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Abstract. We present an extension to the quantifier-free theory of inte-
ger arrays which allows us to express counting. The properties expressible
in Array Folds Logic (AFL) include statements such as “the first array
cell contains the array length,” and “the array contains equally many
minimal and maximal elements.” These properties cannot be expressed
in quantified fragments of the theory of arrays, nor in the theory of
concatenation. Using reduction to counter machines, we show that the
satisfiability problem of AFL is PSPACE-complete, and with a natural
restriction the complexity decreases to NP. We also show that adding
either universal quantifiers or concatenation leads to undecidability.

AFL contains terms that fold a function over an array. We demon-
strate that folding, a well-known concept from functional languages,
allows us to concisely summarize loops that count over arrays, which
occurs frequently in real-life programs. We provide a tool that can dis-
charge proof obligations in AFL, and we demonstrate on practical exam-
ples that our decision procedure can solve a broad range of problems in
symbolic testing and program verification.

1 Introduction

Arrays and lists (or, more generally, sequences) are fundamental data struc-
tures both for imperative and functional programs: hardly any real-life program
can work without processing sequentially-ordered data. Testing and verification
of array- and list-manipulating programs is thus a task of crucial importance.
Almost any non-trivial property about these data structures requires some sort
of universal quantification; unfortunately, the full first-order theories of arrays
and lists are undecidable. This has motivated researches to investigate fragments
with restricted quantifier prefixes, and has given rise to numerous logics that can
describe interesting properties of sequences, such as partitioning or sortedness.
These logics have efficient decision procedures and have been successfully applied
to verify some important aspects of programs working with arrays and lists: for
example, the correctness of sorting algorithms.
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Fig. 1. A toy array problem

However, an important class of properties, namely, counting over arrays,
has eluded researchers’ attention so far. In addition to the examples from the
abstract, this includes statements such as “the histogram of the input data sat-
isfies the given distribution,” or “the packet adheres to the requirements of the
given type-length-value (TLV) encoding (e.g., of the IPv6 options).” Such prop-
erties, though crucial for many applications, cannot be expressed in decidable
fragments of the first-order theory of arrays, nor in the decidable extensions of
the theory of concatenation.

In this paper we present Array Folds Logic (AFL), which is an extension of
the quantifier-free theory of integer arrays. But instead of introducing quantifiers,
we introduce counting in the form of fold terms. Folding is a well-known concept
in functional languages: as the name suggests, it folds some function over an
array, i.e., applies it to every element of the array in sequence, while preserving
the intermediate result.

To illustrate the kind of problems we are dealing with, consider the following
toy example: given an array, accept it if the number of minimum elements in
the array is the same as the number of maximum elements in the array. E.g.,
the array [1,2,7,4,1,3,7,5] is accepted (because there are two 1’s and two 7’s),
while the array [1,2,7,4,1,3,6,5] is rejected (because there is only one 7).

Written in a programming language like C, the problem can be solved by the
piece of code shown in Fig. 1a, but such explicit solution cannot express verifica-
tion conditions for symbolic verification and testing. We can use the quantified
theory of arrays mixed with assertions about cardinality of sets, as in Fig. 1b.
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Unfortunately, such a combination is undecidable (by a reduction from Hilbert’s
Tenth Problem: replace folds with cardinalities in the proof of Theorem 2).

The solution we propose is shown in Fig. 1c: in the example formula, the first
fold applies a function to array a. The vector in the first parentheses gives initial
values for the array index and counter cy; the function is folded over the array
starting from the initial index. Index variable i is implicit, and it is incremented
at each iteration. The function itself is given in the second parentheses, and has
two branches. The first branch counts the number of positions with elements
equal to min in counter c;. The second branch skips when the current array
element e is greater than the (guessed, existentially quantified) variable min.
When e < min, the implicit break statement is executed, and the fold terminates
prematurely. The result of the fold is compared to the vector which asserts that
the final value of the array index equals to the array size |a| (which means no
break was executed), and the final value of ¢; equals to j. The positions where
elements are equal to mazx, are counted in the second fold, and the equality
between these two counts is asserted. The ability to count over arrays with
unbounded elements is a unique feature of Array Folds Logic.

This paper makes the following contributions:

1. We define a new logic, called AFL, that can express interesting and non-
trivial properties of counting over arrays, which are orthogonal to the properties
expressible by other logics. Additionally, AFL can concisely summarize loops
with internal branching that traverse arrays and perform counting, enabling
verification and symbolic testing of programs with such loops.

2. We show that the satisfiability problem for AFL is PSPACE-complete,
and with a natural restriction the complexity decreases to NP. We provide a
decision procedure for AFL, which works by a reduction to the emptiness of
(symbolic) reversal-bounded counter machines, which in turn reduces to the
satisfiability of existential Presburger formulas. We show that adding either uni-
versal quantifiers or concatenation leads to undecidability.

3. We implemented tool AFOLDER [13] that can discharge proof obligations
in AFL, and we demonstrate on real-life examples that our decision procedure
can solve a broad range of problems in symbolic testing and program verification.

Related Work. Our logic is related to the quantified fragments of the theory
of arrays such as [4,10,21,22]. These logics allow restricted quantifier prefixes,
and their decision procedures work by rewriting to the (parametric) theories of
array indices and elements (Presburger arithmetic being the most common case)
[4,10], or by reduction to flat counter automata with difference bound constraints
[21,22]. An interesting alternative is provided in [35], where the quantification
is arbitrary, but array elements must be bounded by a constant given a pri-
ori; the decision procedure works by a reduction to WS1S. A separate line of
work is presented by the theory combination frameworks of [16,18], where the
quantifier-free theory of arrays is extended by injective predicate and domain
function [18], or with map and constant-value combinators [16]. The theory of
concatenation and its extensions [11,17,29] are also related; their decision proce-
dures work by reduction to Makanin’s algorithm for solving word equations [30].
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AFL can express some properties that are also expressible in these logics, such
as boundedness, partitioning, or periodicity; other properties, such as sortedness,
are not expressible in AFL. The counting properties that constitute the core of
AFL are not expressible in any of the above logics. We compare the expressive
power of AFL and other logics in Sect. 2.3.

There are numerous works on loop acceleration and summarization [8,12,27],
also in the context of verification and symbolic testing [9,19,24,33] and array-
manipulating programs [3,5,7]. Our logic allows one to summarize loops with
internal branching and counting, which are outside of the scope of these works.

The decision procedure for AFL is based on decidability results for emptiness
of reversal-bounded counter machines [20,25,26], on the encoding of this problem
into Presburger arithmetic [23], and on the computation of Parikh images for
NFAs [34]. In Sect.5 we extend the encoding procedure to symbolic counter
machines, and present some substantial improvements that make it efficient for
solving practical AFL problems.

2 Array Folds Logic

We assume familiarity with the standard syntax and terminology of many-sorted
first-order logics. We use vector notation: v = (v1,...,v,) denotes an ordered
sequence of terms. For two vectors w and v, we write their concatenation as uv.

Within this paper we consider the domains of arrays, array indices, and array
elements to be A =7Z* N={0,1,...},and Z=1{...,—1,0,1,...} respectively.

Presburger arithmetic has the signature Xz = {0,1,+,<}; we use it for
array indices and elements, as well as other arithmetic assertions, possibly with
embedded array terms. We write true and false to denote a valid and an unsat-
isfiable Presburger formula, respectively.

The theory of integer-indexed arrays extends Presburger arithmetic with
functions read, and write, and has the signature X4 = Xz U {-[],-{- < -} }.
The read function afi] returns the i-th element of array a, and the write function
a{i < x} returns array a where the i-th element is replaced by x. These functions
should satisfy the read-over-write axioms as described by McCarthy [32].

2.1 Syntax

Array Folds Logic (AFL) extends the quantifier-free theory of integer arrays
with the ability to perform counting. The extension works by incorporating fold
terms into arithmetic expressions; such a term folds some function over the array
by applying it to each array element consecutively.

AFL contains the following sorts: array sort ASort, integer sort ISort, Boolean
sort BSort, and two enumerable sets of sorts for integer vectors VSort”™ and
functional constants FSort™ = VSort™ x ISort — VSort™, for each m € N,
m > 0. The syntax of the AFL terms is shown in Table 1; a and b denote array
variables, x denotes an integer variable, n and m denote integer constants.
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Table 1. Syntax of AFL.

A = a | ofT T}
T a=n|o| T+T | alf] | ld
B u=a=b|T=T | T<T | -B| BAB | V"=V"
V'VL e (;) ‘ folda V77L F'VVL
mo._ g’r’d?upd
F T (g7'd:>upd)
grd = e~T[ixT |cn~T|smn|grdAgrd (e {>,<,=#}
upd = Cm+=n|s < n | skip | break | upd ; upd

Array terms A of sort ASort are represented either by an array variable a, or
by the write term a{T « T'}.

Integer terms T of sort ISort can be integer constants n € Z, integer variables
x, integer addition, read term a[T] for the index represented as an integer term,
or the term |a|, which represents the length of array a.

Boolean terms B of sort BSort are formed by array equality, usual Presburger
and Boolean operators, and equality between vectors of sort VSort™.

Vector terms V™ of sort VSort™ are either a list of m integer terms, or a
fold term. The former is written as a vertical list in parentheses; they can be
omitted when m = 1. The latter, written as fold, v f, represents the result of
the transformation of an input vector v of sort VSort™ by folding a functional
constant f of sort FSort™ over an array a. The first element of v specifies an
initial value of the array index; the remaining elements give initial values for the
counters that can be used inside f. The resulting vector after the transformation
gives the final values for the array index and the counters.

Functional constants (when no confusion can arise, we call them functions)
F™ of sort FSort™ can only be a parenthesized list of branches (guarded com-
mands); the length of the list is unrelated to m. A function f of sort FSort™ can
refer to the following implicitly declared variables: e for the currently inspected
array element; i for the current array index; ci,...,c,_1 for the counters; s
for the state (control flow) variable. All other variables that occur inside f are
considered as free variables of sort [Sort.

Guards are conjunctions of atomic guards, which can compare array elements,
indices, and counters to integer terms; the state variable can only be compared
to integer constants. Updates are lists of atomic updates; they can increment or
decrease counters by a constant, assign a constant to the state variable, skip,
i.e. perform no updates, or execute a break statement, which terminates the
fold at the current position. Counter or state updates define a function Z — Z.
Guards and updates translate into logical formulas that either constraint the
current variable values, or relate the current and the next-state (primed) variable
values in the obvious way; we denote this translation by @. E.g., the update
upd = (c1 +=n) defines the formula @(upd) = (c] = ¢1 +n).
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We require that guards of all branches are mutually exclusive. There is an
implicit “catch-all” branch with the break statement, whose guard evaluates to
true exactly when guards of all other branches evaluate to false. We also require
that each branch contains at most one update for each implicit variable.

We restrict the control flow in functions, which is defined by state variable s.
Notice that s is syntactically finite state. Thus, given a set of function branches
Br, we define an edge-labeled control flow graph G = (S, E,v), where:

— states S = {0} U{n|s—neBr}

— edges B = U umupd e Br { (s1,82) | s1 = grd A sy=ite(s«—n € upd,n, s1) };

— ~ is the labeling of edges with the set of formulas &(grd) and ®(upd) for each
guard or update which occurs in the same branch.

We require that edges in the strongly-connected components of G are labeled
with counter updates that are, for each counter, all non-decreasing, or all non-
increasing. Thus, G is a DAG of SCCs, where counters within each SCC behave
in a monotonic way. We use this restriction to derive from f a reversal-bounded
counter machine (see Definition 2).

The presented syntax is minimal and can be extended with convenience func-
tions and predicates such as {—,n-,<,>, V ,++ -- -=n} in the usual way. We
allow to use * to denote the absence of constraints: this is useful for vector nota-
tion. We replace each * in the formula with a unique unconstrained variable.

2.2 Semantics

For a given AFL formula ¢, we denote the sets of free variables of ¢ of sort
ASort and ISort by Var 4 and Varj, respectively. All free variables are implicitly
existentially quantified. For functions of sort FSort™, we denote by FV™ the set
of their implicit variables {i,ci,...,cm_1,s}.

Array equalities partition the set of array variables into equivalence classes;
all other constraints are then translated into constraints over a representative of
the corresponding equivalence class.

An interpretation for AFL is a tuple o = (), u), where A : Var; — Z assigns
each integer variable an integer, and u : Vara — Z* assigns each array variable
a finite sequence of integers.

The semantics of an AFL term ¢ under the given interpretation o is defined
by the evaluation [t]”. Terms that constitute functions are evaluated in the
additional context k. For a function f of sort FSort™, k : FV™ — Z™*! maps
internal variables of f to integers. The evaluation of Presburger, Boolean, and
array terms is standard; the remaining ones are shown in Table 2. We give some
explanations here (the remaining semantic rules are self-explanatory):

1. Vector equality resolves to a conjunction of equalities between components.
2. A fold term evaluates in the initial context that is defined by the given initial
vector of counters v, and assigns 0 to state variable s.
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[( grdy =-updy )] o,k
grd = updy,

[grd = upd}”"’C
le~ 17"
[grd, A grd,)”"
[updp upd,) ™"
[cm +=n]""

[s — "}G "
[skip] ™"
[break]”"

Table 2. Semantics of AFL

(17 =[817) Aon ([n)7 = [2]7)
[fold, v f]7", where K(FV™) = (§)

if ([i]" < 0) or ([i]" > |a|) or (false € [f]7"
else [fold, v' f] U’K/, where £'(FV™) = (;’:) =[f]7" (s(FV™))

vy ’
|, where v}
UHL

) then v

if upd(v;) € [f]”" then upd(v;), else v;

{i'=i+1}Ugrd, = upd,]"" U...U[grd,, = upd,,]’

if [grd]”"™ = true then [upd]”" else ()

le]” ~ [t]° (similarly for i = T, ¢;p = T, s = n)
lgrd,]7" A [grd,]™"

[upd,]™" U [upd,] ™"

{cm=cm+n}

{s'=n}

0

{false}

3. A contextual fold term checks whether the array index is out of bounds, or
a break statement is executed in the current context (this is the only way for

"

to contain false). If yes, fold terminates, and returns the current vector

v. Otherwise fold continues with the updated vector and context.

If an update upd(v;) for some variable v; is present in the function evaluation,
then it is applied. Otherwise, the old variable value is preserved.

An evaluation of a function, represented by a list of branches, is a union of
updates from its branch evaluations. Index i is always incremented by 1.

A guarded command evaluates to its update if its guard evaluates to true.
A comparison over an internal variable evaluates it in the context , and the
comparison term is evaluated in the interpretation o.

2.3 Expressive Power

Here we give some example properties that are expressible in AFL, and compare
its expressive power to other decidable array logics.

1. Boundedness. All elements of array a belong to the interval [l, u].

Jfold ,(0) (1<e<u = skip)

= al

2. Partitioning. Array a is partitioned if there is a position p such that all
elements before p are smaller or equal than all elements at or after p.

folda (O) (§<1)/\ e<alp] = Skl:p) — |a|

i>p A e>alp] = skip
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3. Periodicity. Array a is of the form (01)*:
fold, (0) (323 A 6292 578) = lal
4. Pumping. Array a is of the form 0™1" (a canonical non-regular language;
0™1"2"™, a non-context-free language, is equally expressible):

0 s=0 AN e=0= ci++ lal
folda (0) (s:O ANe=1 = c2++/\s<—1) = (n )
0 s=1Ae=1 = cot++ n

5. Equal Count. Arrays a and b have equal number of elements greater than

l:
(lah) = fold, () (50 25k ) A (1) = foldy (8) (5212 )
6. Histogram. The histogram of the input data in array a satisfies the distrib-
ution H ({i|a[i] < 10}) > 2H ({i| a[i] > 10}):

fold, (8) (2530 % %t ) = (1) A fold, (3) (21525 ) = (1) A b > 2o

7. Length of Format Fields. The array contains two variable-length fields.
The first two elements of the array define the length of each field; they are
followed by the fields themselves, separated by 0:

s=0 A e#0 cit++ a
leny = al0] A leng = a[l] A fold, ((20)) (ngaefoisé) = (l|en|1>

e#0 = cot++ leng

Comparison with Other Logics. Most decidable array logics can specify universal
properties over a single index variable like (1) above; AFL uses folds to express
such universal quantification. Properties that require universal quantification
over several index variables, like sortedness, are inexpressible in AFL (it can
simulate some of such properties, like partitioning (2), using a combination of
folds with existential guessing). Periodic facts like (3) are inexpressible in [10],
but AFL as well as [17,21] can express it. Counting properties such as (4)—(7),
which constitute the core of AFL, are not expressible in other decidable logics
over arrays and sequences.

3 Motivating Example

As a motivating example to illustrate applications of our logic, we consider a
parser for the Markdown language as implemented in the Redcarpet project,
hosted on GitHub [2]. Redcarpet is a popular implementation of the language,
used by many other projects, in particular by the GitHub itself. Figure 2 shows
the excerpt from the function parse_table_header, which can be found in the
file markdown.c.

The function considered in the example parses the header of a table in the
Markdown format. The first line of the header specifies column titles; they are
separated by pipe symbols (‘17); the first pipe is optional. Thus, the number of
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=

: static size_t parse_table_header(uint8_t *a, size_t size, ...)
2: size_t i=0, pipes=0;

{ i0=0 A po=0 }
3: while (i < size && alil] != ’\n’)

4: if (a[i++] == ’|’) pipes++;

{ G = fold, () (o5 o™ n) }

5: if (a[0] == ’|’) pipes--;

{ (o) =sfold,(3)(i=0ne=P=eci) }
6: i++;
7: if (i < size && al[i] == ’|’) i++;

{ia=ir 41 Ads = fold, (iz) (i =iz A e =P = ship) |

8: end = i;
9: while (end < size && alend] '= ’\n’) end++;

{ eo =13 N el =f0lda(eo)(e #N = sk‘z’p) }

10: for (col = 0; col<pipes && i<end; ++col) {

11: size_t dashes = 0;
{cozo/\co<p2 A i3 < e /\do:O}
12: if (a[i] == ’:’) { i++; dashes++; column_datal[col] |= ALIGN_L; }
{ () =fold,(2) (i =is A e=C=ci++) }
13: while (i < end && a[i] == ’-’) { i++; dashes++; }
{ ()=t (@) (i<er ne=D=civr) |
14: if (a[i] == ’:’) { i++; dashes++; column_datal[col] |= ALIGN_R; }
{ (G0)=sold,(3)(i=is A e=C=errs) |
15: if (i < end && ali]l '= ’|’ && al[i] !'= ’+’) break;
16: if (dashes < 3) break;
17: i++;

{(i52end1\/a[z’6}:PVa[i6]=A) ANd3s>3 Nir=is+1 /\01=CQ+1}

18: }
19: if (col < pipes) return O;

{zn)

Fig. 2. An excerpt from the Redcarpet Markdown parser with AFL annotations
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pipes defines the number of columns in the table. The second line describes the
alignment for each column, and should contain the same number of columns;
in between each pair of pipes there should be at least three dash (‘-’) or colon
(‘:7) symbols. A colon on the left or on the right side of the dashes defines
left or right alignment; colons on both sides mean centered text. Thus, the

two lines “|One|Two|Threel” and “|:--|:--:|--:1" specify three columns
which are left-, center-, and right-aligned. Replacing the second line with either
“li=li==:|==:1" or “| :==|:-=:1" would result in the ill-formed input: the for-

mer doesn’t contain enough dashes in the first column, while the latter doesn’t
specify the format for the last column.

Suppose, we are interested in the symbolic testing of the parser implemen-
tation; in particular, we want to cover all branches in the code for a reasonably
long input. For that we postulate that the first input line contains at least n
columns (we add the condition assert(col>=n) after line 19).

Now, consider the last conditional statement at line 19. The if branch is
satisfied by an empty second input line; and indeed, such concolic testers as
CREST can easily cover it. The else branch, however, poses serious problems.
In order to cover it, a well-formed input that respects all constraints should be
generated; in particular the smallest length of such input, e.g., for n equal to 3,
is 17. The huge number of combinations to test exceeds the capabilities of the
otherwise very efficient concolic tester: for n = 2 CREST needs 800 s to generate
a test, and for n = 3 it is not able to finish within 3 h.

Let us now examine the encoding of the implementation semantics in Array
Folds Logic. The AFL assertions are shown in Fig. 2 intertwined with the source
code: they encode the semantics of the preceding code lines in the SSA form. To
shorten the presentation we use the following conventions: variables i, a, pipes,
end, col, and dashes are represented by (SSA-indexed) logical variables 4, a, p,
e, ¢, and d respectively; characters ‘\n’, ‘|’, *:’, =’ and ‘+’ by logical constants
N, P, C, D, and A respectively; finally, the subscript denotes the SSA index of
a variable.

The Presburger constraints such as those after line 2 are standard and we do
not elaborate on them here. The first AFL-specific annotation goes after line 4:
it directly reflects the loop semantics. The fold term encodes the computation
of the number of pipes: they are computed in the counter c;, which gets its
initial value equal to pg, and its final value is equal to p;. Similarly, array index
i is initialized with ip; and its final value is asserted to be equal to i;. Both for
counter ¢ and for index i (which is a special type of a counter) their initial and
final values can be both constant and symbolic: in fact, arbitrary Presburger
terms are allowed.

Notice that the loop at lines 3-4 is outside of the class of loops that can
be accelerated by previous approaches. In particular, the difficulty here is the
combination of the iteration over arrays with the branching structure inside the
loop. On the contrary, AFL can summarize the loop in a concise logical formula.

The next conditional statement at line 5, takes care of the optional pipe at
the beginning of the input. The annotation shown demonstrates that conditional
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statements are also easily represented by fold terms. In particular, here the
function is folded over a starting from 0; the final index is unconstrained. The
branch checks that the index is 0 (to prevent going further over the array), and
that the symbol at this position is ‘|’. Counter c; is decremented only if these
two conditions are met; otherwise, the fold terminates. An equivalent encoding
using only array reads is possible: (a[0] = P Aps = p1—1)V (a[0] # P Aps = p1),
but this encoding involves a disjunction.

The other program statements of the motivating example are encoded in a
similar fashion. The encoding shown is for one unfolding of the for loop at line
10; several unfoldings are encoded similarly. We have checked the resulting proof
obligations with our solver for AFL formulas, called AFOLDER,; it can discharge
them and generate the required test input in less than 2 minutes for n = 3.

4 Complexity

A counter machine is a finite automaton extended by a vector n = (n1,...,m%)
of k counters. Every counter in 7 stores a non-negative integer, and a counter
machine can compare it to constant, and increment/decrease its value by a con-
stant. For the formal definition of counter machines consult, e.g., [26].

We extend counter machines to symbolic counter machines (SCMs), which
accept sequences (arrays) of integers. We denote the symbolic value of an array
cell by a special integer variable zo. Let X be a set of integer variables, where
Te € X. An atomic input constraint is of the form x¢ ~ c or ¢ = x, where c € N,
z € X, and = € {<,<,>,>,=,#}. Similarly, an atomic counter constraint is
a formula of the form 7; &~ ¢ or n; &~ x. An input constraint (resp. a counter
constraint) is either a conjunction of n > 1 atomic input constraints (resp.
atomic counter constraints), or the formula true. We denote by IC(X) (resp.
CCi(X)) the set of all input constraints (resp. counter constraints with counters
not greater than k) over variables in X.

Definition 1. A symbolic k-counter machine is a tuple M = (n, X, Q, J, ¢™*),
where:

-n=n,...,nk) is a vector of k counter variables,

— X is a finite set of integer variables,

- Q s a finite set of states,

~ 6 CQxCCu(X) xIC(X) x Q x ZF is a transition relation,
- ¢Mt € Q is the initial state.

A transition (g1, @, 3,q2,k) € 0 moves the SCM from state ¢; to g2 if the
counters satisfy the constraint o and the inspected array cell satisfies 3; the coun-
ters are incremented by k, and the machine moves to the next cell. A machine is
called deterministic if § is functional. A counter machine makes a reversal if it
makes an alternation between non-increasing and non-decreasing some counter.
A machine is reversal-bounded if there exists a constant ¢ > 0 such that on all
accepting runs every counter makes at most c reversal.
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Definition 2. We define the translation of a functional constant f of sort
FSort™, occurring in a formula ¢, as an SCM M(f) = (n,X,Q,6,¢™"). Let
G = (S,E,v) be the edge-labeled graph for f as defined in Sect.2.1. Then
n = {i,c1,...,¢m_1}, X are fresh free variables for each integer term T in
f, Q=S5, ¢™ =0, and for each edge (s1,82) € E, § contains a transition from
s1 to so labeled with a conjunction of all constraints labeling the edge. For each
integer term T in f and the corresponding variable x € X, we replace T by x in
f, and add the assertion (x = T) as a conjunction at the outermost level of ¢.
Due to the constraint on G, we have that M(f) is reversal-bounded.

Thus, we can translate a fold term into an SCM. A parallel composition of
SCMs captures the scenario when several folds operate over the same array.

Definition 3. The parallel composition (product) of two SCMs Mi and Mo,
where M; = (n;, Xi, Qi, 6, q¢™"), is an SCM M = (n, X, Q, 6, ¢'"™*) such that:

?

- N =117,
- X =X1UXy,
- Q=Q1 xQq,

— for each pair of transitions (q;, o, Bi, pi, w;) € §;, where i = 1.2, there is the
transition ((qhqg),al A asg, 1 A ,627(p1,p2),w1w2) € 0, which are the only
transitions in 6,

_ qlnlt — (q11n1t7 qénlt).

One of the fundamental questions that can be asked about a logic concerns

the size of its models. The following lemma shows that models of bounded size

are enough to check satisfiability of an AFL formula.

Lemma 1 (Small model property). There exists a constant ¢ € N, such that
an AFL formula ¢ is satisfiable iff there exists a model o such that a) for each
integer variable T in ¢, ¢ maps T to an integer < 291° and b) for each array
variable in ¢, o maps the variable to a sequence of < 21®I° integers, where each
integer is < 21917,

Proof (sketch; see [14] for the full proof ). One direction of the proof is trivial. For
the other direction, assume that ¢ has a model . We construct a formula v that
is a conjunction of all atomic formulas of ¢: in positive polarity if o satisfies the
atomic formula, and in negative otherwise. Let s = ||, and note that s < 3|4
We observe that (1) o is a model of 1, (2) every model of ¥ is a model of ¢.
In the remaining part of the proof we show that v has a small model, and as a
consequence so does ¢.

Let a be some array in ¥. We translate each fold term over a to an SCM
M as in Definition 2; let SCM M be the product of all M;. We extend the
technique of [20] to show that there exist a sufficiently short run of M. Under
the interpretation o, all variables in counter constraints become constants. Let
¢ = (c1,...cn) be anon-decreasing vector of constants that appear in the counter
constraints of M after fixing o. Vector ¢ gives rise to the set of regions

R = {[0,61], [61,61], [(31 +1,¢c0 — 1], [CQ,CQ], R [cl,oo]}.
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The size of R is at most 2dim(¢) + 1 < 3s. A mode of M is a tuple in R”
that describes the region of each counter. Let us observe that each counter can
traverse at most |R| modes before it makes an additional reversal. Thus, M in
any run can traverse at most maz = r - k- |R| < O(s*) different modes.

We take some accepting run Tr of M that traverses at most maz modes,
and partition sequences of transition in T'r into equivalence classes. We create
an integer linear program LP that encodes an accepting run of M that traverses
at most maz modes, as well as all non-fold constraints of ). The variables of LP
correspond to (1) the integer variables of ¥, (2) the counter values of M, (3) the
number of times sequences from each equivalence class are taken, and (4) the
solutions to each input constraint of M.

We show that LP has a solution p, where each variable is at most < 2/,
for a fixed ¢. We use p to construct a small model for ¥. From p we immediately
get interpretation for integer variables of 1. Solution p implies that there is an
accepting run of M of length at most < 2%/, which also gives a bound on the
length of the input array. Finally, for every array cell we may use a solution to
the specific input constraint. a

As a consequence of Lemma 1 we obtain a result on the complexity of AFL
satisfiability checking.

Theorem 1. The satisfiability problem of AFL is PSPACE-complete.

Proof. Membership. By Lemma 1, if an AFL formula ¢ is satisfiable, then it has a
model where integer variables have value < 2/¢1°, and arrays have length < 2/I°,
and where each array cell stores a number < 2/¢/°. A non-deterministic Turing
machine can use a polynomial number of bits to: (1) guess the value of integer
variables and store them using |$|¢ bits, (2) guess one-by-one the value of at
most 21?1 array cells, and simulate the folds. The Turing machine needs ||
bits for counting the number of simulated cells. The maximum constant used in
a counter increment can be at most 2/%/. Then, the maximal value a fold counter
can store after traversing the array is at most 2|¢‘C+1, therefore polynomial space
is also sufficient to simulate fold counters.

Hardness. We reduce from the emptiness problem for intersection of determinis-
tic finite automata, which is PSPACE-complete [28]. We are given a sequence
Aq,..., A, of deterministic finite automata, where each automaton A; accepts
the language £(A;). The problem is to decide whether (;'_; £(4;) # 0. We simu-
late automata A; with a fold expression foldfl over a single counter, where input
constraints correspond to the alphabet symbols of the automata. The expression
fold, returns an even number on array a if and only if the interpretation of a
represents a word in £(A;). To check emptiness of the automata intersection, it is
enough to check whether there exists an array such that all folds fold,ll, ..., foldl
return an even number. The reduction can be done in polynomial time. a

4.1 TUndecidable Extensions

We show that two natural extensions to our logic lead to undecidability.
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Theorem 2. Array Folds Logic with an 3*V* quantifier prefix is undecidable.

Proof. We prove by a reduction from Hilbert’s Tenth Problem [31]; since addition

is already in the logic, we only show how to encode multiplication. The following

F*V* AFL formula has a model iff array « is a repetition of z segments, and each

segment is of length y and has the shape 00...01; thus, it asserts that z =y - z:
al =2 A Jold, (3) (303 22) = (2) A

e=1= c1++

. . j i<y =0 ki
Vi.0< < ol = fold () (1ZEUAEN T IN) = (5)

In [11], the following is proved about the theory of concatenation:

Theorem 3 ([11], Corollary 4; see also [17], Proposition 1).
Solvability of equations in the theory ({1,2}*,e,0,Lgy, Lgy), where Lg,(x) =
{y € p* | y has the same number of p’s as x}, is undecidable.

Corollary 1. Extension of AFL with concatenation operator o is undecidable.

Proof. For an array x, we can define another array Lg,(z) in AFL as follows:

(|Lg'f<'$>|) = fold,(3) (S 2 v ) A (ILas(@)l) = fold (o) (0) (e=1 = skin) [

5 Decision Procedure

In Sect. 4 we described how a non-deterministic Turing machine can decide AFL
satisfiability in PSPACE. Now we present a deterministic procedure that trans-
lates AFL formulas to equisatisfiable quantifier-free Presburger formulas. As a
consequence of the procedure, we show that under certain restrictions satisfia-
bility of AFL is NP-complete.

Deterministic Procedure. We are given an AFL formula ¢ such that there
are at most m folds over each array; clearly m can be at most |¢|. We translate
¢ to the quantifier-free Presburger formula ¢ = 9, A ¥ A ;. For the procedure
we assume that there exists a fixed order x1 < --- < x,, on variables that appear
in the counter constraints.

Formula 1,,. The formula 1, is the part of ¢ that does not contain folds.

Formula .. For an array a; in ¢, let F; = {fold}, ... fold™} be the set of
folds in ¢ over a;. We translate each fold, € F; to a symbolic counter machine
M; Each M; has at most |¢| transitions, and the sum of the counters and
the number of reversals among all M; is at most |¢|. Next, we construct the
symbolic counter machine M; as the product of all machines ./\/l; The machine
M has at most k = |¢| counters, t = |¢|™ transitions and makes at most r = |¢|
reversals.

We translate the reachability problem of M to the quantifier-free Presburger
formula ? by applying an extension of the method described in [23]. In formula
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I, two configurations of M are described symbolically: initial ¢, and final ¢’.

The formula ¢ is satisfiable iff there is an array a; such that M, reaches ¢’

from ¢ on reading a;. The formula 1), is the conjunction 97 for all arrays a;.
The formula ¢} consists of two parts ¢ = 9] A¢]. For simplicity we assume

that the counter constrains of M are defined only over variables {z1,---,z,}.
By assumption, there is a fixed order z; < ... < z,, which gives rise a to the
set of < 2|¢| +1 regions R = {[0, 1], [z1, 1], [z1 + 1,22 —1],-- - , ¢, 00]}. As an

optimization, we construct regions separately for each counter, which allows us
to obtain a tighter bound on the number of regions that need to be encoded.

Each counter may traverse at most |R| regions before it makes a reversal, so
an accepting computation of M; traverses at most maz = r - k- |R| = O(|4|*)
modes. We construct an NFA A; by making max copies of the control-flow
structure of M. Every run of A; gives a correct sequence of states in M, but
may violate counter constraints. By using the procedure of [34] we can encode
the Parikh image of A; as the formula ¢§’ that is polynomial in the size of A.
Similar to [23], the formula ¢ puts additional constraints on the Parikh image
to ensure that by executing the transitions of .4; we obtain counter values that
satisfy the counter constraints of M.

The size 1 is of the order O(|¢|>t) = O(|¢|™T3). The formula v, is the
conjunction of formulas ¢ for each array a;. There can be at most |¢| arrays,
so the size of 1, is O(|¢|™T*).

Formula ;. Finally, formula ; links the initial and final configurations in .
to the variables in 1.

Formula size. The size of the formula v is O(|¢|™+*). By keeping m constant,
the encoding size is polynomial in the size of the AFL formula ¢.

Restricted Fragment of AFL. We write m-AFL for formulas that have at
most m fold expressions per array. As a consequence of the deterministic decision
procedure, restriction on m reduces the complexity of deciding satisfiability.

Lemma 2. The m-AFL satisfiability problem, for a fized m, is NP-complete.

Proof. Membership follows from the decision procedure above. For hardness
observe that any quantifier-free Presburger formula is an 0-AFL formula. O

Model Generation. Given a Presburger encoding ¢ of an AFL formula ¢, we
may use the solution to 1 to generate a model of ¢. The solution to 1) immediately
gives us interpretation for the integer variables in ¢. To obtain an interpretation
for the array variables in ¢, we observe that folds are implicitly encoded in ¢ as
counter machines, and that the solution to 1) describes the Parikh vector for each
machine. We use the method of [34] to get a concrete sequence of transitions in
each counter machine that produces the specific Parikh vector. We construct a
multigraph by repeating each transition in .4; according to its Parikh image, and
then find an Eulerian path in the multigraph. From the sequence of transitions
in counter machines, and the interpretation of input constraints in v we obtain
an interpretation for the arrays in ¢.
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6 Experiments

We implemented the decision procedure described in Sect. 5 in a prototype tool
AFOLDER; the tool is available at [13]. The tool is written in C++ and uses Z3 [15]
as the solver for Presburger formulas. We evaluated our decision procedure on a
number of testing and verification tasks described below.

The experimental results are shown in Table3; all experiments were per-
formed on a Ubuntu-14.04 64-bit machine running on an Intel Core 15-2540M
CPU of 2.60 GHz. For every example we report the size |¢| of the AFL formula
measured as “the number of logical operators” + “the number of branches in
folds.” The table also shows the number of fold expressions in a formula, and
the maximum number of folds per array (MFPA). Next, we report the time for
translating the problem to a Presburger formula, the time for solving the for-
mula, and whether the formula is satisfiable. If this is the case, we report the
length of a satisfying array generated by our tool; in case of several arrays, we
show the longest.

Markdown. This program is described in Sect. 3. The experiments are parame-
trized by the required number n of columns in the input.

perf_bench_numa. This example is part of a benchmark program for non-
uniform memory access (NUMA) [1]. The program maintains a list of threads,

Table 3. Experimental results for AFOLDER.

Example |¢| | Folds | MFPA | Transl. time | Solving | Result | Array
time length
Markdown(1) 62| 6 3 <ls <1ls |sat 8
Markdown(2) 69| 7 4 1s <1ls |sat 14
Markdown(3) 76| 8 5 1.3s 79s sat 17
perf_bench_numa(10) | 93|10 1 <lIs <ls sat 100
perf_bench_numa(20) | 183 | 20 1 <1s <l1s sat 100
perf_bench_numa(40) | 363 | 40 1 <l1s <1ls |sat 100
standard_minInArray | 10| 3 3 <1s <1s unsat |-
linear_sea.ch_true 13| 3 3 <1s <l1s unsat |-
array-call3 11 2 3 <ls <l1s unsat | -
standard_sentinel 14, 3 3 <l1s <1ls |unmsat |-
standard_find 11] 3 3 <l1s <1s unsat |-
standard_vararg 11, 3 3 <l1s <l1s unsat |-
histogram(8) 58| 8 8 <1s 1.3s sat 9
histogram(9) 65| 9 9 <1s 6.9s sat 10
histogram(10) 72110 10 2s 5558 sat 11
histogram(11) 7911 11 8s 368s |sat 12
histogram_unsat(11) | 80|11 11 9s 19s unsat | -
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and for each thread a separate array of size 100 that describes processors assigned
to the thread. The data is processed in a nested loop: the outer loop iterates
over threads, and the inner loop counts the number of assigned processors. The
outer loop also maintains the minimum, and maximum number of processors
assigned to any thread. We model a testing scenario like in Sect.3, where a
symbolic execution tool unrolls the outer loop n times, and the inner loop is
summarized by a fold expression. The testing goal is to provide a valid processor
mapping such that each thread is assigned to exactly one processor. In Table 3
we show results for this benchmark parametrized by the number n of threads.
The example scales well, since there a single fold per each processor array (see
Lemma 2).

SV-COMP. Examples “standard_minInArray” to “standard_vararg” are taken
from the SV-COMP benchmarks suite [6]. They model simple verification prob-
lems for loops, such as finding the position of an element in array, finding the
minimum, or counting the number of positive elements. We model these pro-
grams as formulas that are unsatisfiable if the program is safe. Although the
programs are simple, most verification tools competing in SV-COMP fail to
prove their safety.

Histogram. We performed experiments on the histogram example in Sect. 2.3,
parametrized by the number of range values. We observe that solving time grows
rapidly with the number of folds. Example “histogram_unsat” is an unsatisfiable
variation that requires two different counts in the same range.

7 Conclusion and Future Work

We presented Array Folds Logic (AFL), which extends the quantifier-free the-
ory of arrays with folding, a well-known concept from functional languages. The
extension allows us to express counting properties, occurring frequently in real-
life programs. Additionally, AFL is able to concisely summarize loops with inter-
nal branching and counting over arrays. We have analyzed the complexity of
satisfiability checking for AFL formulas, and presented an efficient decision pro-
cedure via an encoding to the quantifier-free Presburger arithmetic. Finally, we
have implemented a tool called AFOLDER, which efficiently discharges AFL proof
obligations, and demonstrated its practical applicability on numerous examples.
For the future work, we plan to investigate possible combinations with other
decidable fragments of the theory of arrays (to allow some restricted form of
quantifier alternation). We also plan to automate the generation of proof obliga-
tions and the summarization of loops, and want to improve the efficiency of our
decision procedure by implementing suitable optimizations and heuristics.
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