
Synthesis of Self-Stabilising
and Byzantine-Resilient Distributed Systems

Roderick Bloem1, Nicolas Braud-Santoni1, and Swen Jacobs2(B)

1 Graz University of Technology, Graz, Austria
{roderick.bloem,nicolas.braud-santoni}@iaik.tugraz.at

2 Saarland University, Saarbrücken, Germany
jacobs@react.uni-saarland.de

Abstract. Fault-tolerant distributed algorithms play an increasingly
important role in many applications, and their correct and efficient imple-
mentation is notoriously difficult. We present an automatic approach
to synthesise provably correct fault-tolerant distributed algorithms from
formal specifications in linear-time temporal logic. The supported system
model covers synchronous reactive systems with finite local state, while
the failure model includes strong self-stabilisation as well as Byzantine
failures. The synthesis approach for a fixed-size network of processes is
complete for realisable specifications, and can optimise the solution for
small implementations and short stabilisation time. To solve the bounded
synthesis problem with Byzantine failures more efficiently, we design an
incremental, CEGIS-like loop. Finally, we define two classes of problems
for which our synthesis algorithm obtains solutions that are not only
correct in fixed-size networks, but in networks of arbitrary size.

1 Introduction

Distributed algorithms are hard to implement. While multi-core processors, com-
municating embedded devices, and distributed web services have become ubiqui-
tous, it is very hard to correctly construct such systems because of the interplay
between separate components and the possibility of uncontrollable faults.

Intent

Specification

Implementation

Verification

Fix
bugs

Fig. 1. Comparison of verification

and synthesis workflows

While verification methods try to prove
correctness of a system that has been
implemented manually, the goal of syn-
thesis methods is the automatic construc-
tion of systems that satisfy a given formal
specification. The difference between these
approaches is shown in Fig. 1, illustrating
how synthesis can relieve the designer from
tedious and error-prone manual implemen-
tation and bug-fixing. Despite these ben-
efits, formal methods that guarantee cor-
rectness a priori, like synthesis, have hardly
found their way into distributed system design. This is in contrast to a posteriori
methods like verification, which are being studied very actively [35,45,46].
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 157–176, 2016.
DOI: 10.1007/978-3-319-41528-4 9

158 R. Bloem et al.

One reason for this is that the underlying computational problems in syn-
thesis are even harder than in verification. However, research on synthesis has
picked up again in recent years [1,8,24,36,52], pushed forward by advances in
theorem proving [26,42] and model checking algorithms [10,40] that can be used
as building blocks for efficient synthesis algorithms.

In particular, also the synthesis of concurrent and distributed systems has
received more attention lately. However, research in this area is to a large extent
still restricted to basic theoretical problems [23,24] or to simpler sub-problems,
such as synthesis of synchronisation for existing programs [12,54].

Failure resilience is critical in this setting, for two reasons: firstly, it enables
use in safety-critical applications with weaker assumptions on the environment
and the component itself. Secondly, it is needed to ensure scalability in practice,
since in large networks it is unrealistic to assume that all components work
without failure. In this work, we consider two kinds of failures: transient failures,
as exemplified by self-stabilising systems [16,53], where the whole system can be
transported to an arbitrary state; and permanent failures, as exemplified by
Byzantine failures [38], where some processes can deviate arbitrarily from the
algorithm they should be executing.

Previous approaches for the synthesis of failure-resilient systems are either
restricted in the systems that are considered [14], or in the kinds of failures
that are supported [21].1 For systems that support both self-stabilisation and
Byzantine failures, the only result known to us is a problem-specific and semi-
automatic approach by Dolev et al. [15], explained in the following.

Motivating Example [15]. Consider the problem of automatically constructing
a distributed counter, ranging over m possible values. Processes in the system
are arranged in a fully informed clique with synchronous timing, and should
satisfy the following properties under self-stabilisation and Byzantine failures:

(a) agreement : at every turn, all processes output the same value;
(b) increment : the value is incremented in each step (mod m).

Since increment is an easy-to-implement local property, the main problem is
agreement on the value. Dolev et al. [15] have recently shown a semi-automatic
approach to obtain solutions for this problem. For a fixed number f of Byzantine
nodes, they construct the distributed algorithm in two steps:

1. synthesis for a clique of sufficient size n;
2. extension to arbitrarily many processes.

The first step is based on a problem-specific encoding of the synthesis problem
into a SAT problem. For a fixed number n of processes, the approach finds a
solution – if one exists – by searching for implementations of increasing size
and with increasing stabilisation time. The sufficient size of the clique is n =
3 · f + 1, since this guarantees that (after stabilisation) the Byzantine nodes

1 Related to this are also approaches for the synthesis of robust systems [6], essentially
modelling failures in the environment of a single process.

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 159

cannot change the majority value [43]. Therefore, processes that are added to a
correct system will be correct if they simply replicate the majority output of the
existing processes.

The results of Dolev et al. [15] are impressive, since their solutions for the
2-counting problem extend to systems of arbitrary size, and have smaller state
space and stabilisation time than any hand-crafted solution before. However,
application of their approach to other problems requires significant effort for the
development of a problem-specific encoding, and for proving its correctness.

In contrast, we introduce a general-purpose method for synthesis of failure-
resilient systems that is fully automatic, can easily be proven correct, and is
applicable to a wide range of problems. In particular, our preliminary imple-
mentation can replicate the results of Dolev et al. [15] and extend them to
n-counting (with n > 2).

Contributions. In this paper, we propose a novel approach for the automatic
synthesis of Byzantine-tolerant self-stabilising systems, in the form of distributed
labelled transition systems. Our synthesis method takes as input a description of
the network of processes and a specification in linear-time temporal logic, as well
as a bound on the number of Byzantine processes in the network. It encodes the
existence of a solution into a problem in satisfiability modulo theories (SMT),
and synthesises correct implementations for all processes, if they exist.

We show that our method is correct and complete, and will terminate if a
bound on the size of process implementations is given.

The first-order problems that result from our encoding critically need quan-
tification over finite, but possibly large, sets. We provide a dedicated approach
to solve those problems incrementally. On a prototype implementation of the
approach, we show that this makes our examples tractable.

Finally, we give new results for extending our synthesis method from networks
of fixed size to families of networks of unbounded size, based on the notion of
cutoffs and the Parameterised Synthesis approach [30]. In particular, we define
colourless specifications (or tasks) for non-terminating systems in cliques and
similar network topologies, as well as a class of local specifications for networks
with a fixed degree. For colourless specifications, we obtain cutoffs that depend
on the number of Byzantine nodes, while for local specifications we obtain cutoffs
that depend on the stabilisation time.

Structure. We introduce our system model and class of specifications in Sect. 2,
and the basic synthesis approach in Sect. 3. We present the incremental approach
for solving our synthesis problem in Sect. 4, the extension to parametric networks
in Sect. 5, and experimental results in Sect. 6.

2 System and Failure Model, Specifications

We consider distributed systems that are defined by a fixed network of finite-state
processes, in a synchronous composition: in every global step of the system, each
process observes the outputs (possibly the complete state) of neighbouring com-
ponents, and makes a transition. Our composition models atomic snapshot, the

160 R. Bloem et al.

classical communication model for self-stabilising systems [13]. Furthermore, syn-
chronous timing (possibly as an abstraction of the system behaviour) is a stan-
dard assumption when reasoning about consensus problems, as these problems
are undecidable in asynchronous networks in the presence of faults [25,39,47].
To support asynchronous systems, one option is to use an abstraction to an
effectively synchronous system, like for example in the model based on “commu-
nication rounds” by Dragoi et al. [18].

In the following, we formalise these notions for the case of fixed-size networks.
We will consider networks of parametric size in Sect. 5.

2.1 System Model

Labelled Transition Systems. For given finite sets Σ of inputs and Υ of
labels – or outputs – a Υ -labelled Σ-transition system (or short: a (Υ,Σ)-LTS)
T is a tuple (T, T0, τ, o) of a set T of states, a set T0 ⊆ T of initial states,
a transition function τ : T × Σ → T and a labelling (or output) function
o : T → Υ . T is called finite if T is finite.

We consider Υ = 2O and Σ = 2I , representing valuations of a set of Boolean
output variables O (controlled by the system) and a set of Boolean input vari-
ables I (not controlled by the system).

Communication Graphs, Symmetry Constraints. A communication graph
C is a tuple (V,X, I,O), where V is a finite set of nodes, X is a set of system
variables, and I : V → P(X), O : V → P(X) assign sets of input and output
variables to the nodes, with O(v) ∩ O(v′) = ∅ for all v �= v′ ∈ V . For a given
v, we call (I(v),O(v)) the interface of v, and (| I(v) | , | O(v) |) the type of the
interface of v. If I(v) ∩ O(v′) �= ∅, i.e., an output of v′ is an input of v, then we
say that v and v′ are neighbours in C. Variables that are not assigned (by O)
as output variables to any of the nodes are global input variables, controlled by
the environment. Denote this set of variables as O(env).

The communication graph may come with a symmetry constraint, given as
a partitioning V1∪̇ . . . ∪̇Vm = V of the set of nodes. We assume that for every
element Vi of the partition, nodes v, v′ ∈ Vi have the same type of interface, and
that interfaces of all nodes have a fixed order that identifies corresponding in- and
outputs of v and v′. The intended semantics is that nodes in the same element of
the partition should have the same implementation modulo this correspondence.

Distributed Systems. An implementation of a node v ∈ V in a communication
graph C is a (2O(v), 2I(v))-LTS. A distributed system is defined by a communi-
cation graph C and a finite family (Lv)v∈V of implementations.

Let C = (V,X, I,O) be a communication graph with V = {v1, . . . , vn}, and
for every vi ∈ V let Li = (Li, L0,i, τi, oi) be an implementation of vi in C. The
composition of (Lv)v∈V in C is the (2X , 2O(env))-LTS G = (G,G0, τ, o) with:

– G = L1 × . . . × Ln,
– G0 = L0,v1 × . . . × L0,vn

,
– o(l1, . . . , ln) = o1(l1) ∪ . . . ∪ on(ln), and

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 161

– τ((l1, . . . , ln), e) = ((τ1(l1, σ1), . . . , τn(tn, σn)), where σ = o(l1, . . . , ln)∪ e and
σi is the restriction of σ to variables in I(vi).

Note that this is essentially the same formalism as in Finkbeiner and Schewe’s
seminal paper [24], and in the following we re-use part of their work on encoding
the synthesis problem for such systems into SMT.

2.2 Failure Model

We consider two kinds of failures: transient failures that are limited in time, but
may affect the whole system, and permanent failures that are limited in their
locations, i.e., only affect a subset of the processes. We model these failures as
self-stabilisation and Byzantine failures, respectively. The conjunction of both
kinds of failures is called Byzantine tolerant self-stabilisation [17].

Self-Stabilisation. Self-stabilisation is the strongest model for transient fail-
ures, introduced by Dijkstra [13,16,53]; it assumes that the system as a whole
fails – once – and is put in an arbitrary state. When the failure is over, processes
resume their execution from this state. In transition systems, it is thus easily
modelled by making all global states of the system initial.

Since an arbitrary state of the system will in general not satisfy strict safety
requirements, in self-stabilisation one usually requires that a specification will
eventually be satisfied, i.e., after a (either fixed or unknown) stabilisation time.

Byzantine Failures. Byzantine failure is a model of permanent failure where
some processes do not execute the protocol, but are under the control of a
Byzantine adversary. Our assumptions on the adversary are:

– non-adaptiveness: the adversary picks the set of faulty nodes before the algo-
rithm is run;

– full information: the adversary can read the global state of the system;
– computational power : the adversary has unbounded computational power.

In our setting, the non-adaptiveness does not remove any power from the
adversary [11].2 Therefore, it is equivalent to the strong Byzantine adversary,
which subsumes most models of permanent failure. We will consider systems
with a fixed upper bound f on the number of Byzantine failures.

2.3 Formal Specifications

We consider formal specifications in linear-time temporal logic (LTL), where
the atomic propositions are the system variables. A formula that uses only the
input and output variables of a tuple v = (v1, . . . , vk) of nodes will sometimes
be written ϕ(v). We assume that the body of our specification is of the form

∀v ∈ V k : ϕ(v),

for some k ≤ |V |.
2 Essentially, this is because our model is not probabilistic, and because the protocol

must work for any choice of Byzantine nodes and any behaviour they can exhibit,
which includes all possible behaviours of an adaptive adversary.

162 R. Bloem et al.

Example 1. Consider a fully connected network of a set of nodes V . Suppose
every process v ∈ V has a binary output variable cv. In the 2-counting problem
from Sect. 1, every node v has an output cv, and the formal specification ϕ is
the conjunction

∀v ∈ V. G (cv = 0 ↔ X cv = 1)
∧∀v1, v2 ∈ V. G (cv1 = cv2) ,

stating that (for every node) the binary output should be flipped in every step,
and (for all pairs of nodes) the output of two nodes should always be the same.

Fault-Tolerant Specifications. Since we consider systems that exhibit both
self-stabilisation and Byzantine failures, we need to consider a special type of
specifications:

– self-stabilisation implies that specifications ϕ with non-trivial safety require-
ments (like in Example 1) in general cannot be satisfied without explicitly
allowing a stabilisation time. Therefore, we consider specifications ϕ that are
either of the form Fψ (if we allow an unspecified stabilisation time), or of the
form Xt ψ (if we require that the stabilisation time is bounded by t steps).

– Byzantine failures imply that the respective nodes can behave arbitrarily, and
properties of the specification can not be expected to hold for them. Therefore,
we require that for every choice of the Byzantine nodes, the specification holds
only for tuples of correct nodes, i.e., where none of the nodes is Byzantine.
Formally, this means that instead of the original specification ∀ v ∈ V k : ϕ(v)
we consider the specification

∀ b ∈ V f , v ∈ V k :

⎡
⎣

⎛
⎝ ∧

1≤i≤k,1≤j≤f

vi �= bj

⎞
⎠ → ϕ(v)

⎤
⎦ . (1)

Example 2. Recall the second part of the 2-counting specification:

∀v1, v2 ∈ V. G (cv1 = cv2) .

For systems with one Byzantine node b in V , this property is modified to:

∀b ∈ V. ∀v1, v2 ∈ V. [(v1 �= b ∧ v2 �= b) → G (cv1 = cv2)] .

3 Bounded Synthesis of Resilient Systems

Synthesising distributed systems is in general undecidable [23,44,48]—with or
without failures—and only becomes decidable by bounding the size of the imple-
mentation. The bounded synthesis problem consists in constructing an imple-
mentation that satisfies a given temporal logic specification and a bound on the
number of states.

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 163

LTL Communication graph

UCT Uninterpreted LTS

SMT

Size bound

Fig. 2. The bounded synthesis approach

Finkbeiner and Schewe [24] gave an
algorithm for bounded synthesis based
on an encoding into satisfiability mod-
ulo theories (SMT). Inspired by their
encoding, we describe in the following
an algorithm for the bounded synthesis
of distributed systems with Byzantine-
tolerant self-stabilisation. The high-
level structure of the approach is
depicted in Fig. 2.

Input: Specification and Communication Graph. The input to our syn-
thesis problem is a communication graph C = (V,X, I,O), possibly with a
symmetry constraint V1∪̇ . . . ∪̇Vm = V , and a (global) temporal specification ϕ
over atomic propositions in X. In the following, let O =

⋃
v∈V O(v) be the set

of global output variables (controlled by the system), and I = X \ O the set of
global input variables (controlled by the environment) of C.

In the following we encode the existence of local implementations of the nodes
in V such that the composition of these implementations in C satisfies ϕ.

Conversion of the Specification to an Automata. Using the approach of
Kupferman and Vardi [37], the specification ϕ is translated into a universal co-
Büchi tree automaton (UCT) Aϕ = (Q, qo, δ, F), where Q is a finite set of states,
q0 ∈ Q the initial state, δ : Q×2O → P(Q×2I) a transition relation, and F ⊆ Q
a set of rejecting states. A given UCT A accepts an (2O, 2I)-LTS T if no run
in the parallel execution of A and T visits a rejecting state infinitely often. The
UCT Aϕ is constructed such that it accepts an LTS T if and only if T |= ϕ.

As an optimisation, we use a Safra-less conversion to generalised Rabin
automata [50] rather than converting to a co-Büchi automata, as the
automatically-generated Rabin automata are smaller. However, co-Büchi and
Rabin automata are known to be equally expressive.

Uninterpreted LTS Based on Size Bound and Communication Graph.
Let s be a local size bound for implementations of nodes in C. Then, for
each node vi ∈ {v1, . . . , vn} = V , we want to find a (2O(vi), 2I(vi))-LTS
Li = (Li, L0,i, τi, oi), with:

– a set of (local) states Li with | Li | = s;
– a set of initial states L0,i ⊆ Li;
– a transition function τi : Li × 2I(vi) → Li;
– a labelling function o : Li → 2O(vi).

Li can be considered a fixed set of elements, while the transition and labelling
functions are to be synthesised. That is, in our SMT encoding they are considered
as uninterpreted functions. If vi, vj ∈ Vk for some Vk in the symmetry constraint,
then we introduce just one uninterpreted function symbol that is used for both
τi and τj , and similarly for oi and oj . This enforces the constraint that both
nodes will have the same implementation. The choice of L0i is explained below.

164 R. Bloem et al.

Encoding of UCT and LTS into SMT Problem. To encode the syn-
thesis problem, we follow the approach of Finkbeiner and Schewe [24]. Let
G = (G,G0, τ, o) be the composition of the local implementations Li in C. Then,
we define an (uninterpreted) annotation function λ : Q × G → Q ∪ {⊥} that
maps states in the product automaton Aϕ ×G to either ⊥ or a rational number.
To ensure that G is accepted by Aϕ, we introduce constraints on λ such that
λ tracks whether states in the product automaton Aϕ × G are reachable, and
bounds the number of visits to rejecting states in runs of Aϕ × G. In particular,
we require that

∀g0 ∈ G0 :λ(q0, g0) �= ⊥ (2)
∀q, q′ ∈ Q, g ∈ G, σ ∈ Σ :λ(q, g) �= ⊥ ∧ (q′, σ) ∈ δ(q, o(g)) ∧ q′ �∈ F

→ λ(q′, τ(g, σ)) ≥ λ(q, g) (3)
∀q, q′ ∈ Q, g ∈ G, σ ∈ Σ :λ(q, g) �= ⊥ ∧ (q′, σ) ∈ δ(q, o(g)) ∧ q′ ∈ F

→ λ(q′, τ(g, σ)) > λ(q, g) (4)

The conjunction (2) ∧ (3) ∧ (4), in the following denoted as SMTϕ, encodes the
existence of an implementation that satisfies ϕ in a system without failures.

Encoding Self-Stabilisation. We encode self-stabilisation by considering all
states of the system as initial states, i.e., L0i = Lv. Thus, a solution to our
synthesis problem has to ensure that the specification ϕ is satisfied for all runs
that begin in any of the states of the composed system. This corresponds directly
to the definition of self-stabilisation introduced by Dijkstra [13].

Encoding Byzantine Failures. Byzantine nodes can behave arbitrarily, and
the Byzantine adversary has information about the global state of the sys-
tem [38]. Thus, the behaviour of Byzantine failures can be modelled by allowing
them to give arbitrary outputs at any time, essentially re-assigning their outputs
to outputs of the adversarial environment.

To encode this, we modify the constraints above such that Byzantine
processes are observed with arbitrary output. In particular, if node vi is Byzan-
tine, then in (3) and (4) we replace each occurrence of a system variable x ∈ O(vi)
with a fresh variable xb, and add a quantifier ∀xb ∈ B. For a given formula ψ
and x(v) = O(v), this substitution is denoted as ∀xb(v) ∈ B. ψ[x(v) �→ xb(v)].

Example 3. Consider that the first component v1 is Byzantine, let x = O(v1),
g = (l1, . . . , ln) and σ = (σ1, . . . , σn). Then, constraint (3) is modified to:

∀xb ∈ B, q, q′ ∈ Q, g ∈ G, σ ∈ Σ :
λ(q, g) �= ⊥ ∧ (q′, σ[x �→ xb]) ∈ δ(q, o(g)) ∧ q′ �∈ F

→ λ(q′, (τ1(l1, σ1[x �→ xb]), . . . , τn(ln, σn[x �→ xb])) ≥ λ(q, g).

Finally, since the Byzantine adversary can choose a set of at most f Byzantine
nodes, we have to quantify over all possible choices of the adversary. Since the
satisfaction of the specification can depend on the choice of processes, we have
an important change to the encoding: our quantification has to reflect that the

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 165

correctness argument, and therefore the witness function λ, can depend on this
choice, while the transition and labelling functions τ, o must not depend on this
choice. This results in the following encoding:

∃τ, o. ∀{b1, . . . , bf} ⊆ V. ∃λ.
∀xb(b1, . . . , bf) ∈ B. SMTϕ[x(b1, . . . , bf) �→ xb(b1, . . . , bf)]. (5)

Note that with this encoding, all neighbours of a Byzantine process observe
the same outputs. It is straightforward to have different observed outputs for
different neighbours in our encoding, at the cost of introducing one quantified
variable for the observation of each neighbour.3

Furthermore, note that all quantification is over finite sets, so we can elimi-
nate all quantifiers by Skolemising λ such that it is a function that depends on
the choice of {b1, . . . , bf}, and explicitly instantiating the universal quantifiers.

Correctness. For uninterpreted functions τ, o, λ, satisfiability of our encoding is
equivalent to the existence of an LTS that satisfies the specification ϕ. Moreover,
satisfying valuations of τ and o give us a solution to the synthesis problem, and
the valuation of λ witnesses correctness of that solution.

Theorem 1 (Correctness for fixed bound). The constraint system (5) is
satisfiable if and only if the specification is finite-state realisable in a self-
stabilising system with f Byzantine nodes in the given communication graph.
A satisfying assignment of τ and o represents a solution to the synthesis
problem.

Up to the encoding of failures, our encoding is equivalent to that of Finkbeiner
and Schewe, and correctness follows from Theorem 5 of [24]. Correctness of the
encoding of self-stabilisation is straightforward, and correctness of the encoding
of Byzantine failures follows from our elaborations above.

Increasing the Bound. By iterating bounded synthesis for increasing bounds,
we obtain a semi-decision procedure for the synthesis problem.

Corollary 1 (General correctness and completeness). A semi-procedure
that iterates bounded synthesis of resilient systems for increasing bounds will
eventually find a finite-state implementation of ϕ if it exists.

Practical Applicability. Our encoding includes a large number of quantifiers,
both universal and existential. Since we consider finite domains, they could all be
explicitly instantiated, but experiments show that their full instantiation results
in a combinatorial blowup that quickly makes the SMT formula intractable. For
non-trivial examples, existing SMT solvers (such as Z3 and CVC3) were unable
to solve the resulting problem instances.
3 Also, note that fail-stop failures can be seen as a special case of Byzantine failures,

and can be modelled in a similar way: instead of giving arbitrary outputs, the chosen
nodes at some point move into a special stop state, from which they cannot recover.

166 R. Bloem et al.

Abstracting from the universal quantifiers inside the innermost existential
quantifier (as these are treated rather efficiently by existing methods like incre-
mental instantiation [29,41] or in some cases simply full instantiation) and the
concrete meaning of the function symbols, our synthesis problem is of the form

∃x.∀y.∃z.Q(x, y, z)

where Q(x, y, z) is an SMT formula and x, y, z are from finite domains. In the
following, we introduce a new, incremental algorithm that performs well for
instances of this problem produced by our encoding.

4 Incremental Synthesis Algorithm

In this section, we introduce an algorithm that allows us to solve synthesis prob-
lems more efficiently than a direct application of an SMT solver on the full
encoding of the previous section. To this end, we extend the approach of Counter-
Example-Guided Inductive Synthesis (CEGIS) [52][51, Chapt. 4] to handle finite
model extraction for first-order formulae with two quantifier alternations (∃∀∃).
Like CEGIS, our algorithm is only guaranteed to terminate when the universal
quantification is over a finite domain.

4.1 Previous Work

Solar-Lezama et al. introduced CEGIS [51,52] in the context of template-based
synthesis, but it is a general method for solving first-order problems of the form
∃x.∀y.Q(x, y). It is complete and terminating if y belongs to a finite domain Y .
CEGIS performs model extraction, which is crucial when doing synthesis.

In the following, we will use x, y, z as first-order variables and x̂, ŷ, ẑ as con-
crete values for these variables. CEGIS proceeds by building a database of coun-
terexamples ŷi for any candidate x̂ that it has encountered. In the worst case,
CEGIS performs O (|Y |) SMT queries until it reaches a conclusion; it is especially
efficient if every ŷ eliminates a large portion of the possible values for x.

The CEGIS algorithm is shown in Fig. 3. Formula φ(x) acts as the database
of counterexamples. The algorithm uses two incremental SMT solvers. In Line 3,
it extracts candidates for x that work for all counterexamples in the database.
In Line 5 it uses a new variable yn1 to extract a new counterexample that rejects
at least the last candidate x̂.

4.2 Extension to First-Order Model Extraction

The encoding of our synthesis problem is of the form

∃x.∀y.∃z.Q(x, y, z). (6)

In the specific case of our encoding, described earlier, x was called τ and
ranges over uninterpreted functions over finite domains; y was called B and

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 167

Data: A first-order formula ∃x. ∀y. Q(x, y)
Result: FALSE or a value x̂ such that ∀y. Q(x̂, y) holds

1 Initialise φ(x) to � and n = 0;
2 while true do
3 if φ(x) is satisfiable then
4 Extract a concrete value x̂ for x from the model;
5 if ¬Q(x̂, yn+1) is satisfiable then
6 Extract a concrete value ŷn+1 for yn+1 from the model;
7 φ := φ ∧ Q(x, ŷn+1);
8 n++;

9 else
10 return x̂;
11 end

12 else
13 return FALSE;
14 end

15 end

Fig. 3. Original CEGIS algorithm, solving ∃x.∀y.Q(x, y)

ranges over tuples of process identifiers from a finite domain and z was called λ
and ranges over the rationals.

While we still keep a set of counterexamples ŷi, candidate generation is now
a little more intricate: we look for one x̂ and a ẑi for every ŷi in the database.

The algorithm is shown in Fig. 4. Here, y1 . . . yn is (still) the database of coun-
terexamples. The candidate extraction is again in Line 3, but is more intricate:
it now extracts a candidate x̂ for x as well as a candidate ẑi for each counterex-
ample ŷi. In Line 5 we then look for a new counterexample ŷn+1 that shows that
the formula is false for x̂ and any of the ẑi.

Note that, again, we can use two incremental SMT solvers. In the outer
satisfiability call (Line 3), we only add conjunctive constraints to φ. In the inner
satisfiability call (Line 5), we add conjunctive constraints to

∧n
i=1 ¬Q(x̂, yn+1, ẑi)

as long as x̂ does not change, and we reset the formula if x̂ does change.4

Correctness Argument. Let us assume the algorithm returns x̂. At the point
where it returns, it has concrete values ẑ1 . . . ẑn such that there is no y that
falsifies Q(x̂, y, ẑi) for all i. This means that for any y, there is a ẑi such that
Q(x̂, y, ẑi) is satisfied: we indeed exhibited a valid model for the formula.

Conversely, let us assume the algorithm returns FALSE: this means that the
formula φ =

∧n
i=1 Q(x, ŷi, zi) is not satisfiable. Assuming our original formula

4 In fact, in our prototype implementation we use a heuristic that avoids throwing
away the formula by re-assigning the value of x̂ in the formula whenever the outer
SMT call returns a new value. Then, we do not throw away the formula at all, but
risk that it grows unnecessarily large. In our experiments, this has shown favourable
effects.

168 R. Bloem et al.

Data: A first-order formula ∃x. ∀y. ∃z. Q(x, y, z)
Result: FALSE or a value x̂ such that ∀y.∃z. Q(x̂, y, z) holds

1 Initialise φ(x, z1, . . . , zn) to � and n = 0;
2 while true do
3 if φ(x, z1, . . . , zn) is satisfiable then
4 Extract concrete values x̂, ẑ1, . . . , ẑn for x, z1, . . . , zn from the model;
5 if

∧n
i=1 ¬Q(x̂, yn+1, ẑi) is satisfiable then

6 Extract a concrete value ŷn+1 for yn+1 from the model;
7 φ := φ ∧ Q(x, ŷn+1, zn+1);
8 n++;

9 else
10 return x̂;
11 end

12 else
13 return FALSE;
14 end

15 end

Fig. 4. Proposed algorithm, solving ∃x. ∀y.∃z.Q(x, y, z)

was satisfiable, and given a model x, z(·) that satisfies it, then x, zi = z(ŷi) would
be a model for φ: hence, our original formula is UNSAT.

Finally, termination of the algorithm follows from the fact that our domains
are finite, which implies that every formula only has finitely many satisfying
assignments, and every call to the inner SMT solver strengthens the formula φ
such that at least one satisfying assignment is removed.

4.3 Related Work

Our work is close to Janota et al. [31] which extends CEGIS to decide QBF
formulas with arbitrary quantifier alternation. Janota et al. propose a recursive
algorithm which uses a number of nested SMT calls linear in the number of
quantifier alternations, whereas we need only two. Moreover, since candidate
values are changed by subsequent SMT calls more often, the algorithm cannot
efficiently use incremental solving.

Another modification of CEGIS that is close to ours is that of Koksal
et al. [34]. At a high level (i.e., the level we chose for our description in this
section), their approach is very similar to ours. The differences between the algo-
rithms are in the encoding of synthesis problems, as well as in the specialised
verification and synthesis algorithms that are part of the description in Koksal
et al. [34]. We chose a higher level of description for the CEGIS algorithm in
order to increase its re-usability in different settings.

Finally, another approach for the synthesis of reactive systems that uses
incremental refinement of candidate models is lazy synthesis [22]. The difference
to our approach is that lazy synthesis is not based on CEGIS and a direct
encoding of correctness into SAT or SMT, but instead uses LTL model checking

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 169

and an encoding of error traces into SMT to obtain and refine candidate models.
Lazy synthesis does not consider systems with Byzantine failures, but could
probably be extended to our setting by extending the LTL model checking to
all possible choices of Byzantine nodes and all possible actions taken by the
Byzantine adversary. Whether this would be efficient is an open question.

5 Extension to Networks of Unbounded Size

The synthesis method we have introduced thus far is restricted to systems with
a fixed number of components. However, correctness in networks of arbitrary
size is needed for scalability, as it is unfeasible to synthesise a new solution
whenever new processes are introduced into the system. In this section, we show
how to obtain process implementations that are correct in systems of arbitrary
size, based on the idea of Parameterised Synthesis [30]: by combining a general
correctness argument for a specific class of systems and specifications, we can
synthesise systems that will be correct in networks of unbounded size by synthe-
sising a solution that (i) satisfies the specification and (ii) belongs to the class
of systems for which the correctness argument holds.

Parameterised Systems. Let C be the set of all communication graphs. Then
a parameterised communication graph is a function Γ : N → C, where we assume
that every Γ (i) comes with a symmetry constraint that separates the nodes into
a finite number of implementation classes (with identical interface types). A
parameterised communication graph Γ is of order k if, for all n ∈ N, the number
of implementation classes in Γ (n) is less or equal to k. Then, an implementation
of a parameterised communication graph Γ of order k is a set of implementations
{T1, . . . , Tk} for its nodes, one for each implementation class.

Parameterised Specifications. In specifications of parameterised systems, the
atomic propositions are the system variables, indexed by fixed component iden-
tifiers or identifier variables. An identifier variable i can be quantified globally in
the form ∀i.ϕ, or locally in the form ∀i : neighbour(x).ϕ. In every given instance
of the parameterised communication graph, this quantification is simply inter-
preted as a finite conjunction over all possible values for i.

Cutoffs for Parameterised Synthesis. A central notion of parameterised
synthesis is the cutoff : an upper bound c on the number of nodes in a network
that need to be considered, such that components that are correct in the network
of size c are also correct in any network of a bigger size. Formally, c ∈ N is a
cutoff for a set of specifications Φ and a class of systems S if, for every ϕ ∈ Φ
and every (Γ, {T1, . . . , Tk}) ∈ S (where Γ is of order k), it holds that

∀n > c : ({T1, . . . , Tk}, Γ (c) |= ϕ ⇔ {T1, . . . , Tk}, Γ (n) |= ϕ) .

Thus, a cutoff enables parameterised synthesis if and only if we can guarantee
that our solution belongs to the system class S. In principle, this idea can directly
be applied to failure-resilient systems, but existing cutoff results [2,3,7,19,20,27]
usually do not take into account fault-tolerance.

170 R. Bloem et al.

Colourless Specifications. In distributed systems, there is a classical notion
of (weakly) colourless tasks for terminating executions of a system. This includes
many important properties of finite runs, such as consensus and k-set agreement.
We extend this notion to infinite runs.

For a given global state g = (l1, . . . , ln) of a system G, a variant of g is a
state g′ that can be obtained from g by changing the local state li of one process
i to another local state l′i ∈ Li, such that oi(l′i) = oj(lj) for some j �= i, or by a
sequence of such changes.

Then, define a specification ϕ to be colourless if for every execution trace
o(g0)o(g1) . . . o(gn) . . . that satisfies ϕ, and any variant g′

n of gn, the partial trace
o(g0)o(g1) . . . o(gn−1)o(g′

n) can be extended to a trace that satisfies ϕ.
An example of a colourless specification is the m-counting specification from

our motivating example. Note that colourlessness is a semantic property of a
specification, and we do not supply a syntactic fragment of LTL that guarantees
colourlessness.

Cutoffs for Colourless Specifications. We show how to extend an n-process
system G satisfying a colourless specification ϕ into an (n + k)-process system,
satisfying the same specification. We assume that the processes in G are fully
connected (i.e., in a clique) and that state labels are unique, i.e., the output
of a process is sufficient to conclude its current internal state. Based on these
assumptions, we show how to synthesise a system that can be considered a larger
clique, where the additional processes can have a different implementation.

The additional processes will have an implementation L′ that is different from
that of the original processes. L′ reads the current input from the environment
and the outputs of processes in the original clique, uses this information (which
by assumption lets us conclude their current internal state) as well as knowledge
about the original implementation L to anticipate their next transition, and
moves to a state that has the same output as the majority of the next-states in
the clique.

To ensure that this will result in a correct system even under up to f Byzan-
tine nodes, we need to enforce an f-majority property in the original system:
in every round, the output chosen by the largest number of correct nodes is
picked by f more nodes than the second largest one.5 Then, even if the compu-
tation of L′ described above includes Byzantine nodes, its output will be equal to
that of the majority of original implementations L, and therefore the colourless
specification will still be satisfied.

If we are synthesising the original system, the f-majority property can be
directly encoded as an additional cardinality constraint over the outputs. This
constraint preserves satisfiability of the synthesis constraints, even for a given
state space.

To see this, assume that a given original system satisfies a colourless specifi-
cation, but does not have the f-majority property. Then we can transform it into
a system G′ which simulates G. At each step, processes in G′ simulate G for one
5 This is an extension of the argument for proving the exact number of Byzantine

failures that can be survived while solving consensus problems [38].

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 171

step, and check whether f -majority is achieved. If it is not, then we can (par-
tially) determinise the given system to obtain f-majority : for instance, nodes
can be grouped by output value, and state and output value of some nodes can
be replaced with ones from the largest group. The modified system still produces
valid runs thanks to the specification being colourless.

Theorem 2. If ϕ is a colourless specification, C is a fully informed clique and
(Lv)v∈V a set of implementations such that their composition G in C has the f-
majority property and G |= ϕ, then any extension of G with additional processes
L′ as described above will satisfy ϕ.

Cutoffs for Local Specifications in Regular Networks. We can also obtain
cutoffs for the setting that satisfies the following:

– the networks has a constant-degree – also called regular – where all nodes
have the same interface and implementation,

– local specifications: specifications of the form ∀i. Xt Gφ(i) (where φ(i) is a
Boolean formula over the current state of processes in a maximal distance of
r to a process i),

– a fixed number of Byzantine nodes f in a distance of r around any node, and
– a fixed stabilisation time t.

Theorem 3. Let C be a constant-degree network with a given interface for all
nodes, and such that all nodes have a maximal distance of r + t from a central
node v. If an implementation L satisfies a local specification ϕ(v) in C, then
L satisfies ∀i. ϕ(i) in any C ′ with the same degree, the same interface, and a
radius greater than r + t.

The cutoff follows from the fact that our specifications only require that we
enter the “legitimate states” specified by φ(i) within t steps, and never leave
them afterwards, and within these t steps only information from nodes with this
distance can enter the radius around i that φ(i) talks about. Because of full
symmetry in these systems, it is sufficient to require ϕ(v) instead of ∀i. ϕ(i).

Specifications that can be expressed as purely first-order formulae can be
rewritten as local specifications [9,49]. This suggests that local formulae are
expressive enough to be of interest: for instance, consensus is local despite k-set
agreement being non-local.6

6 Experimental Results

A preliminary implementation was written in OCaml, using Sickert’s formally
proven correct tool [50] to convert LTL specifications to automata, and de Moura
and Bjørner’s Z3 [42] as the backend SMT solver.

6 It is not sufficient to prove that k-set agreement is not expressible in FO. However, k-
set agreement – for any given k ≥ 2 – can easily be proven non-local by contradiction.

172 R. Bloem et al.

Experiments were run on a number of computers equipped with 64GiB of
memory and eight cores clocked at 2.6 GHz. Note that our solver is sequential
and does not take advantage of multicore machines.

We were able to reproduce the results from Dolev et al. [15] regarding syn-
chronous 2-counting with a single Byzantine adversary (f = 1). Each experi-
ment – for a fixed set of parameters – took at most one hour. As in previous
results [15], those solutions can be extended to any system of greater size while
keeping the number f of failures, the stabilisation time t and the local state size
s constants.

Moreover, we were able to synthesise a symmetric solution for 4-counting,
for 4 processes with 5 states each, and stabilisation time 10. This improves on
the solution suggested by Dolev et al. to simply duplicate a 2-counter to obtain
a 4-counter, which would result in an implementation with 6 local states and a
stabilisation time of at least 14 in this case. To our knowledge, this is the first
instance of a solution to n-counting (with n > 2) ever synthesised. This result
shows that our more general approach allows us to obtain even more efficient
implementations than that of Dolev et al., without the need to manually devise
a new encoding and argue about its correctness.

Class processes (n) local states (s) Total states Stabilisation time (t)

symmetric 4 3 12 7
5 3 15 6
6 3 18 3
7 2 21 8
8 2 16 4

general 4 4 16 5
5 3 15 4
6 2 12 6

Fig. 5. Synthesised algorithms for 2-counting with a single Byzantine failure

Attempts to replicate these results using directly a first-order model finder –
such as CVC3 [5] – or existing extensions of CEGIS [31] resulted either in timeout
(no result within 12h) or running out of memory.

Moreover, as mentioned in Sect. 3, we use a translation from LTL to Rabin
automata [50]: we compared that approach to encoding universal co-Büchi
automata obtained with ltl3ba [4] and observed a speedup from 25 % to 50 %
depending on the instance.

7 Conclusion

We have presented a method to automatically synthesise distributed systems
that are self-stabilising and resilient to Byzantine failures. We assume that the

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 173

systems are specified in LTL. Our results apply to finite network graphs and
extend to parameterised synthesis of processes on a graph of arbitrary size under
reasonable conditions. The approach follows the basic idea of Bounded Synthesis.
It constructs an SMT formula with two quantifier alternations that states that
a fault-tolerant implementation of a given size exists, and it is complete if a
bound on the size of the process implementation is given. We have presented a
CEGIS-style decision procedure to decide such formulas that is far more efficient
than existing approaches for the formulas we have encountered. Finally, we show
that we can efficiently synthesise a small solution for the 2-counter problem.

In this work, we only consider the synthesis of basic building blocks of dis-
tributed systems, modelled as labelled transition systems. To obtain actual
large-scale implementations, many additional layers of complexity need to be
addressed, and in practice there will be a trade-off between formality and
automation on the one hand, and scale or precision of the system model on the
other hand, as for example demonstrated in recent work of Hawbitzel et al. [28].

In the near future, we plan to extend our approach to more general timing
models and to study more general specifications for parameterised synthesis. In
particular, we want to extend our approach to the system model of the PSync
language of Dragoi et al. [18], which enables reasoning about asynchronous sys-
tems by introducing a notion of “communication rounds”, and will make our
approach applicable to a much larger class of problems. Furthermore, we will
look into optimisations of the encoding, as described by Khalimov et al. [32,33]
for parameterised synthesis of systems without fault-tolerance.

Acknowledgements. We thank Igor Konnov, Ulrich Schmid, Josef Widder, and the
late Helmut Veith for interesting discussions on formal methods for distributed systems.
We also thank the anonymous reviewers for their detailed and insightful comments.

This work was supported by the Austrian Science Fund (FWF) through projects
LogiCS (W1255-N23), QUAINT (I774-N23) and RiSE (S11406-N23), and by the
German Research Foundation (DFG) as part of the Transregional Collaborative
Research Center AVACS (SFB/TR 14) and through project ASDPS (JA 2357/2-1).

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A., et al.: Syntax-guided synthesis.
In: Formal Methods in Computer-Aided Design (FMCAD), 2013, pp. 1–8. IEEE
(2013)

2. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model
checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014).
http://doai.io/10.1007/978-3-642-54013-4 15

3. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols
with fairness. In: Jobstmann, B., et al. (eds.) VMCAI 2016. LNCS, vol. 9583, pp.
476–494. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5 23

http://doai.io/10.1007/978-3-642-54013-4_15
http://dx.doi.org/10.1007/978-3-662-49122-5_23

174 R. Bloem et al.

4. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata
translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012).
http://doai.io/10.1007/978-3-642-28756-5 8

5. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

6. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T., Hofferek, G., Jobstmann,
B., Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Informatica
51(3), 193–220 (2014). http://doai.io/10.1007/s00236-013-0191-5

7. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Wid-
der, J.: Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015).
http://doai.io/10.2200/S00658ED1V01Y201508DCT013

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthe-
sis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012).
http://doai.io/10.1016/j.jcss.2011.08.007

9. Bollig, B.: Logic for communicating automata with parameterized topology. In:
CSL-LICS, pp. 18:1–18:10. ACM (2014)

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). http://doai.io/10.1007/978-3-642-18275-4 7

11. Canetti, R., Damgrd, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001)

12. Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient
synthesis for concurrency by semantics-preserving transformations. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg
(2013). http://doai.io/10.1007/978-3-642-39799-8 68

13. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

14. Dimitrova, R., Finkbeiner, B.: Synthesis of fault-tolerant distributed systems. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer,
Heidelberg (2009). http://doai.io/10.1007/978-3-642-04761-9 24

15. Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Syn-
chronous counting and computational algorithm design. In: Higashino, T.,
Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.)
SSS 2013. LNCS, vol. 8255, pp. 237–250. Springer, Heidelberg (2013).
http://doai.io/10.1007/978-3-319-03089-0 17

16. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
17. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

Byzantine faults. J. ACM (JACM) 51(5), 780–799 (2004)
18. Dragoi, C., Henzinger, T.A., Zufferey, D.: PSync: a partially synchronous language

for fault-tolerant distributed algorithms. In: POPL, pp. 400–415. ACM (2016).
http://doai.io/10.1145/2837614.2837650

19. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003). http://doai.io/10.1142/S0129054103001881

20. Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 236–
254. Springer, Berlin Heidelberg (2000)

21. Faghih, F., Bonakdarpour, B.: SMT-based synthesis of distributed self-stabilizing
systems. TAAS 10(3), 21 (2015). http://doai.io/10.1145/2767133

http://doai.io/10.1007/978-3-642-28756-5_8
http://doai.io/10.1007/s00236-013-0191-5
http://doai.io/10.2200/S00658ED1V01Y201508DCT013
http://doai.io/10.1016/j.jcss.2011.08.007
http://doai.io/10.1007/978-3-642-18275-4_7
http://doai.io/10.1007/978-3-642-39799-8_68
http://doai.io/10.1007/978-3-642-04761-9_24
http://doai.io/10.1007/978-3-319-03089-0_17
http://doai.io/10.1145/2837614.2837650
http://doai.io/10.1142/S0129054103001881
http://doai.io/10.1145/2767133

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 175

22. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)

23. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: (LICS 2005), pp.
321–330. IEEE Computer Society (2005). http://doai.io/10.1109/LICS.2005.53

24. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013).
http://doai.io/10.1007/s10009-012-0228-z

25. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed
consensus with one faulty process. J. ACM 32(2), 374–382 (1985).
http://doai.io/10.1145/3149.214121

26. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.:
DPLL(T): fast decision procedures. In: Alur, R., Peled, D.A. (eds.)
CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004).
http://doai.io/10.1007/978-3-540-27813-9 14

27. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

28. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: Ironfleet: proving practical distributed systems correct. In:
SOSP, pp. 1–17. ACM (2015)

29. Jacobs, S.: Incremental instance generation in local reasoning. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 368–382. Springer, Heidelberg
(2009)

30. Jacobs, S., Bloem, R.: Parameterized synthesis. Log. Methods Comput. Sci. 10,
1–29 (2014). http://arxiv.org/abs/1401.3588

31. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

32. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013)

33. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 108–127. Springer, Heidelberg (2013)

34. Köksal, A.S., Pu, Y., Srivastava, S., Bod́ık, R., Fisher, J., Piterman, N.: Synthesis
of biological models from mutation experiments. In: POPL, pp. 469–482. ACM
(2013)

35. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: para-
meterized model checking of threshold-based distributed algorithms. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Hei-
delberg (2015). http://doai.io/10.1007/978-3-319-21690-4 6

36. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthe-
sis for linear arithmetic and sets. STTT 15(5–6), 455–474 (2013).
http://doai.io/10.1007/s10009-011-0217-7

37. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS 2005, pp.
531–542. IEEE Computer Society (2005). http://doai.io/10.1109/SFCS.2005.66

38. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982). http://doai.io/10.1145/357172.357176

39. Lamport, L.: Brief announcement: leaderless Byzantine paxos. In: Peleg, D. (ed.)
Distributed Computing. LNCS, vol. 6950, pp. 141–142. Springer, Heidelberg (2011)

40. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002). http://doai.io/10.1007/3-540-45657-0 19

http://doai.io/10.1109/LICS.2005.53
http://doai.io/10.1007/s10009-012-0228-z
http://doai.io/10.1145/3149.214121
http://doai.io/10.1007/978-3-540-27813-9_14
http://arxiv.org/abs/1401.3588
http://doai.io/10.1007/978-3-319-21690-4_6
http://doai.io/10.1007/s10009-011-0217-7
http://doai.io/10.1109/SFCS.2005.66
http://doai.io/10.1145/357172.357176
http://doai.io/10.1007/3-540-45657-0_19

176 R. Bloem et al.

41. de Moura, L., Bjørner, N.S.: Efficient e-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

42. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). http://doai.io/10.1007/978-3-540-78800-3 24

43. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

44. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
2013 IEEE 54th Annual Symposium on Foundations of Computer Science 1990,
vol. 2, pp. 746–757 (1990)

45. Qadir, J., Hasan, O.: Applying formal methods to networking: Theory, techniques
and applications. CoRR abs/1311.4303 (2013). http://arxiv.org/abs/1311.4303

46. Saissi, H., Bokor, P., Muftuoglu, C.A., Suri, N., Serafini, M.: Efficient verification of
distributed protocols using stateful model checking. In: SRDS, pp. 133–142. IEEE
(2013). http://doai.io/10.1109/SRDS.2013.22

47. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: the
topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000).
http://doai.io/10.1137/S0097539796307698

48. Schewe, S.: Distributed synthesis is simply undecidable. Inf. Process. Lett. 114(4),
203–207 (2014). http://doai.io/10.1016/j.ipl.2013.11.012

49. Schwentick, T., Barthelmann, K.: Local norms forms for first-order logic with appli-
cations to games and automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998.
LNCS, vol. 1373, pp. 444–454. Springer, Heidelberg (1998)

50. Sickert, S.: Converting linear temporal logic to deterministic (generalised) rabin
automata. Archive of Formal Proofs 2015 (2015)

51. Solar Lezama, A.: Program synthesis by sketching. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley (2008). http://www.eecs.berkeley.edu/
Pubs/TechRpts/2008/EECS-2008-177.html

52. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS 2006, pp. 404–415. ACM (2006).
http://doai.io/10.1145/1168857.1168907

53. Tixeuil, S.: Self-stabilizing algorithms. In: Algorithms and Theory of Computation
Handbook. Applied Algorithms and Data Structures, 2nd edn, pp. 26.1–26.45.
Chapman & Hall/CRC, CRC Press, Taylor & Francis Group (2009)

54. Vechev, M., Yahav, E., Yorsh, G.: Inferring synchronization under lim-
ited observability. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 139–154. Springer, Heidelberg (2009).
http://doai.io/10.1007/978-3-642-00768-2 13

http://doai.io/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1311.4303
http://doai.io/10.1109/SRDS.2013.22
http://doai.io/10.1137/S0097539796307698
http://doai.io/10.1016/j.ipl.2013.11.012
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://doai.io/10.1145/1168857.1168907
http://doai.io/10.1007/978-3-642-00768-2_13

	Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems
	1 Introduction
	2 System and Failure Model, Specifications
	2.1 System Model
	2.2 Failure Model
	2.3 Formal Specifications

	3 Bounded Synthesis of Resilient Systems
	4 Incremental Synthesis Algorithm
	4.1 Previous Work
	4.2 Extension to First-Order Model Extraction
	4.3 Related Work

	5 Extension to Networks of Unbounded Size
	6 Experimental Results
	7 Conclusion
	References

