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Abstract. We define the GXW fragment of linear temporal logic
(LTL ) as the basis for synthesizing embedded control software for safety-
critical applications. Since GXW includes the use of a weak-until oper-
ator we are able to specify a number of diverse programmable logic
control (PLC ) problems, which we have compiled from industrial train-
ing sets. For GXW controller specifications, we develop a novel approach
for synthesizing a set of synchronously communicating actor-based con-
trollers. This synthesis algorithm proceeds by means of recursing over
the structure of GXW specifications, and generates a set of dedicated
and synchronously communicating sub-controllers according to the for-
mula structure. In a subsequent step, 2QBF constraint solving identifies
and tries to resolve potential conflicts between individual GXW specifica-
tions. This structural approach to GXW synthesis supports traceability
between requirements and the generated control code as mandated by
certification regimes for safety-critical software. Our experimental results
suggest that GXW synthesis scales well to industrial-sized control syn-
thesis problems with 20 input and output ports and beyond.

1 Introduction

Embedded control software in the manufacturing and processing industries is
usually developed using specialized programming languages such as ladder dia-
grams or other IEC 61131-3 defined languages. Programming in these rather
low-level languages is not only error-prone but also time- and resource-intensive.
Therefore we are addressing the problem of correct-by-construction and auto-
mated generation of embedded control software from high-level requirements,
which are expressed in a suitable fragment of linear temporal logic.

Moreover, an explicit correspondence between the high-level requirements
and the generated control code is essential, since embedded control software
is usually an integral part of safety-critical systems such as supervisory con-
trol and data acquisition (SCADA ) systems for controlling critical machinery or
infrastructure. In particular current industrial standards for safety-related devel-
opment such as IEC 61508, DO 178C for avionics, and ISO 26262 for automotive
applications mandate traceability between the control code and it requirements.
Controllers generated by state-of-the-art LTL synthesis algorithms and tools such
as generalized reactivity(1) (GR(1) ) [15,25] or bounded LTL synthesis [8,11,28],
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however, usually do not explicitly support such traceability requirements. For
example, the GR(1) synthesis tool Anzu generates circuit descriptions in Verilog
from BDDs [15].

We are therefore proposing a novel approach for synthesizing structured con-
trol software. In essence, the control code is generated by means of structural
recursion on the given LTL formulas. Therefore, the structure of the control
code corresponds closely to the syntactic structure of the given requirements,
and there is a direct correspondence between controller components and sub-
formulas of the specification.

In a first step towards this goal, we identify a fragment of LTL for specify-
ing the input-output behavior of typical embedded control components. Besides
the specification of input assumptions, invariance conditions on outputs, and
transition-like reactions of the form G(input — X'output), this fragment also
contains specifications of reactions of the form G (input — X" (output W release)),
where input is an LTL formula whose validity is determined by the next 4 input
valuations. The latter reaction formula states that if there is a temporal input
event satisfying the constraint input, then the output constraint should hold on
output events until there is a release event (or output always holds). The opera-
tor G is the universal path quantifier, X’ abbreviates i consecutive next-steps,
W denotes the weak until temporal operator, the constraint output contains no
temporal operator, and the subformula release may contain certain numbers of
consecutive next-steps but no other temporal operators. The resulting fragment
of LTL is called GXW. So far we have successfully modelled more than 70 different
embedded control scenarios in GXW. The main source for this set of benchmark-
ing problems are publicly available collections of industrial training materials for
PLCs (including CODESYS 3.0 and AC500) [2,16,24]. The proposed GXW frag-
ment of LTL is also similar to established requirements templates for specifying
embedded control software in the aerospace domain, such as EARS [23].

Previous work on LTL synthesis (e.g., [5,7,8,10,11,14,15,25,28,31]) usually
generates gate-level descriptions for the synthesized control strategies. In con-
trast, we generate controller in an actor language with high-level behavioral
constructs and synchronous dataflow communication between connected actors.
This choice of generating structured controllers is motivated by current practice
of programming controllers using, say, Matlab Simulink [4], continuous function
charts (IEC 61131-3), and Ptolemy II [12], which also supports synchronous
dataflow (SDF) models [19]. Notice that the usual notions of LTL synthesis also
apply to synthesis for SDF , since the composition of actors in SDF may also be
viewed as Mealy machines with synchronous cycles [30].

Synthesis of structured controllers from GXW specifications proceeds in two
subsequent phases. In the first phase, the procedure recurses on the structure of
the given GXW formulas for generating dedicated actors for monitoring inputs
events, for generating corresponding control events, and for wiring these actors
according to the structure of the given GXW formulas. In the second phase,
appropriate values for unknown parameters are synthesized in order to realize
the conjunction of all given GXW specifications. Here we use satisfiability check-
ing for quantified Boolean formula (2QBF) for examining if there exists such
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conflicts between multiple GXW specifications. More precisely, existential vari-
ables of generated 2QBF problems capture the remaining design freedom when
an output variable is not constrained by any trigger of low-level events. We
demonstrate that controller synthesis for the GXW fragment is in PSPACE as
compared to the 2EXPTIME -completeness result of full-fledged LTL [27]. Under
some further reasonable syntactic restrictions on the GXW fragment we show
that synthesis is in coNP .

An implementation of our GXW structural synthesis algorithm and applica-
tion to our benchmark studies demonstrates a substantial speed-up compared
to existing LTL synthesis tools. Moreover, the structure of the generated control
code in SDF follows the structure of the given GXW specifications, and is more
compact and, arguably, also more readable and understandable than commonly
used gate-level representations for synthesized control strategies.

The paper is structured as follows. We introduce in Sect.2 some basic nota-
tion for LTL synthesis, a definition of the GXW fragment of LTL and SDF actor
systems together with the problem of actor-based LTL synthesis under GXW frag-
ment. Section 3 illustrates GXW and actor-based control for such specifications
by means of an example. Section 4 includes the main technical contributions and
describes algorithmic workflow for generating structured controllers from GXW,
together with soundness and complexity results for GXW synthesis. A summary
of our experimental results is provided in Sect.5, and a comparison of GXW
synthesis with closely related work on LTL synthesis is included in Sect. 6. The
paper closes with concluding remarks in Sect. 7. Due to space limits, some details
are moved to an extended report [1].

2 Problem Formulation

We present basic concepts and notations of LTL synthesis, and we define the
GXW fragment of LTL together with the problem of synthesizing actor-based
synchronous dataflow controllers for GXW.

2.1 LTL Synthesis

Given two disjoint sets of Boolean variables V;,, and V., the linear temporal logic
(LTL) formulae over 2VinYVout is the smallest set such that (1) v € 2VinUVeut is an
LTL formula, (2) if ¢1, ¢ are LTL-formulae, then so are =gy, —¢2, &1V, d1 Ada,
@1 — ¢o, and (3) if @1, ¢ are LTL-formulae, then so are Gy, X1, ¢p1Ugps. Given
an w-word o, define o (i) to be the i-th element in o, and define o to be the suffix
w-word of o obtained by truncating o(0)...o(i — 1). The satisfaction relation
o0 E ¢ between an w-word o and an LTL formula ¢ is defined in the usual way.
The weak until operator, denoted W, is similar to the until operator but the
stop condition is not required to occur; therefore ¢; W¢s is simply defined as
(01 Ugs) V G¢. Also, we use the abbreviation X'¢ to abbreviate i consecutive
X operators before ¢.
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Table 1. Patterns defined in GXW

specifications

Table 2. Specification patterns
ID | Meaning Pattern and corresponding skeleton speci-
P1 | Initial-until | 0out W ¢, fication.

P2 | Trigger-until | G(¢%,, —

X (0out W (wfn\/ Pattern ID | High-level .control specification
) P1 output W input
P3| If-then G(¢!, — X' 0out) P2 G(!nput — (output W release))
P4 | Iff G(¢:, = X'0out) P3 G (input — output)
P5 | Invariance | G(¢Y,;)
P6 | Assumption | G(¢7)
A deterministic Mealy machine is a finite automaton C = (Q,qo, 2",

2Vout §), where @ is set of (Boolean) state variables (thus 2¢ is the set of
states), qo € 29 is the initial state, 2¥i» and 2Veu¢ are sets of all input and
output assignments defined by two disjoint sets of variables V;, and V.
§ = 29 x 2Vin — 2Veut x 2@ is the transition function that takes (1) a state
g € 29 and (2) input assignment v;, € 2¥i», and returns (1) an output assign-
ment v,,; € 2Yut and (2) the successor state ¢’ € 29. Let oy and &, be
the projection of § which considers only output assignments and only successor
states. Given a sequence ag . . . ar, where Vi = 0...k, a; € 2V let 6%(qo, a0 - .. ax,)
abbreviate the output state derived by executing ag .. .ay as an input sequence
on the Mealy machine.

Given a set of input and output Boolean variables V;,, and V., together
with an LTL formula ¢ on V;, and V,,; the LTL synthesis problem asks the
existence of a controller as a deterministic Mealy machine Cy4 such that, for every
input sequence a = agay ..., where a; € 2Vi»: (1) given the prefix ay produce
bo = Jout(qo, ao), (2) given the prefix aga; produce by = Jout(05(qo, @0), a1), (3)
given the prefix ag . ..apag 1, produce bpi1 = Jous(%(qo, a0 ... ax),ars1), and
(4) the produced output sequence b = byby . . . ensures that the word o = 0109 . . .,
where o; = a;b; € 2VinVVour g E ¢.

2.2 GXW Synthesis

We formally define the GXW fragment of LTL . Let ¢, ©?, ' be LTL formulae over
input variables V;;,, and output variables V,,:, where all formulas are (without
loss of generality) assumed to be in disjunctive normal form (DNF), and each
literal is of form X7 v or =X? v with 0 < j <iandv € V;;,UV,,;. Clauses in DNF
are also called clause formulae. Moreover, a formula ¢!, is restricted to contain
only input variables in V;,,, and similarly, ¢, contains only output variables in
Vout. Finally, 0o+ denotes either vy, Or =04, Where vy, is an output variable.

For given input variables V;,, and output variables V¢, a GXW formula is an
LTL formula of one of the forms (P1)-(P6) as specified in Table 1. For example,
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GXW formulas of the form (P2) stop locking geu: as soon as (¢?, V p9,,) holds.
GXW specifications are of the form

0 — /\ Mm s (1)

m=1...k

where ¢ matches the GXW pattern (P6), and 7,, matches one of the patterns (P1)
through (P5) in Table 1. Furthermore, the notation “.” is used for projecting sub-
formulas from 7,,, when it satisfies a given type. For example, assuming that
sub-specification 7, is of pattern P3, i.e., it matches G( ;n — Xigout), Nm - Oout
specifies the matching subformula for g,,:. Notice also that GXW specifications,
despite including the W operator, have the finite model property, since the small-
est number of unrolling steps for disproving the existence of an implementation
is linear with respect to the structure of the given formula (cmp. Sect. 4.4).

Instead of directly synthesizing a Mealy machine as in standard LTL synthe-
sis, we are considering here the generation of actor-based controllers using the
computational model of synchronous dataflow (SDF ) without feedback loops. An
actor-based controller is a tuple S = (Vin, Vout, Act, 7), where V;,, and V,,; are
disjoint sets of external input and output ports. Each port is a variable which
may be assigned a Boolean value or undefined if no such value is available at
the port. In addition, actors A € Act may be associated with internal input
ports U;y, and output ports Uy, (all named apart), which are also three-valued.
The projection A.u denotes the port u of A. An actor A € Act defines Mealy
machine C whose input and output assignments are based on 2Yi» and 2Vout,
i.e., the output update function of C sets each output port to true or false , when
each input port has value in {true, false}. Lastly, A% denotes a copy of A which
is indexed by .

Let Act.U;,, and Act.U,,; be the set of all internal input and output ports
for Act. The wiring 7 C (Vin U Act.Uout) X (Vour U Act.Uy,) connects one
(external, internal) input port to one or more (external, internal) output ports.
For convenience, denote the wiring from port out of A; to port in of A as
(Aj.out --» As.in). All ports are supposed to be connected, and every internal
input port and every external output port is only connected to one wire (thus a
port does not receive data from two different sources). Also, we do not consider
actor systems with feedback loops here (therefore no cycles such as the one in
Fig. 1(c)), since systems without feedback loops can be statically scheduled [18].

Evaluation cycles are triggered externally under the semantics of synchronous
dataflow. In each such cycle, the data received at the external input ports is
processed and corresponding values are transferred to external output ports.
Notice also that the composition of actors under SDF acts cycle-wise as a Mealy
machine [30]. We illustrate the operational semantics of actor-based systems
under SDF by means of the example in Fig.1(a), with input ports inl, in2,
output port out, and actors fi, fa, f3, f1 (see also Fig. 1(b))!. Now, assume that

! The formal operational semantics, as it is standardized notation from SDF | is rele-
gated to [1].
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Fig. 1. An actor system allowing func- Fig.2. Control of automatic door

tional composition and corresponding switch.
actors fi1 (a)(b), feedback loops such
as (c) are not considered here.

in the first cycle, the input ports inl and in2 receive the value (false, true) and
in the second cycle the value (false, true). The false value in inl is copied to f.i.
As f1 is initially at state where v = false, it creates the output value true (places
it to f1.0) and changes its internal state to v = true. The value true from fi.0
is then transferred to fy.i; and fs.i;. However, at this stage one cannot evaluate
fo or f4, as the is port is not yet filled with a value. f3 receives the value from
in2 and produces fs3.0 to false. Continuing this process, at the end of first cycle
out is set to true, while in the second cycle, out is set to false.

As we do not consider feedback loops between actors in Act, from input read
to output write, one can, using the enumeration method as exemplified above,
create a static linear list = of size |Act| 4 ||, where each element &;,q € = is
either in Act or in 7, for specifying the linear order (from the partial order) how
data is transferred between wires and actors. Such a total order = is also called
an evaluation ordering of the actor system S.

One may wrap any Mealy machine C as an actor A(C) by simply creating
corresponding ports in A4(C) and by setting the underlying Mealy machine of
A(C) to C. Therefore, actor-based controllers may be synthesized for a given LTL
specification ¢ by first synthesizing a Mealy machine C realizing ¢, followed by
the wrapping C as A(C), creating external 1/0 ports, and connecting external
I/O ports with A(C).

Given a GXW specification ¢ over the input variables V;;,, and output variables
Viout, the problem of GXW synthesis is to generate an actor-based SDF controller
S realizing ¢. As one can always synthesize a Mealy machine followed by wrap-
ping it to an actor-based controller, GXW synthesis has the same complexity for
Mealy machine and for actor-based controllers.
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3 Example

We exemplify the use of GXW specifications and actor-based synthesis for these
kinds of specification by means of an automatic sliding door?, which is visualized
in Fig. 2. Inputs and outputs are as follows: in0 is true when someone enters the
sensing field; inl1 denotes a closing limit switch - it is true when two doors touch
each other; in2 denotes an opening limit switch - it is true when the door reaches
the end; out0 denotes the opening motor - when it is set to true the motor
rotates clockwise, thereby triggering the door opening action; and outl denotes
closing motor - when it is set to true the motor rotates counter-clockwise, thereby
triggering the door closing action. Finally, the triggering of a timer t0 is modeled
by means a (controllable) output variable tOstart and the expiration of a timer is
modeled using an (uncontrollable) input variable tOexpire.
Before stating the formal GXW specification for the example we introduce

some mnemonics.

— entering! := =in0 A X in0 — lim_reached! := —in2 A Xin2

— expired® := —tOexpire A (XtOexpire) — closing_stopped := inl Vv in0 Vv

ou
The superscripts denote the maximum number of consecutive next-steps.
Now the automatic sliding door controller is formalized in GXW as follows.

S1: G(entering! — X (out0 W in2)) S5: G(lim_reached® < X(tOstart))
S2: G (expired’ — X(outl W closing_stopped)) S6: G(in0 — —outl)
S3: —out0 W entering' S7: G(—(out0 A outl))

S4: G(in2 — —out0)

In particular, formula (S1) expresses the requirement that the opening of the
door should continue (out0 = true) until the limit is reached (in2), and formulas
(S3) and (S7) specify the expected initial behavior of the automatic sliding door.
The GXW specifications for the sliding door example are classified as follows:
formulas (S1), (S2) are of type (P2), (S3) is of type (P1), (S4), (S6) is of type
(P3), (S5) is of type (P4), and (S7) of type (P5) according to Table 1.

Figure 3 visualizes an actor-based automatic sliding door controller which
realizes the GXW specification (S1)-(S7). It is constructed from a small number
of building blocks, which are also described in Fig. 3. Monitor actors, for example,
are used for monitoring when the entering, expired, and lim_reached constraints
are fulfilled, the OR actor is introduced because of the closing_stopped release
condition in specification (S1), and the two copies of the trigger-until actors are
introduced because of the (P2) shape of the specifications (S1) and (S2). The
input and output ports of the trigger-until actor are in accordance with the
namings for (P2) in Table2. Resolution actors are used for resolving potential
conflicts between individual GXW formulas in a specification. These actors are
parameterized with respect to a Boolean A, which is the output of the resolution
actor in case all inputs of this actor may be in {true, false} (this set is denoted by
the shorthand “~” in Fig. 3). The presented algorithm sets up a 2QBF problem for

2 The automatic door example is adapted from http://ple-scada-dcs.blogspot.com/
2014/08/basic-ple-ladder-programming-training_20.html.
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Monitor (2) IfTB®) Resout1
N —tOexpire A X (tOexpire) A := false
(output false for 1st cycle)

TrUB ()

A\

OR

Monitor 3)(1)
—in0 A X(in0)
(output false for 1st cycle)

» outo
Res
Monitor 6 - tOstart
—in2 A X(in2) A = false

(output “-” for 1st cycle)

(a> ﬁ Monitoring —in A X(in), 1st output to be false J

input
:i"put TrUB /* Trigger-Until Block */ l
release  State variable: boolean lock := false; output

State variable: mem := u output

/* domain {u, true, false}; to be re-encoded to 2 bool */

Transition function (high-level language)

Transition function (high-level language) /* Generated by Algorithm 1 in linear time */

{input } output := false

if(lock & !release) {output := true}
else if(release) {output := —, lock := false}
else if(input & !release) {output := true; lock := true}

else {output := —}/* linput & !release & !lock */

{input } output := false,

{linput }
output := false'

X linput } output := false
{linput V release } {!release} {tinput } P @,

output = — output := true {linput’} output := false

output
’ {release} ‘) inpu* IfTB /* If-then block */ *

Transition function

{input } output := true

InUB /* Init-Until Block */

input | State variable boolean finish:= false; opitput

{input & !release} output := true

if(input ) {output := true}

Transition function(high-level la
clse {output — — ansition function(high-level language)

input, Res (with parameter A) if(finish) {output:= —}

loutput Cer .
Lo . else if(input){output := -, finish:= true}
input, The r(.‘,so.lu.non is .bascd on the :Lss?lrnptmn » input outputﬁ else {output := true}
O 2| that it is impossible to have two inputs
input where one is true and the other is false. Transition function {linput } output := true  output := —

if (J\, input, = -) {output := A} if (input = ) {output := — } o ) )
if (Ji : input; = false) {output := false} if (input = true) {output := false}] {input } @
if (3i : input; = true) {output := true} output 1= —

if (input = false) {output:=true}

(b)

Fig. 3. Actor-based controller realizing automatic sliding door.

synthesizing possible values for these parameters. Because of the constraint (S7)
on possible outputs out0 and outl, the parameter A for the resolution actor for
output out0, for example, needs to be set to A:=false . Figure 3 also includes the
operational behavior of selected actors in terms of high-level transitions and/or
Mealy machines. The internal state and behavior for monitor actors, however, is
synthesized, in linear time, from a given GXW constraint on inputs (see Sect. 4).

Finally, the structural correspondence of the actor-based controller in Fig. 3
with the given GXW specification of the sliding door example is being made
explicit by superscripting actors with index (i) whenever the actor has been
introduced due to the i-th specification.
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4 Structural Synthesis

We now describe the algorithmic details for generating structured controllers
from the GXW specifications of the form ¢ — A, _; . 7m. The automated sliding
door is used as running example for illustrating the result of each step.

First, our algorithm prepares I/O ports, iterates through every formula n,,
for creating high-level controllers (Step 1) based on the appropriate GXW pat-
tern. For specifications of types P1 to P3, Table2 lists the corresponding LTL
specification (as high-level control objective), where input and release are input
Boolean variables, output is an output Boolean variable.

Then, for each GXW formula, the algorithm constructs actors and wirings for
monitoring low-level events by mimicking the DNF formula structure (Steps2
and 3). On the structural level of clause formulas in DNF, the algorithm con-
structs corresponding controllers in linear time (Algorithm 1). Finally, the algo-
rithm applies 2QBF satisfiability checking (and synthesis of parameters for res-
olution actors) for guaranteeing nonexistence of potential conflicts between dif-
ferent formulas in the GXW specifications (Step4).

4.1 High-Level Control Specifications and Resolution Actors

The initial structural recursion over GXW formulas is described in Step 1.

Step 1.1 - Controller for high-level control objectives. Line 1 associates the three
high-level controller actors InUB, TrUB, IfTB with their corresponding pat-
tern identifier. Implementations for the actors InUB, TrUB, IfTB are listed in
Fig. 3(b). For example, the actor IfTB is used for realizing G(input — output) in
Table 2. When input equals false, the output produced by this actor equals “-”.
This symbol is used as syntactic sugar for the set {true,false}. Therefore the
output is unconstrained, that is, it is feasible for output to be either true or
false. The value “-” is transferred in the dataflow, thereby allowing the delay of
decisions when considering multiple specifications influencing the same output
variable.

Step 1.2 - External 1/0 ports. Line 2 and 3 are producing external input and
output port for each input variable v;, € V;,, and output variable vyu: € Vout-

Step 1.3 - High-level control controller instantiation. Lines 4 and 5 iterate
through each specification 7, to find the corresponding pattern (using Detect-
Pattern). Based on the corresponding type, line 6 creates a high-level controller
by copying the content stored in the map. If there exists a specification which
does not match one of the patterns, immediately reject (line 7). Notice that pat-
tern P4 is handled separately in Step 3. For the door example, the controller in
Fig. 3(a) contains the two copies TrUB® and TrUB® of the trigger-until actor
TrU B; the subscripts of these copies are tracing the indices of the originating
formulas (S1) and (S2).



104 C.-H. Cheng et al.

Step 1. Initiate external I/O ports, high-level controller and resolution
controllers
Input : LTL specification ¢ = 0 — A,,_; 1 7Im, input and output variables

‘/i'rn Vout
Output: Actor-based (partial) ctrl implementation S = (Vin, Vout, Act, T),

map,,;

1 let map,,;crn := {P1 — InUB, P2 — TrUB, P3 — IfTB}

2 Vin ::{|vm € Vin}

3 Vout = { | Vout € Vout}

4 foreach n,,, m=1...k do

5 if (p:= DetectPattern(n,,)) € {P1, P2, P3} then

6 ‘ Create actor A™) from A := Map,qrern-2et(p), and add to S;

7 else if (p := DetectPattern(n,,)) &€ {P4, P5, P6} then return error ;

8 let map,,, := NewEmptyMap();

9 foreach vout € Vour do map,,,.put(vout, NewEmptyList()); ;

10 foreach n,, m=1...k do

11 ‘ map,;-get(vout ).add(m), where voy: is the output variable used in 7p,.00ut;

12 foreach v,y € Vour do Add actor Res,,,,, :=

CreateResActor(map,,,,,.get(vout).size()) to Act ;
13 foreach n,,, m=1...k do

14 let v,y be the variable used in 7 .00ut, ind := map,,,,.get(vout).indexOf(m);

15 if —wour equals Tm.0out then // negation is used in literal

16 Create a negation actor (m) and add it to Act;

17 7 =7 U {(A™ output --» (m).input)7 (<m>.output _—
Resvom.inputind)};

18 else 7:=7U{(A"™ output --» Resy,,, -inputing)} ;

19 foreach vout € Vour do 7 := 7 U {(Resu,,,-output -=» [vout )} ;

Step 1.4 - Resolution Actors. This step is to consider all sub-specifications that
influence the same output variable v,,:. Line 9 to 11 adds, for each specification
Nm USING Vout, its index m maintained by map,,;.get(vout). E.g., for the door
example, specifications S1, S3 and S4 all output out0. Therefore after executing
line 10 and 11, we have map,,,.get(out0)={1,3,4}, meaning that for variable
out0, the value is influenced by S1, S3 and S4.

For each output variable vy, line 12 creates one Resolution Actor Res,,,,
which contains one parameter equaling the number of specifications using v,
in goyut- Here we make it a simple memoryless controller as shown in Fig. 3(b)
- Res,,,, outputs true when one of its inputs is true, outputs false when one
of its inputs is false, and outputs A (which is currently an unknown value to
be synthesized later) when all inputs are “~”. The number of input pins is
decided by calling the map. E.g., for Resgytg in Fig.3(a), three inputs are
needed because map,,;.get(out0).size()=3. The output of the high-level controller
A(™) is connected to the input of Res,,,,. When negation is needed due to the
negation symbol in g,y (line 15), one introduces a negation actor which
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Step 2. Synthesize monitoring controllers (for pattern P1, P2, P3)

IHPUt : (b =0 — /\m:l.“k Nm, ‘/iny Vout7 S = (ku Vouta ACta T) from Step 1.
Output: (partial) controller S = (Vin, Vout, Act, 7) by adding more elements
1 foreach n,,, m=1...k do

10

11
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p := DetectPattern(nm);

if p € {P1, P2, P3} then // Work on subformula ‘‘input’’ of 7m,
defined by ¢!,

Add an OR-gate actor OR@H with size(nm.4%,) inputs to Act;

foreach clause formula x%, from DNF of nm.¢%, do
Add A(C) to Act, where C := Syn(G(x}, < X'out) A \L_ X*—out,
In(xin), {out });
foreach vin € In(x;,) do 7 := 17U {([vin |-+ A(C).vin)} ;
7:=717U{(A(C).out --» OR¢§TL'in|nde><(x§n7¢§n))};

T:=7U {(OR@n out ——» A™) input) };

if p € {P2} then // Work on subformula ‘‘release ’’ of 7,,, defined

by @, V Pout _

Add an OR-gate actor OR R with size(1m. (¢, V pou:)) inputs to

Act;

foreach clause formula X%, from DNF np,. go;n do

Add A(C) to Act, where C := Syn(G(x!, «» X"out) A /\h ! X*-out,

In(x,), {out });

foreach v;, € In(x},) do 7:=71U {( --> A(C)win)} ;

if h =0 then Add (A(C).out --» OR e N ndex(x

Pin vmVPm>)
to T
else
Add A(Ce, ) to Act, where Co,, := CreateThetaCtrl(h);
Ti=71U {(ORMH .out --» A(Co, ).set), (A(C).out --»

A(Ce,)-in), (A(Ce, ).out --» OR ;

P VPd e m|ndeX(X§n,v{angm))};
foreach clause formula xS,; from DNF of m.p0: do

Add an AND-gate actor AND, .o . with size(x0,.) inputs to Act;

foreach literal wou: of X%, do

let vout be the variable used in woyt;

if wout equals —voyu: then // negation is used in literal
Create R ) and add to Act, if not exists;

Svout

Add (Resy,,,-output --»[ =], .input) to 7, if not exists;
Yout

Add ([2]g,,, -output —— AND,o .iNjndex(,,, 10,
else 7:=7U {Resvout output --» AND, 0
T =T U {ANDXO OUt -2 OR‘P{H\/pou InlndeX(xo1Lt,(p¥n\/pgut)
7:=7U{OR -out > A release};

>) to T;

.in 5
XSt |ndeX(wom,x2ut)} ’

I vl
PinVPo
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negates A output when A(™ input is true or false (line 16, 17). To ensure
that connections are wired appropriately, map,,, is used such that the number
“ind” records the precise input port of the Resyy,; (line 14). Consider again the
door example. Due to the maintained list {1,3, 4}, TrUBW output is connected
to Res,,,,-inputy, i.e., the first input pin of Res,,,,. Also, as —out0 is used in
$3 and 4, the wiring from InUB® and IfTB® to Resgyo in Fig.3(a) has a
negation actor in between.

Lastly, line 19 connects the output port of a resolution actor to the corre-
sponding external output port. If Res,,,, receives simultaneously true and false
from two of its input ports, then Res,,,.output needs to be simultaneously true
and false. These kinds of situations are causing unrealizability of GXW specifica-
tion, and Step4 is used for detecting these kinds of inconsistencies.

4.2 Monitors and Phase Adjustment Actors

The second step of the algorithm synthesizes controllers for monitoring the
appearance of an event matching the subformula, and connects these controllers
to previously created actors for realizing high-level control objectives. For a
formula ¢ in DNF form, let size(¢) return the number of clauses in ¢. For
clause formula i in ¢, let In(x%,) return the set of all input variables and
a = Index(x!,, ¢t,) specify that x%, is the a-th clause in ¢, .

Step 2.1 - Realizing “input” part for pattern P1, P2, P3. In Step 2, from line 3
to 9, the algorithm synthesizes controller realizing the portion input listed in
Table2, or equivalently, the ¢!, part listed in Table1. Line 4 first creates an
OR gate, as the formula is represented in DNF. Then synthesize a controller
for monitoring each clause formula (line 5, 6) using function Syn, with input
variables defined in In(x?,) and a newly introduced output variable {out}?. The
first attempt is to synthesize G(x%, < Xiout). By doing so, the value of x!, is
reflected in out. However, as the output of the synthesized controller is connected
to the input of an OR-gate (line 8) and subsequently, passed through the port
“input” of the high-level controller (line 9), one needs to also ensure that from
time 0 to ¢ — 1, out remains false, such that the high-level controller A,, for
specification 7, will not be “unintentionally” triggered and subsequently restrict
the output. To this end, the specification to be synthesized is G(x?, < Xiout) A
N.—o i1 X*—out, being stated in line 6.

For above mentioned property that needs to be synthesized in line 6, one does
not need to use full LTL synthesis algorithms. Instead, we present a simpler algo-
rithm (Algorithm 1) which creates a controller in time linear to the number of
variables times the maximum number of X operators in the formula. Here again
for simplicity, each state variable is three-valued (true, false, u); in implementa-
tion every 3-valued state variable is translated into 2 Boolean variables. In the

3 For pattern type P2 or P3, one needs to have each clause formula of &k, be of form
sz L.e., the highest number of consecutive X should equal ¢. The purpose is to align
Xin with the preceding X* in G(¢%, — X*(0out W (4,0mVpout))) or G(¢%, — X 0out).
If a clause formula in DNF contains no literal starting with X¢, one can always pad
a conjunction X' true to the clause formula. The padding is not needed for P1.
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Algorithm 1. Realizing Syn without full LTL synthesis

Input : LTL specification G(x%, < X'out) A /\i_=0 X*-out), input variables
In(x}y), output variables {out }
Output: Mealy machine C = (Q, go, 2"i",2Vout| A) for realizing the
specification
1 Vour := {out}, Vin := In(xin);
2 foreach Variable v € ln(xﬁn) do // Create all state variables in the
Mealy machine

3 for j=1...ido Q:= QU {vin[j]}, where v;,[j] is three-valued (true , false
yu) s

4 qo:= /\vmdn(xén),je{l,---i} Vin[j] := u /* Initial state */;

5 let Cd :=true /* Cd for output condition */;

6 foreach literal X*v;,, in Xin do

7 | if k=ithen Cd := CdA (vin =true) else Cd := CdA (vinli — k] = true) ;

8 foreach literal X*—w;, in i, do

9 if k=14 then Cd := Cd A (vin, = false) else Cd :=

Cd A (vin[i — k] = false) ;
10 dout := (out := Cd) /* Output assignment should follow the value of Cd */;
11 J, := (/\vme|n(x,’§n),j=1mi—1 vin[j + 1] == vin[j]) A (/\vmem(xfﬁn) Vin[1] 1= vin);

algorithm, state variable v;,[i] is used to store the i-step history of for v;,, and
Vin[i] = u means that the history is not yet recorded. Therefore, for the initial
state, all variables are set to u (line 4). The update of state variable v;,[i + 1]
is based on the current state of v;,[i], but for state variable v;,[1], it is updated
based on current input v, (line 11). With state variable recording previously
seen values, monitoring the event is possible, where the value of out is based on
the condition stated from line 6 to 10.

Consider a controller realizing X%, := —inl A Xinl A Xin2 A XX~in2, being

executed under a run prefix (false, false)(true, true)(true, false). As shown in
Fig. 4, the update of state variables is demonstrated by a left shift. The first and
the second output are false. After receiving the third input, the controller is able
to detect a rising edge of inl (via inl[2]=false and inl[1]=true) is immediately
followed by a falling edge of in2 (via in2[1]=true and in2 =false).
Step 2.2 - Realizing “release” part for pattern P2. Back to Step 2, the algorithm
from line 10 to 29 synthesizes a controller realizing the portion release listed in
Table 2, or equivalently, the ¢!, V 00, part listed in Table 1. The DNF structure
is represented as an OR-actor (line 11), taking input from @{n (line 12-18) and
o8, (line 19-28).

For p0,,; (line 19-28), first create an AND-gate for each clause in DNF. When-
ever output variable v,,; is used, the wiring is established by a connection to
the output port of Res,,,, (line 27). Negation in the literal is done by adding
a wire to connect Res,,,, to a dedicated negation actor Res to negate

Yout

the output (line 23 to 26). Consider, for example, specification S2 of the auto-
matic door running example, where the “release” part (inl V in0 V out0) is a
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disjunction of literals using output variable out0. As a consequence, one creates
an AND-gate (line 20) which takes one input Resgtg-output (line 27), and con-
nects this AND-gate to the OR-gate (line 28). Figure 3(a) displays an optimized
version of this construction, since the single-input AND-gate may be removed
and Resgtg-output is directly wired with the OR-gate.

For ¢!, (line 12 to 23), similar to Step 2.1, one needs to synthesize a controller
which tracks the appearance of x”, (line 13). However, the start of tracking is
triggered by ¢!, (the input subformula). That is, whenever ¢!, is true, start
monitoring if (pzn has appeared true. This is problematic when x”, contains
X operators (i.e., h > 0). To realize this mechanism, at line 17, the function
CreateThetaCtrl additionally initiates a controller which guarantees the following:
Whenever input variable set turns true, the following h values of output variable
out are set to false. After that, the value of output variable out is the same as the
input variable in. This property can be formulated as ©j, (to trigger consecutive
h false value over out after seeing set = true) listed in Eq. 2, with implementation
shown in Fig. 6. By observing the Mealy machine and the high-level transition
function, one infers that the time for constructing such a controller in symbolic
form is again linear in h.

h—1
O}, := (—out W set) A G(set — (/\ ~XZout A X"((in < out) Wset)))  (2)
z=0
The overall construction in Step 2 is illustrated using the example in Fig. 5, which
realizes the formula

G((—inl A Xinl) — X(outl W(=in2 A Xin2))) (3)

with Vi, = {in1,in2} and V,,+ = {outl}. This specification requires to set output
outl to true when a rising edge of inl appears, and after that, outl should
remain true until detecting a raising edge of in2. Using the algorithm listed in
Step 2, line 6 synthesizes the monitor for the input part (i.e., detecting rising
edge of in1), line 13 synthesizes the monitor for the release part (i.e., detecting
rising edge of in2), line 14 creates the wiring from input port to the monitor. As
h =1 (line 16), line 17 creates A(Co, ), and line 18 establishes the wiring to and
from A(Co, ).

The reader may notice that it is incorrect to simply connect the monitor
controller for —in2 A Xin2 directly to TrUB.release, as, when both —inl A Xinl
and —in2 A Xin2 are true at the same time, TrUB.output is unconstrained. On
the contrary, in Fig. 5, when —inl A Xinl is true and the value is passed through
TrUB.input, A(Ce,) enforces to invalidate the incoming value of TrUB.release
for 1 cycle by setting it to false.

Step 8 - Realizing “input” for pattern P/. For pattern P4, in contrast to pattern
P1, P2, and P3, the synthesized monitoring element is directly connected to a
Resolution Actor (see Fig.3(a) for example). To maintain maximum freedom
over output variable, one synthesizes the event monitor from the specification
allowing the first consecutive i output to be “-”. The monitor construction is
analogous to Algorithm 1 and we refer readers to [1] for details.
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Sn12lfin[1]y in1 [inI[2] inI[1] inl
Cu | u f false |0y | fra|s§73 true

,,,,,, B boolean 1stSet := false;

in22)[in2(1]| in2 ¢ | in202)f:in2[1]| in2 : | in2[2][:in2[1]] in2

S KSR
: true || true int ¢ := 0 /* finite domain [0...h — 1] */

State variables:

State variable ~ Input  State variable Input  State variable Input iset Co, /* Phase Adjustment Block */ ti
ou

Transition function /* high-level language*/

u [u [falsei | u | false|true ! | false [: true | false if(11stSet & !set) {out := false;
out := false out := false out := true }else if(set) {
out := false; 1stSet := true; ¢ := h-1;
} else {

. . . . ;i . if(c = false; c:= ¢- 1;
Fig. 4. Executing monitor with xj, := —inl A };ﬁ?‘{;ﬁf‘iﬁ)}{"“t alses e:= - 1}

Xinl A Xin2 A XX=in2, by taking first three
inputs (false, false)(true, true)(true, false).

E |
e
%
out @ TUB
Fig. 6. Implementing O, (state

Fig. 5. Correct controller construction for spec-  yariables not mentioned in update
ification satisfying pattern P2. remain the same value).

{!set} out := false

{!set} out := in

Optimizations. Runtimes for Steps2 and 3 may be optimized by using simple
pattern matching and hashing of previously synthesized controllers. We are list-
ing three different opportunities for optimized generation of monitors. First, the
controller in Fig. 3(a) for monitoring —in0 A Xin0 is connected to two high-level
controllers. The second case can be observed in Fig.5, where by rewriting inl
and in2 to in, the controller being synthesized is actually the same. Therefore,
one can also record the pattern for individual monitor and perform synthesis
once per pattern. A third opportunity for optimization occurs when Algorithm 1
takes ¢ = 0 (i.e., no X operator is used). In this case there is no need to create
a controller at all and one may proceed by directly building a combinatorial
circuit, similar to the constructions of line 19 to 28 in Step 2. For example, for
specification S2 of the automatic door, the release part is inl V in0 V out0Q; since
no X operator occurs, a combinatorial circuit is created by wiring directly

and to the OR-gate.

4.3 Parameter Synthesis for 2QBF Without Unroll

Previous steps construct actors as building blocks and wires the actors according
to the structure of the given GXW specification from type P1 to P4. The resulting
(partial) controller, however, does not yet realize this specification as it may still
contain unknowns in the resolution actors. Further checks are necessary, and a
controller is rejected if one of the following conditions holds.

(Condition 1) The wiring forms a directed loop in the constructed actor-based
controller.
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(Condition 2) It is possible for a resolution actor Res,,,,, to receive true and
false simultaneously.
(Condition 3) Outputs violate invariance conditions of pattern P5.

Condition 1 is checked by means of a simple graph analysis: (1) let all ports
be nodes and wirings be edges; (2) for each actor, create directed edges from
each of its input ports to each of its output ports; (3) check if there exists a
strongly connected component in the resulting graph using, for example, Tarjan’s
algorithm [29].

Conditions 2 and 3 are checked by means of creating corresponding 2QBF
satisfiability problems. Recall that each resolution actor Res,,,,, is parameter-
ized with respect to the output A when all incoming inputs for Res,,,, are “-.
The corresponding parameter assignment problem is encoded as a 2QBF* for-
mula, where existential variables are the parameters to be synthesized, universal
variables are input variables, and the quantifier-free body is a logical implication
specifying that the encoding of the system guarantees condition 2 and 3.

Step 4 shows a simplified algorithm for generating 2QBF constraints which
does not perform unrolling. Stated in line 15, the quantifier free formula is of
form 7, — 1,, where 7, are input assumptions and system dynamics, and 15
are properties to be guaranteed. First, unknown parameters are added to the
set of existential variables V3 (line 2). All other variables are universal variables.
Then based on the evaluation ordering of S, perform one of the following tasks:

e When an element £ in the execution ordering = is a wire (line 5), we add
source and dest as universal variables (as V4 is a set, repeated variables will
be neglected), and establish the logical constraint (source < dest) (lines 6
to 8).

e When an element £ in the execution ordering = is an actor, we use function
EncodeTransition to encode the transition (pre-post) relation as constraints
(line 11), and add all state variables (for pre and post) in the actor (recall our
definition of Mealy machine is based on state variables) to V4 using function
GetStateVariable (line 10).

T, is initially set to ¢ (line 1) to reflect the allowed input patterns regulated by
the specification (specification type P6). Line 12 creates the constraint stating
that no two inputs of a resolution actor should create contradicting conditions.
As the number of input ports for any resolution actor is finite, the existential
quantifier is only an abbreviation which is actually rewritten to a quantifier-free
formula describing relations between input ports of a resolution actor.

The encoding presented in Step 4 does not involve unroll (it encodes the tran-
sition relation, but not the initial condition). Therefore, by setting all variables to
be universally quantified, one approximates the behavior of the system dynamics
without considering the relation between two successor states. Therefore, using

4 Quantified Boolean Formula with one top-level quantifier alternation.
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Step 4. Parameter synthesis by generating 2QBF constraints

Input : LTL specification ¢ = 0 — A,,_; 4 7im, input variables Vi, output
variables Vo, partial implementation 8 = (Vin, Vour, Act, T) with
unknown parameters

Output: Controller implementation S or “unknown”

1 let 1, := 0,7y := true, V3, Vg := NewEmptySet();

2 foreach vout € Vour do V3 := V3 U {Resy,,,-A} ;

3 let = be the evaluation ordering of S ;

4 foreach £ € = do

5 if £ € 7 then // £ is a wire; encode using biimplication
6 Let £ be (source --» dest);

7 Vi.add(source), V5 .add(dest);

8 Y := T, A (source < dest);

9 else // £ is an actor; encode transition
10 Viv.add(GetStateVariable(£));
11 Y, := Y, A (EncodeTransition(§)) /* £ € Act */
12 for vout € Vour do

Yy =Ty A (A5, 7 : (Resv,,,.input; = true) A (Resu,,, -input; = false)) ;
13 foreach n,,, m=1...k do
14 | if DetectPattern(n,,) € {P5} then Y, :=Ty Anm ;
15 if Solve2QBF (V3, Vi, 1, — 7, ).isSatisable then
16 ‘ return S by replacing each Resout.A by the value of witness in 2QBF;
17 else return unknown ;

Step 4 only guarantees soundness: If the formula is satisfiable, then the specifi-
cation is realizable (line 15, 16). Otherwise, unknown is returned (line 17).°

As each individual specification of one of the types {P1, P2, P3, P4} is
trivially realizable, the reason for rejecting a specification is (1) simultaneous true
and false demanded by different sub-specifications, (2) violation of properties
over output variables (type P5), and (3) feedback loop within S. Therefore,
as Steps 1-4 guarantees non-existence of above three situations, the presented
method is sound.

Theorem 1. (Soundness) Let ¢ be a GXW specification, and S be an actor-
based controller as generated by Steps 1-4 from ¢; then S realizes ¢.

5 Even without unroll, one can infer relations over universal variables via statically
analyzing the specification. As an example, consider two sub-specifications S1 :
G(inl — (outWin2)) and S2 : G(in2 — (—out Winl)). One can infer that it is
impossible for TrUBY and TrUB® to be simultaneously have state variable lock =
true, as both starts with lock = false, and if S1 first enters lock (lock = true) due to
inl, the S2 cannot enter, as release part of S2 is also inl. Similar argument follows
vice versa.



112 C.-H. Cheng et al.

The GXW synthesis algorithm as described
above, however is incomplete, as controllers
with feedback loops are rejected; that is, when- E
ever output variables listed in the release part
of P2 necessitate simultaneous reasoning over
two or more output variables. Figure 7 display Fig. 7. Incompleteness example.
a controller (with feedback loop) for realizing
the specification G(inl — (outlWout2)) A G(in2 — (out2Woutl)). However,
our workflow rejects such a controller even though the given specification is
realizable. With further structural restriction over GXW (which guarantees no
feedback loop in during construction) and by using unrolling of the generated
actor-based controllers, the workflow as presented here can be made to be com-
plete, as demonstrated in Sect. 4.4.

inl 'TrUB | Resoutl outl

> L TrUB Resoyuto out?

4.4 General Properties for GXW Synthesis

Since unrealizability of a GXW specification

is due to the conditions (1) s.lmultaneous P outl
true and false demanded by different sub-

specifications, and (2) violation of proper-
ties over output variables (type P5)°, one can
Fig. 8. Control implementation.

build a counter-strategy’ by first building a
tree that provides input assignments to lead
all runs to undesired states violating (1) or
(2), then all leafs of the tree violating (1) or
(2) are connected to a self-looped final state, in order to accept w-words. As
the input part listed in Table 2 does not involve any output variable, a counter-
strategy, if exists, can lead to violation of (1) or (2) within (2 cycles, where 2
is a number sufficient to let each input part of the sub-specification be true in a
run.

Lemma 1. For GXW specification ¢ — A, _; 1 7m, if (a) pJ,, is false for all
Nm of type P2 and (b) no specification of type P5 exists, then if the specification
is not realizable, then there exists a counter-strategy which leads to violation
of (1) or (2) in {2 steps, where {2 is bounded by the sum of (i) the number of
specifications k, and (ii) the sum of all i value defined within each ¢t of 7,,.

When pY,, is false for all 7, of type P2, our presented construction guaran-
tees no feedback loop. As no specification of type P5 exists, the selection of

5 Rejecting feedback loops on the controller structure is only a restriction of our pre-
sented method and is not the reason for unrealizability; similar to Fig. 7, feedback
loop can possibly be resolved by merging all actors involving feedback to a single
actor.

" A counter-strategy in LTL synthesis a state machine where the environment can
enforce to violate the given property, regardless of all possible moves by the
controller [27].
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A never influences whether the specification is realizable. Therefore, quantifier
alternation is removed. To this end, checking unrealizability is equivalent to non-
deterministically guessing {2 input assignments and subsequently, checking if a
violation of (1) or (2) appears by executing S. This brings the co-NP result
stated in Lemma 2. This also means that under the restriction from Lemma 1,
a slight modification of Step 4 to perform unrolling the computation {2-times
makes our synthesis algorithm complete.

Lemma 2. Deciding whether a given GXW specification, which also obeys the
additional restrictions as stated in Lemma 1, is realizable or not is in co-NP.

For the general case, the bound in Lemma 1 remains valid (as input part is not
decided by the output variable). Complexity result is achieved by, without using
our construction, directly using finite memory to store and examine all possible
control strategies in (2 steps.

Lemma 3. For GXW specification ¢ — A,,_; . 7m, if the specification is not
realizable, then there exists a counter-strategy which leads to violation of (1) or
(2) in {2 steps, where {2 is bounded by condition similar to Lemma 1.

Lemma 4. Deciding whether a given GXW specification is realizable or not is
in PSPACE.

The above mentioned bounds are only conditions to detect realizability of a
GXW specification, while our presented workflow in Sect.4 targets generating
structured implementations. Still, by unrolling the computation {2-times, one
can detect if a controller, following our regulated structure, exists.

4.5 Extensions

One can extend the presented workflow to allow richer specification than previ-
ously presented GXW fragment. Here we outline how these extensions are real-
ized by considering the following sample specification: G(inl — outl) A G((in2 V
outl) — ((out2 A —out3)Win3)). The SDF controller implementation is shown
in Fig. 8. First, conjunctions in g,,; can be handled by considering each output
variable separately. E.g., for s+ = out2 A —out3, in Fig. 8 both are connected to
the same TrUB. Second, the use of output variables in “input” part for pattern
P1, P2, P3 is also supported, provided that in effect a combinatorial circuit is
created (i.e., output variables should always proceed with Xi), and the generated
system does not create a feedback loop. E.g., for the antecedent (in2 V outl), it
is created by wiring the Resqq¢1.0ut to an OR-gate.

5 Experimental Evaluation

We implemented a tool for GXW synthesis in Java, which invokes DepQBF [21]
(Version 5.0) for QBF solving. Table 3 includes experimental results for a repre-
sentative subset of our PLC benchmark examples. Execution times is recorded



114 C.-H. Cheng et al.

using Ubuntu VM (Virtual Box with 3 GB RAM) running on an Intel i7-3520M
2.9GHz CPU and 8 GB RAM). Most control problems are solved in less than
a second®. GXW synthesis always generated a controller without feedback loops
for all examples.

Table 3 lists a comparison of execution times of GXW synthesis and the
bounded LTL synthesis tool Acacia+ [8] (latest version 2.3). We used the option
--player 1 of Acacia+ for forcing the environment to take a first move, but
we did not do manual annotation in order to support compositional synthesis in
Acacia+, as it is not needed by our tool. For many of the simpler case studies,
the reported runtimes of Acacia+ are similar to GXW synthesis. However, GXW
seems to scale much better to more complex case studies with a larger num-
ber of input and output variables such as examples 5, 9, 11, 12, 13, 15, 16, 17,
18, 19 in Table 3. The representation of the generated controller in terms of a
system of interacting actors in GXW synthesis, however, allows the engineer to
trace each sub-specification with corresponding partial implementation. In fact
the structure of the controllers generated by GXW is usually similar to reference
implementations by the case study providers. In contrast, a controller expressed
in terms of single Mealy machine is rather difficult to grasp and to maintain for
problems such as example 18 with 13 input and 13 output variables.

6 Related Work

Here we compare GXW synthesis with related GR(1) synthesis (e.g., [5,15,25,31])
and bounded LTL synthesis (e.g., [8,11,28]) techniques.

Synthesis for the GR(1) fragment of LTL is in time polynomial to the number
of nodes of a generated game, which is PSPACE when considering exponential
blow-up caused by input and output variables. GXW is also in PSPACE, where
GXW allows W and GR(1) allows F. Even though it has been demonstrated that
the expressiveness of GR(1) is enough to cover many practical examples, the
use of an until logical operator, which is not included in GR(1), proved to be
essential for encoding a majority of our PLC case studies. Also, implementations
of GR(1) synthesis such as Anzu [15] do not generate structured controllers.
Since GR(1) synthesis, however, includes a round-robin arbiter for circulating
among sub-specifications, the systematic structuring of controllers underlying
GXW synthesis may be applicable for synthesizing structured GR(1) controllers.

Bounded synthesis supports full LTL and is based on a translation of the LTL
synthesis problem to safety games. By doing so, one solves the safety game and
finds smaller controllers (as demonstrated in synthesis competitions via tools
like Simple BDD solver [13], AbsSynthe [9], Demiurge [17]). The result of solv-
ing safety games in bounded LTL synthesis usually is a monolithic Mealy (or
Moore) machine, whereas our GXW synthesis method of creating SDF actors may
be understood as a way of avoiding the expensive construction of the product
of machines. Instead, we are generating controllers by means of wiring smaller

8 Approximately 0.25 seconds is used for initializing JVM in every run.
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sub-controllers for specific monitoring and event triggering tasks. The struc-
ture of the resulting controllers seem to be very close to what is happening in
practice, as a number of our industrial benchmark examples are shipped with
reference implementation which are usually structured in a similar way. The size
of the representations of generated controllers is particularly important when
considering resource-bounded embedded computing devices such as a PLCs. LTL
component synthesis, however, has the same worst-case complexity as full LTL
synthesis [22].

Table 3. Experimental Result

ID | Description Source 1/O vars GXW time (s) | Acacia+ time (s)

1 | Automatic door Ex15 [2] (4,3) 0.389 0.180

2 | Simple conveyor belt Ex7.1.19 [24] | (3,3) 0.556 0.637

3 | Hydraulic ramp Ex7.1.3 [24] (5,2) 0.642 0.451

4 | Waste water treatment V1 Ex7.1.8 [24] (6,3) 0.471 0.323

5 | Waste water treatment V2 Ex7.1.9 [24] (8,9) 0.516 5.621

6 | Container fusing Ex10 [2] (7,6) 0.444 0.425

7 | Elevator control mixing plant Ex7.1.4 [24] (10,5) 0.484 2.902

8 | Lifting platform Ex21 [16] (6,3) 0.350 0.645

9 | Control of reversal Ex36 [16] (7,7) 0.395 2.901

10 | Gear wheel Ex19 [16] (4,6) 0.447 0.302

11 | Two directional conveyor (simplified) | Ex7.1.31.1 [24] | (9,5) 0.789 6.552

12 | Garage door control Ex7.1.25 [24] (13,5) 0.574 7.002

13 | Contrast agent injection Ex7.1.18 [24] (6,8) 0.458 3.209

14 | Identification Ex39 [16] (5,5) 0.430 0.392

15 | Monitoring chain elevator Ex7.1.15 [24] (10,9) 0.429 9.647

16 | Two directional conveyor Ex7.1.31.1 [24] | (12,5) 0.890 51.553

17 | Control of single torque drive Ex7.1.26 [24] (12,8) 0.538 38.010
(simplified)

18 | Gravel transportation via 3 Ex7.1.31.4 [24] | (13,13) | 1.227 > 600 (t.0.)
conveyors (simplified)

19 | Control of two torque drives Ex7.1.26 [24] (22,16) 0.790 > 600 (t.o.)
(simplified)

7 Conclusion

We have identified a useful subclass GXW of LTL for specifying a large class
of embedded control problems, and we developed a novel synthesis algorithm
(in PSPACE) for automatically generating structured controllers in a high-level
programming language with synchronous dataflow without cycles. Our experi-
mental results suggest that GXW synthesis scales well to industrial-sized control
problems with around 20 input and output ports and beyond.

In this way, GXW synthesis can readily be integrated with industrial design
frameworks such as CODESYS [3], Matlab Simulink, and Ptolemy II, and the
generated SDF controllers (without cycles) can be statically scheduled and imple-
mented on single and multiple processors [18]. It would also be interesting to use
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our synthesis algorithms to automatically generate control code from established
requirement frameworks for embedded control software such as EARS [23]. More-
over, our presented method supports traceability between specifications and the
generated controller code as required by safety-critical applications. Traceability
is also the basis for an incremental development methodology.

One of the main impediments of using synthesis in engineering practice, how-
ever, is the lack of useful and automated feedback in case of unrealizable speci-
fications [6,10,20] or realizable specifications with unintended realizations. The
use of a stylized specification languages such as GXW seems to be a good starting
point for supporting design engineers in identifying and analyzing unrealizable
specifications, since there are only a relatively small number of potential sources
of unrealizability in GXW specifications. Finally, hierarchical SDF may also be
useful for modular synthesis [30].
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