Skip to main content

Industrial Processes Involving Bacteriophages

  • Reference work entry
  • First Online:
Bacteriophages
  • 1727 Accesses

Abstract

Bacteriophages are viruses which are able to infect and kill bacteria. Due to their natural properties, they can have serious impacts on some bioprocesses that are driven by bacteria. In general, the extent of the interference with a bioprocess by bacteriophage presence is dependent on many factors. The properties of bacterial components of bioprocesses, however, seem to be key factors in maintaining bioprocess integrity in the face of contaminating phages. Bacteriophages may also provide benefits in some circumstances – in the form of prophages, they may, for example, boost the metabolism of the host cells, increasing bacterial productivity. Phages may also be used as biocides in order to eliminate unwanted bacterial contaminants. Their role in various bioprocesses is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2017) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3(2):186–226. https://doi.org/10.3934/microbiol.2017.2.186

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12(9). https://doi.org/10.1186/1471-2164-12-9

  • Bartholomew WH, Engstrom DE, Goodman SS, O’Toole AL, Shelton JL, Tannen LP (1974) Reduction of contamination in an industrial fermentation plant. Biotechnol Bioeng 16:1005–1013

    Article  Google Scholar 

  • Bertozzi Silva J, Sauvageau D (2014) Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol Biofuels 7:123. https://doi.org/10.1186/s13068-014-0123-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogosian G (2006) Control of bacteriophage in commercial microbiology and fermentation facilities. In: Calendar R, Abedon ST (eds) The bacteriophages, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Chao L, Levin BR, Stewart FM (1977) A complex community in a simple habitat: an experimental study with Bacteria and phage. Ecology 58:369–378. https://doi.org/10.2307/1935611

    Article  Google Scholar 

  • Chen Y, Golding I, Sawai S, Guo L, Cox EC (2005) Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol 3(7):e229. https://doi.org/10.1371/journal.pbio.0030229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edlin G, Lin L, Bitner R (1977) Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J Virol 21:560–564

    Article  CAS  Google Scholar 

  • Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss L, Boone M, Hewitt C, McFarlane C, Nienow A, Kovacs T, Trägårdh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin H-Y, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius Å (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85:175–185

    Article  CAS  Google Scholar 

  • Frantzen CA, Kleppen HP, Holo H (2018) Lactococcus lactis diversity in undefined mixed dairy starter cultures as revealed by comparative genome analyses and targeted amplicon sequencing of epsD. Appl Environ Microbiol 84(3):e02199–e02117

    Article  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    Article  CAS  Google Scholar 

  • Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26

    CAS  PubMed  Google Scholar 

  • Josephsen J, Petersen A, Neve H, Waagner E (1999) Development of lytic Lactococcus lactis bacteriophages in a Cheddar cheese plant. Int J Food Microbiol 50:163–171

    Article  CAS  Google Scholar 

  • Käß F, Junne S, Neubauer P, Wiechert W, Oldiges M (2014) Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum. Microb Cell Factories 13:6. https://doi.org/10.1186/1475-2859-13-6

    Article  CAS  Google Scholar 

  • Labrie SJ, Dupuis M-È, Tremblay DM, Plante P-L, Corbeil J, Moineau S (2014) A new Microviridae phage isolated from a failed biotechnological process driven by Escherichia coli. Appl Environ Microbiol 80:6992–7000

    Article  Google Scholar 

  • Lin L, Bitner R, Edlin G (1977) Increased reproductive fitness of Escherichia coli lambda lysogens. J Virol 21:554–559

    Article  CAS  Google Scholar 

  • Los M (2012) Minimization and prevention of phage infections in bioprocesses. In: Qiong C (ed) Microbial metabolic engineering, Cykl methods in molecular biology, vol 834, pp 305–315

    Chapter  Google Scholar 

  • Los M, Czyz A, Sell E, Wegrzyn A, Neubauer P, Wegrzyn G (2004) Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J Appl Genet 45:111–120

    PubMed  Google Scholar 

  • Maeda A, Ishii K, Tanaka M, Mikami Y, Arai T (1986) KMl, a bacteriophage of Clostridium butylicum J. Gen Microbiol 132:2271–2275

    CAS  Google Scholar 

  • Mahony J, Murphy J, van Sinderen D (2012) Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 3:335. https://doi.org/10.3389/fmicb.2012.00335

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcó MB, Moineau S, Quiberoni A (2012) Bacteriophages and dairy fermentations. Bacteriophage 2(3):149–158. https://doi.org/10.4161/bact.21868

    Article  PubMed  PubMed Central  Google Scholar 

  • Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Curr Opin Biotechnol 21:114–121

    Article  CAS  Google Scholar 

  • Ogata S (1980) Bacteriophage contamination in industrial processes. Biotechnol Bioeng 22(Suppl. 1):177–193

    CAS  Google Scholar 

  • Pizer LI, Smith HS, Miovic M, Pylkas L (1968) Effect of prophage W on the propagation of bacteriophages T2 and T4 J. Virol 2:1339–1345

    Article  CAS  Google Scholar 

  • Primrose SB (1990) Controlling bacteriophage infections in industrial bioprocesses. In: Reiser J (ed) Applied molecular genetics. Springer-Verlag, Berlin, pp 1–10

    Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352. https://doi.org/10.3389/fmicb.2016.01352

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotman E, Amado L, Kuzminov A (2010) Unauthorized horizontal spread in the laboratory environment: the tactics of Lula, a temperate lambdoid bacteriophage of Escherichia coli. PLoS One 5(6):e11106. https://doi.org/10.1371/journal.pone.0011106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JB, Sauvageau D (2014) Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. Biotechnol Biofuels 7:123

    Article  Google Scholar 

  • Soini J, Ukkonen K, Neubauer P (2011) Accumulation of amino acids deriving from pyruvate in Escherichia coli W3110 during fed-batch cultivation in a two-compartment scale-down bioreactor. Adv Biosci Biotechnol 2:336–339

    Article  CAS  Google Scholar 

  • Solomon EB, Okull D (2009) Utilization of bacteriophage to control bacterial contamination in fermentation processes. US patent no. US20090104157

    Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  Google Scholar 

  • Sun L, Liu T, Müller B, Schnürer A (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9:128. https://doi.org/10.1186/s13068-016-0543-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    Article  CAS  Google Scholar 

  • Szczepankowska AK, Górecki RK, Kołakowski P, Bardowski JK (2013) Lactic acid Bacteria resistance to bacteriophage and prevention techniques to lower phage contamination in dairy fermentation biochemistry, genetics and molecular biology. In: Kongo M (ed) Lactic acid bacteria – R & D for food, health and livestock purposes. ISBN 978-953-51-0955-6

    Google Scholar 

  • Szczepańska A, Hejnowicz M, Bardowski J (2007) Biodiversity of Lactococcus lactis bacteriophages in polish dairy environment. 9. Acta Biochim Polon 54:151–158

    Article  Google Scholar 

  • Teuber M, Andresen A, Sievers M (1987) Bacteriophage problems in vinegar fermentations. Biotechnol Lett 9:37–38

    Article  Google Scholar 

  • Wu W-W, Tanaka K, Kato F, Murata A (1991a) Phage S1, new phage for Escherichia coli. Bull Fac Agr Saga Univ 71:91–100

    Google Scholar 

  • Wu W-W, Yoshinaga K, Kanda K, Kato F, Murata A (1991b) Phage S2, another new phage for serine-producing Escherichia coli. Bull Fac Agr Saga Univ 71:123–132

    CAS  Google Scholar 

  • Zhang J, Gao Q, Zhang Q, Wang T, Yue H, Wu L, Shi J, Qin Z, Zhou J, Zuo J, Yang Y (2017) Bacteriophage–prokaryote dynamics and interaction within anaerobic digestion processes across time and space. Microbiome 5:57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Łoś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Łoś, M. (2021). Industrial Processes Involving Bacteriophages. In: Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-41986-2_39

Download citation

Publish with us

Policies and ethics