the completion time of the job itself in the MapReduce context. More-
over, every dummy job jD carries the weight of the corresponding MapReduce
job j. [16] shows a 4-approximation algorithm for scheduling a set of jobs on iden-
tical processors, under general precedence constraints, to minimize their average
weighted completion time. Combining our transformation with this algorithm,
we obtain that:

Theorem 1. There is a 4-approximation algorithm for the multi-round MapRe-
duce scheduling problem on identical indistinguishable processors.

214 D. Fotakis et al.

Disjoint Processors. Inspired by the algorithm of [10, Theorem 3.8], we present
an O(1)-approximation algorithm which transforms a solution to an interval-
indexed LP relaxation of our problem into an integral schedule by carefully
applying, on each interval of execution, a variation of the well-known Graham’s
2-approximation algorithm [9] for job scheduling on identical processors under
precedence constraints to minimize makespan. Note that, in the following, we
use the term b ∈ {M,R} to refer to both map and reduce attributes.

For any set of tasks S ⊆ b, we define p(S) =
∑

Tk,j∈S pk,j and p2(S) =
∑

Tk,j∈S p2k,j . The following (LP1) is an interval-indexed linear programming
relaxation of our problem. Constraints (1) ensure that the completion time of
a MapReduce job is at least the completion time of any of its tasks and that
the completion time of any task is at least its processing time. Constraints (2)
capture the relation of completion times of two tasks Tk,j � Tk′,j . Constraints
(3) have been proved [10] to hold for any feasible schedule on identical processors
minimizing the average weighted completion time and give useful lower bounds
to the completion times of tasks.

Let (0, tmax =
∑

Tk,j∈M∪R pk,j] be the time horizon of the schedule, where
tmax is an upper bound on the makespan of any feasible schedule. We discretize
the time horizon into intervals [1, 1], (1, 2], (2, 22], . . . , (2L−1, 2L], where L is the
smallest integer such that 2L−1 ≥ tmax. Let L = {1, 2, . . . , L}. Note that, interval
[1, 1] implies that no job finishes its execution before time 1; in fact, we can
assume, w.l.o.g., that all processing times are positive integers. Let τ0 = 1 and
τ� = 2�−1. Our algorithm begins from a fractional solution to the LP, (C̄k,j , C̄j),
and separates tasks into intervals with respect to their completion times C̄k,j as
follows.

(LP1): minimize
∑

j∈J
wjCj

s.t. Cj ≥ Ck,j ≥ pk,j ∀Tk,j ∈ M ∪ R (1)
Ck,j ≥ Ck′,j + pk,j ∀Tk′,j ≺ Tk,j (2)
∑

Tk,j∈b

pk,jCk,j ≥ p(S)2 + p2(S)
2|Pb|

b ∈ {M,R},∀S ⊆ b (3)

Let S(�) = {Tk,j |τ�−1 < C̄k,j ≤ τ�}. Let also SM (�) ⊆ S(�) and SR(�) ⊆ S(�)
be a partition of each set S(�) into only map and only reduce tasks, respectively.
We define tM� = p(SM (�))

|PM | and tR� = p(SR(�))
|PR| to be the average load of a map and

reduce processor, respectively, for executing the map and reduce tasks of each
set S(�). Now, we can define an adjusted set of intervals as τ̄� = 1 +

∑�
k=1(τk +

tMk + tRk) ∀� ∈ L. We can schedule greedily the tasks of each set S(�) in interval
(τ̄�−1, τ̄�], using the following variation of Graham’s List Scheduling algorithm.

Restricted-Resource List Scheduling. Consider two different types
of available resources, i.e. the map and the reduce processors, while each

Scheduling MapReduce Jobs Under Multi-round Precedences 215

task can be scheduled only on a specific resource type. Whenever a proces-
sor becomes available, execute on it any available unscheduled task that
corresponds to its type.

Lemma 1. The tasks of S(�) can be scheduled non-preemptively at interval
(τ̄�−1, τ̄�] by applying Restricted-Resource List Scheduling.

Proof. Using the analysis of [10] we can prove that the makespan of each set S(�) is
upper bounded by the total processing time of the longest chain of precedences and
the average processing time of a map (resp. reduce) processor. By definition of S(�)
and constraints (1), we know that the former value can be at most τ�. Therefore,
if the algorithm starts by assigning tasks at time τ̄�−1, it should have finished by
time C ≤ τ̄�−1 + τ� + tM� + tR� . Then, by definition of τ̄�−1 we have that C ≤
1 +

∑�−1
k=1(τk + tMk + tRk) + τ� + tM� + tR� ≤ 1 +

∑�
k=1(τk + tMk + tRk) = τ̄�.
�

Note that the resulting schedule respects the tasks precedences since by (1),
for any pair of tasks such that Tk,j � Tk′,j , it must be the case that Tk,j ∈ S(�)
and Tk′,j ∈ S(�′) with � ≤ �′. Now we are able to prove the following theorem.

Theorem 2. There is an 11-approximation algorithm for the multi-round
MapReduce scheduling problem on identical disjoint processors.

Proof. Consider the completion time Ck,j of a task Tk,j ∈ S(�). By constraints
(1) and (2) we know that the length of any chain that ends with Tk,j is upper
bounded by C̄k,j . Therefore, using the previous lemma and since Tk,j ∈ S(�), we
can see that for its completion time it holds: Ck,j ≤ τ̄�−1 + tM� + tR� + C̄k,j =
1+

∑�−1
k=1(τk +tMk +tRk)+tM� +tR� +C̄k,j = τ�+

∑�
k=1(t

M
k +tRk)+C̄k,j . Constraints

(3) imply that, for the last finishing -say map- task, Tk′,j′ of the set S(�′), it
holds C̄k′,j′ ≥ 1

2|PM |
∑�′

k=1 p(S(k)), while the same holds for the reduce tasks.

Therefore:
∑�

k=1(t
M
k + tRk) =

∑�
k=1 tMk +

∑�
k=1 tRk ≤ 1

|PM |
∑�

k=1 p(SM (k)) +
1

|PR|
∑�

k=1 p(SR(k)) ≤ 2τ� + 2τ� = 4τ�. Since by definition of S(�), τ� ≤ 2C̄k,j

it is the case that: Ck,j ≤ τ� + 4τ� + C̄k,j ≤ 11C̄k,j . The theorem follows by
applying the previous inequality to the objective function.
�

Remark. A simple transformation of the previous algorithm yields a
7-approximation algorithm for indistinguishable processors. However, Theorem 1
also applies and gives a 4-approximation algorithm for the single-round MapRe-
duce scheduling problem.

The Single-Round Case. For the special case of single-round MapRe-
duce scheduling, we obtain an 8-approximation algorithm, improving on the
12-approximation algorithm of [15]. Our algorithm refines the idea of merging
independent schedules of only map and only reduce tasks, σM and σR respec-
tively, on their corresponding sets of processors into a single schedule, by apply-
ing a 2-approximation algorithm similar to that in [5, Lemma 6.1]. Note that [5]
considers a more general case of scheduling a set of job orders, instead of jobs

216 D. Fotakis et al.

consisting of tasks, while the completion time of each order is specified by the
completion of the job that finishes last.

(LP2): minimize
∑

j∈J
wjCj

s.t. Cj ≥ Mk,j +
pk,j

2
∀Tk,j ∈ b (4)

∑

Tk,j∈S

pk,jMk,j ≥ p(S)2

2|Pb|
∀S ⊆ b (5)

For the partial schedules σb of only map and only reduce tasks, since we
have no precedence constraints between tasks, let Mk,j be the midpoint of a
task Tk,j ∈ b in any non-preemptive schedule, i.e., Mk,j = Ck,j − pk,j

2 . [7]
shows that in any feasible schedule on m identical processors, for every S ⊆ b :
∑

Tk,j∈S pk,jMk,j ≥ p(S)2

2m .
Now, consider the linear programming formulation (LP2). Note that,

although the number of inequalities of this linear program is exponential, it
is known [17] that it can be solved in polynomial time using the ellipsoid algo-
rithm. Thus, consider an optimal solution (M̄k,j , C̄j) to this formulation with
objective value

∑
j∈J wjC̄j . If we greedily assign tasks on the processors of Pb

in a non-decreasing order of M̄k,j using Graham’s list scheduling, then, for the
resulting schedule σb, it holds that:

Lemma 2. There is a 2-approximate schedule of map (resp. reduce) tasks on
identical map (resp. reduce) processors to minimize their average weighted com-
pletion time.

The second step of our algorithm is to merge the two partial schedules σM and
σR into a single one. To succeed it, we can use the merging technique proposed in
[15]. If we denote by CσM

j and CσR
j the completion times of a job j in σM and σR

respectively, we can define the width of each job j to be ωj = max{CσM
j , CσR

j }.
The algorithm schedules the tasks of each job on the same processors that they
have been assigned in σM and σR, in non-decreasing order of ωj , with respect
to the precedences. This merging routine is known [8, Theorem 2] to result in
a schedule where the completion time of each job is at most 2max {CσM

j , CσR
j },

leading to the following theorem:

Theorem 3. There is an 8-approximation algorithm for the single-round
MapReduce scheduling problem on identical disjoint processors.

Remark. The same analysis yields an 8-approximation algorithm for single-round
MapReduce scheduling on identical indistinguishable processors. We only have
to define the width of each job to be ωj = CσM

j + CσR
j .

Scheduling MapReduce Jobs Under Multi-round Precedences 217

4 Scheduling Tasks on Unrelated Processors

In this section, we consider the multi-round MapReduce scheduling problem
on unrelated processors. We present a O(lmax)-approximation algorithm, where
lmax = maxj∈J lj is themaximum length over all jobs’maximal paths in the under-
lying precedence graph. Since lmax = 2rmax − 1, our algorithm is also a O(rmax)-
approximation, where rmax is the maximum number of rounds over all jobs. Our
technique builds on ideas proposed in [8]. We formulate an interval-indexed LP
relaxation for multi-round MapReduce scheduling so as to handle the multi-round
precedences. Unlike [8,15], we avoid the idea of creating partial schedules of only
map and only reduce tasks and then combining them into one. Moreover, applying
the following algorithm for the single-round MapReduce scheduling problem, we
derive a 37.87-approximation algorithm, thus improving on the 54-approximation
algorithm of [8]. Even though in the following analysis, we consider the case of
indistinguishable processors, we can simulate the case of disjoint processors by sim-
ply setting pi,k,j = +∞ for every map (resp. reduce) task Tk,j when i is a reduce
(resp. map) processor. In the sequel, we denote by T = M∪R the set of all tasks.

We use an interval-indexed LP relaxation. Let (0, tmax =∑
Tk,j∈T maxi∈P pi,k,j] be the time horizon of potential completion times, where

tmax is an upper bound on the makespan of any feasible schedule. Similarly with
(LP1), we discretize the time horizon into intervals [1, 1], (1, (1+δ)], ((1+δ), (1+
δ)2], . . . , ((1 + δ)L−1, (1 + δ)L], where δ ∈ (0, 1) is a small constant, and L is the
smallest integer such that (1 + δ)L−1 ≥ tmax. Let I� = ((1 + δ)�−1, (1 + δ)�], for
1 ≤ � ≤ L, and L = {1, 2, . . . , L}. Clearly, the number of intervals is polynomial
in the size of the instance and in 1

δ .
We introduce an assignment variable yi,k,j,� indicating whether task Tk,j ∈ T

is completed on processor i ∈ P within the interval I�. Furthermore, let Ck,j be
the completion time variable for a task Tk,j ∈ T and Cj be the completion
time variable for a job j ∈ J . (LP3) is an LP relaxation of the multi-round
MapReduce scheduling problem, whose corresponding integer program is itself a
(1 + δ)-relaxation.

Algorithm 1. Multi-round MRS: An algorithm for multi-round MapReduce
scheduling on unrelated processors
1: Compute a fractional solution to the LP (ȳi,k,j,�, C̄k,j , C̄j).
2: Partition the tasks into sets S(�) = {Tk,j ∈ b | (1 + δ)�−1 ≤ αC̄k,j < (1 + δ)�},
3: where α > 1 is a fixed constant.
4: for each � = 1 . . . L do
5: if S(�) �= ∅ then
6: Let G� be the precedence graph of the tasks of S(�).
7: V1,�, . . . , Vt,�, . . . , Vlmax+1,� ← Decompose(G�)
8: for each Vt,�, in increasing order of t do
9: Integrally assign the tasks of Vt,� on P using [18, Theorem 2.1].

10: Schedule tasks of Vt,� on P, as early as possible, w.r.t. their precedences.

218 D. Fotakis et al.

(LP3): minimize
∑

j∈J
wjCj

s.t.
∑

i∈P,�∈L
yi,k,j,� ≥ 1, ∀Tk,j ∈ T (6)

Cj ≥ Ck,j , ∀Tk,j ∈ T (7)

Ck,j ≥ Ck′,j +
∑

i∈P
pi,k,j

∑

�∈L
yi,k,j,�, ∀Tk′,j ≺ Tk,j (8)

∑

i∈P

∑

�∈L
(1 + δ)�−1yi,k,j,� ≤ Ck,j , ∀Tk,j ∈ T (9)

∑

Tk,j∈T
pi,k,j

∑

t≤�

yi,k,j,t ≤ (1 + δ)�, ∀i ∈ P, � ∈ L (10)

pi,k,j > (1 + δ)� ⇒ yi,k,j,� = 0, ∀i ∈ P, Tk,j ∈ b, � ∈ L (11)
yi,k,j,� ≥ 0, ∀i ∈ P, Tk,j ∈ b, � ∈ L

Constraints (6) ensure that every task is completed on a processor of the set
P in some time interval. Constraints (7) denote that the completion time of a job
is determined by the completion time of its last finishing task. Constraints (8)
describe the relation between the completion times of two jobs Tk,j � Tk′,j ,
where the term

∑
i∈P pi,k,j

∑
�∈L yi,k,j,� refers to the fractional processing time

of Tk,j . Constraints (9) impose a lower bound on the completion time of each
task. For each � ∈ L, constraints (10), (11) are validity constraints which state
that the total processing time of jobs executed up to an interval I� on a processor
i ∈ P is at most (1 + δ)�, and that if processing a task Tk,j on a processor i ∈ P
is greater than (1 + δ)�, Tk,j should not be scheduled on i, respectively.

Algorithm 1 considers a fractional solution (ȳi,k,j,�, C̄k,j , C̄j) to (LP3) and
rounds it to an integral schedule. It begins by separating the tasks into disjoint
sets S(�), � ∈ L according to their fractional completion times C̄k,j . Since some
of the tasks of each S(�) may be related with precedence constraints, we proceed
into a further partitioning of each set S(�), � ∈ L into pairwise disjoint sets
Vt,�, 1 ≤ t ≤ lmax + 1, with the following property: all the predecessors of any
task in Vt,� must belong either in a set Vt′,� with t′ < t, or in a set S(�′)
with �′ < �. Let G be the precedence graph, given as input of the multi-round
MapReduce scheduling problem. The above partitioning process on G can be
done in polynomial time by the following simple algorithm.

Decompose(G). Identify the nodes of zero in-degree, i.e., δ−(v) = 0, in
G. Add them in a set Vt,�, starting with t = 1, remove them from the
graph, and set t ← t + 1. Repeat until there are no more nodes. Output
the sets of tasks.

As the maximum path length in the precedence graph is lmax, for each � ∈ L,
we could have at most lmax + 1 sets Vt,�, with some of them possibly empty.
Now, since there are no precedence constraints among the tasks of each set Vt,�,
we integrally assign these tasks using the algorithm of [18, Theorem 2.1] in an

Scheduling MapReduce Jobs Under Multi-round Precedences 219

increasing order of � and t. The next lemmas prove an upper bound on the
integral makespan of the tasks of every set S(�) and Vt,�.

Lemma 3. Suppose that we ignore any possible precedences among the tasks in
S(�), for each � ∈ L. Then we can (fractionally) schedule them on the processors
P with makespan at most α

α−1 (1 + δ)�.

Now, since every set of tasks Vt,� is a subset of S(�), the aforementioned
result on the fractional makespan of S(�) also holds for every Vt,� ⊆ S(�).

Lemma 4. The tasks of every set Vt,� ⊆ S(�) can be integrally scheduled on the
processors P with makespan at most (α

α−1 + 1)(1 + δ)�.

Consider now a set of tasks S(�) whose decomposition results in a sequence of
pairwise disjoint subsets V1,�, . . . , Vt,�, . . . , Vlmax+1,�. Using the Lemma 4, we see
that if we integrally schedule each subset Vt,� in a time window of (α

α−1 +1)(1+δ)�

and thenplace the schedules in an increasing order of t, the resulting schedulewould
respect all constraints andwouldhavemakespanatmost (lmax+1)(α

α−1+1)(1+δ)�.
Now, we can prove the following.

Theorem 4. Algorithm 1 is an α[(lmax + 1) α
α−1 + lmax

α
δ(α−1) + lmax + 1 +

lmax+1
δ](1 + δ)-approximation for the multi-round MapReduce scheduling prob-

lem on unrelated processors, where lmax is the maximum length over all maximal
paths in the precedence graph, and α > 1, δ > 0 are fixed constants.

Proof. First, we need to note that the tasks of each set S(�) can be scheduled inte-
grally in the processors of P with makespan equal to the sum of makespans of the
subsets Vt,�, 1 ≤ t ≤ lmax +1. The rounding theorem of [18, Theorem 2.1] suggests
that the makespan of an integral schedule of tasks in Vt,� is at most the fractional
assignment, Πt,� ≤ α

α−1 (1 + δ)�, of tasks to processors plus the maximum process-
ing time on every processor, pmax

t,� ≤ (1 + δ)�. Therefore, the sets V1,� to Vlmax,�

can be scheduled with makespan at most lmax(α
α−1 +1)(1+ δ)�, in order to respect

the precedences among them. Now, consider the sets Vlmax+1,�,∀� ∈ L. Clearly,
these must include the last finishing tasks of any chain in the precedence graph.
Therefore, by constraints (10), it is the case that

∑
t≤� Πlmax+1,t ≤ α

α−1 (1 + δ)�.
Now, let Tk,j ∈ T be the last finishing task of a job j ∈ J which is scheduled

on a processor i ∈ P. Suppose, w.l.o.g., that Tk,j belongs to the set S(�). By
Lemma 4 and Lemma 3, taking the union of the schedules of tasks in S(�′), with
�′ ≤ �, it must hold that the completion time of Tk,j in the resulting schedule is:

Ck,j ≤
∑

�′≤�

[lmax(
a

a − 1
+ 1)(1 + δ)�′

+ Πlmax+1,�′ + pmax
lmax+1,�′]

≤ α

(

(lmax + 1)
α

α − 1
+ lmax

α

δ(α − 1)
+ lmax + 1 +

lmax + 1
δ

)

(1 + δ)C̄k,j .

�

220 D. Fotakis et al.

As for single-round MapReduce scheduling, for all the maximal paths of each
job j in the underlying graph, lj = 1. By Theorem 4 with (α, δ) ≈ (1.65, 0.80),
we get that:

Corollary 1. There is a 37.87-approximation algorithm for the single-round
MapReduce scheduling problem on unrelated processors.

A Note on the Computational Complexity. Concerning the hardness of
multi-round MapReduce scheduling on unrelated processors, we note it is a gen-
eralization of the standard job-shop scheduling, where the precedence constraints
are restricted to be a disjoint union of chains and the task assignment is given
in advance, under the average weighted completion time objective. However, for
the latter one, we know that it is NP-hard to obtain an O(1)-approximation and
it does not admit an O(log1−ε lb)-approximation algorithm for any ε > 0, unless
NP ⊆ ZTIME(2log

1/ε n), where lb is a standard lower bound on the makespan of
any schedule [14]. Thus, the best we can expect is no more than a logarithmic
improvement on our approximation ratio.

5 Simulation Results

We conclude with simulation results for multi-round MapReduce scheduling on
unrelated processors. We compare our algorithm against the simple heuristic
Fast-MR of [8] and against a lower bound derived from (LP3). We provide evi-
dence that the empirical approximation ratio of Algorithm 1 is significantly
better than the theoretical one.

Fast-MR operates in two steps. First, it computes an online assignment of
tasks to processors, using the online algorithm of [3], and then, it schedules them
using a variant of Weighted Shortest Processing Time first wrt. the multi-round
task precedences.

Computational Experience and Results. We generate instances consisting
of 30 indistinguishable processors and from 5 to 50 jobs. Each job consists of 5
rounds, where the number of map and reduce tasks in each round ranges from
20 to 35 and from 5 to 15, respectively. The weight of each job is uniformly
distributed in [1, n], where n is the number of jobs. Moreover, the parameters
of Algorithm 1 are fixed to δ = 0.96 and α = 1.69. To better capture the
unrelated nature of the processors as well as data locality issues, we generate
the task processing times in each processor in a processor-task correlated way,
extending on the model of [11]. Specifically, the processing times {pi,k,j}i∈P of
each map task are equal to bjaj,i plus some noise selected u.a.r. from [0, 10],
where bj and aj,i are selected u.a.r. from [1, 10], for each job j ∈ J and each
processor i ∈ P. The processing time of each reduce task, taking into account
that is practically larger, is set to 3bjaj,i plus some noise selected u.a.r. from
[0, 10]. In this context, we simulate both Algorithm 1 and Fast-MR by running
10 different trials for each possible number of jobs. Since in various applications
a MapReduce computation is performed within a single round, we also simulate

Scheduling MapReduce Jobs Under Multi-round Precedences 221

Algorithm 1 in the single-round case, called Single-Round MRS and compare
it against Fast-MR. Note that in the latter case, we fix α = 1.65, δ = 0.80
according to Corollary 1. The instances and the results are available at http://
www.corelab.ntua.gr/∼opapadig/mrrounds/.

Fig. 2. Simulation results for the single-round and multi-round cases, in terms of
absolute values and (empirical) approximation ratios. (Color figure online)

In Figs. 2 (i)–(ii), we note that Algorithm 1 outperforms the Fast-MR heuristic,
for any simulated number of jobs. More specifically, the empirical approximation
ratio of Fast-MR, ranges from 3.32 to 4.30, while the ratio of Algorithm 1 ranges
from 2.57 to 3.68. More interestingly, the gap between the performance guarantee
of the two algorithms is growing as the number of jobs is increasing: For n = 5
jobs the average ratios of the algorithms Algorithm 1 and Fast-MR are 3.43 and
3.72, while for n = 50, the average ratio converges to 2.71 and 3.62, respectively.
Over all trials, we can see that Algorithm 1 produces up to 28.4% better solu-
tions. In Figs. 2 (iii)–(iv), we note that Single-round MRS also outperforms
Fast-MR, producing up to 36.7% better solutions. Similarly to Algorithm 1, its
empirical approximation ratio ranges from 2.25 to 3.78 (vs. the ratio of Fast-MR
which ranges from 2.94 to 4.44), while the gap against the approximation ratio
of Fast-MR increases as the number of jobs increasing (e.g., for n = 50, Single-
round MRS achieves ratio 2.37, while Fast-MR 3.40). Note that, the empirical
approximation ratios in both multi-round and single-round cases of our algorithm
are far from our theoretical worst-case approximation guarantees.

http://www.corelab.ntua.gr/~opapadig/mrrounds/
http://www.corelab.ntua.gr/~opapadig/mrrounds/

222 D. Fotakis et al.

References

1. Afrati, F.N., Das Sarma, A., Salihoglu, S., Ullman, J.D.: Upper and lower bounds
on the cost of a MapReduce computation. VLDB 6(4), 277–288 (2013)

2. Afrati, F., Joglekar, M., Salihoglu, C.R.S., Ullman, J.D.: GYM: A multiround join
algorithm in MapReduce (2014). arXiv:1410.4156

3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. JACM 44(3),
486–504 (1997)

4. Chen, F., Kodialam, M.S., Lakshman, T.V.: Joint scheduling of processing and
shuffle phases in mapreduce systems. In: INFOCOM, pp. 1143–1151 (2012)

5. Correa, J.R., Skutella, M., Verschae, J.: The power of preemption on unrelated
machines and applications to scheduling orders. Math. Oper. Res. 37(2), 379–398
(2012)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

7. Eastman, W.L., Even, S., Iaacs, I.M.: Bounds for the optimal scheduling of n jobs
on m processors. Manage. Sci. 11, 268–279 (1964)

8. Fotakis, D., Milis, I., Papadigenopoulos, O., Zampetakis, E., Zois, G.: Scheduling
MapReduce jobs and data shuffle on unrelated processors. In: Bampis, E. (ed.)
SEA 2015. LNCS, vol. 9125, pp. 137–150. Springer, Heidelberg (2015)

9. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAP 17(2), 416–429
(1969)

10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. MOR 22, 513–544
(1997)

11. Hariri, A.M., Potts, C.N.: Heuristics for scheduling unrelated parallel machines.
Comp. and Oper. Res. 18(3), 323–331 (1991)

12. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
SODA, pp. 263-285 (2010)

13. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. In: SPAA, pp. 1–10 (2013)

14. Mastrolilli, M., Svensson, O.: Hardness of approximating flow and job shop schedul-
ing problems. JACM 58(5), 20 (2011)

15. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On scheduling in Map-Reduce
and flow-shops. In: SPAA, pp. 289–298 (2011)

16. Queyranne, M., Schulz, A.S.: Approximation bounds for a general class of prece-
dence constrained parallel machine scheduling problems. SICOMP 35(5), 1241–
1253 (2006)

17. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program.
58(1), 263–285 (1993)

18. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62, 461–474 (1993)

19. Yoo, D.-J., Sim, K.M.: A comparative review of job scheduling for MapReduce. In:
CCIS, pp. 353–358 (2011)

http://arxiv.org/abs/1410.4156

	Scheduling MapReduce Jobs Under Multi-round Precedences
	1 Introduction
	2 Problem Formulation
	3 Scheduling Tasks on Identical Processors
	4 Scheduling Tasks on Unrelated Processors
	5 Simulation Results
	References

