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Abstract. We present a novel algorithm to conservatively check
whether a (recursive) heap-manipulating program terminates. Our algo-
rithm can be used as a post-processing phase of any shape analysis sat-
isfying some natural properties. The running time of the post-processing
phase is linear in the size of the output of the chosen shape analysis.

The main idea is to partition the (unbounded but finite) set of allo-
cated objects in every state into a bounded set of regions, and track
the flow of objects between heap regions in every step of the program.
The algorithm proves the existence of the well-founded relation over
states by showing that in every loop iteration at least one object (which
was allocated before entering the loop) moves to a strictly lower-ranked
heap region. The partitioning of objects into regions, the flow of objects
between regions, and the ranks of regions are computed automatically
from the output of the underlying shape analysis. Our algorithm extends
the state of the art in terms of complexity, the class of supported data
structures, and its generality.

We successfully applied a prototype of our analysis to prove ter-
mination of a suite of benchmarks from existing literature, including
(looping, recursive, and concurrent) list manipulating programs, looping
list-sorting programs, and looping programs that manipulate trees and
graphs. The overhead of the termination phase in our experiments is at
most 14% of the overall analysis time.

1 Introduction

Proving termination of heap manipulating programs is both important and chal-
lenging. System codes, whose reliability is crucial for the stack of software built
on top of them, often use low-level manipulation of linked data structures to
gain efficiency. Proving termination requires synthesizing ranking functions that
correlate two different types of unbounded data—data structure invariants and
the number of loop iterations. This in turn requires tracking highly complex
shape-numeric invariants [14,19].
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Almost all existing approaches (with Brotherson et al. [8,9] as a notable
exception) address the undecidable problem of proving termination of heap-
manipulating programs by reducing it to another undecidable problem, e.g.,
proving termination of a numeric program [4,5,19], proving termination of a
term-rewriting system [21], or proving the termination of a constraint-logic pro-
gram [27]. In contrast, we take a direct approach. In the first phase, we apply
any program-wide shape analysis that partitions the heap into finitely many
heap regions and computes the following two relations: (i) an abstract transition
relation, and (ii) an abstract relation that tracks how program statements cause
individual objects to change membership in heap regions. In the second phase,
we conservatively check termination by solving a linear time problem over these
two relations. By decoupling the reasoning used to synthesize heap invariants
from the reasoning used for checking termination, we gain the following notable
advantages:

– We avoid the need to track complex heap measures during the shape analysis.
– Our termination checking phase is agnostic to most details of the program-

ming language. Its only requirement is that the loops form a hierarchical tree
structure.

– Our termination checking phase can be latched on top of any shape analysis,
which satisfies certain natural assumptions. This makes our approach quite
flexible, allowing to adapt the shape analysis to a given class of programs and
data structures1 and to support combined shape domains [28,29].

– Our algorithm handles recursive procedures quite precisely via the call stack-
as-list approach [24,25]. As far as we know, we are the first to automati-
cally prove termination of recursive heap-manipulating procedures with side-
effects.

– We can apply summarization to the result of the shape analysis phase. Then,
we can check the termination of each loop and procedure only with respect
to these summaries in a modular way.

Overview of Our Approach. The termination analysis begins by processing the
abstract transition relation computed by the underlying shape analysis to pro-
duce a bounded graph which conservatively tracks the flow of objects between
heap regions. The nodes of the graph are pairs of abstract states and regions.
The graph contains two kind of edges, pertaining to over- and under- approxi-
mation information: evolution edges and must-evolution edges. The former over-
approximates the object flow information by refining every abstract transition
into a set of evolution edges going from every region in the source abstract state
to every region in the target abstract state which may contain some of its objects,
while the latter under-approximates the flow information by producing a similar
set of evolution edges which records must flow information.

1 For example, by choosing separation logic approaches for programs manipulating
inductive data structures and shape graph approaches for programs manipulating
arbitrary graph data structures.
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Using the (may) evolution graph, we compute an acyclic graph, called the
condensation graph, by collapsing strongly-connected components and remov-
ing self-loops. The condensation graph entails a well-founded relation over heap
regions: Every region is given a rank based on its depth in the condensation
graph, and as the latter is acyclic and the number abstract states and regions
is bounded, there is a bounded number of ranks. This well-founded relation can
be point-wise lifted to a well-founded relation over abstract states which maps
every region in every state to its rank. The resulting relation is preserved by
any abstract transition (i.e., the either stays the same of strictly decreases). To
prove that every loop in the program terminates, we find for every cycle in the
abstract transition relation terminates, a cutting set—a set of transitions that
strictly decrease this relation in every iteration through the cycle. Specifically,
our algorithm looks for a cutting set containing only must-evolution edges.

Main Contributions. The main contributions of this paper are summarized
below:

1. Novel Well-founded Relation Over Heaps. We show how to use the
result of a shape analysis to construct a well-founded relation over the tran-
sitions of any heap-manipulating program (Sect. 5). This avoids the need to
synthesize a different well-founded relation for each program. It also allows
us to dynamically find the best set of cut points in the abstract transition
relation, in contrast to existing analyses that choose them a priori.

2. Generic Framework. Our algorithm (Sect. 3) is parameterized by (the
atomic statements of) the programming language (Sect. 2) and a class of
shape analyses satisfying very weak and natural assumptions (Sect. 4). It is
independent of the iteration strategy used by the shape analysis, e.g., whether
it is forward or backward, compositional [10], and whether it uses widening.
This allows us to mix and match existing shape analyses, and take advan-
tage of any advances in this field by simply replacing the underlying shape
analysis. We utilize this flexibility to support recursion (Sect. 6).

3. Featherweight Reasoning. Our termination checking phase analyzes loops
and recursive procedures separately by summarizing their behavior. Its overall
running time is linear time in the size of the program and the output of the
shape analysis. The predictable performance makes it an appealing upgrade
for existing shape analyses.

5. Experimental Evaluation. We have implemented a prototype of our analy-
sis and applied it to a suite of benchmarks (Sect. 7). Our analysis successfully
handles programs operating on inductive data structures as well as a garbage-
collection benchmark operating on arbitrary graphs, programs with recursive
procedures, and intricate examples introduced by previous works. We have
also proved lock-freedom for concurrent programs manipulating linked lists
with a constant number of threads.
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2 Programming Language and Running Example

We formalize our results using a simple imperative programming language for
sequential procedure-less programs, which we later extend to handle (recursive)
procedures and bounded parallelism. We assume that the reader is familiar with
the way programs are represented using control-flow graphs (see, e.g., [1,20]),
and only define the necessary terminology.

Syntax. A program P = (V,E, ventry , vexit , c) is a control-flow graph (CFG):
Nodes v ∈ V correspond to program points and edges e ∈ E indicate possible
transfer of control. Every node v is associated with a primitive command c(v). P
starts its execution at program point ventry and terminates at vexit . We assume
that the program has a reducible CFG, i.e., every loop has a single entry node,
which we refer to as the loop header. For simplicity, we assume that every loop has
a unique entry node which is also its unique exit node, and identify loops by their
headers. We also assume E does not contain self loops, i.e., ∀v ∈ V. (v, v) �∈ E.

We say that L = (V ′, E′, v′
entry , v′

exit , c|V ′) is the sub-CFG of P pertaining
to V ′ if {v′

entry , v′
exit} ⊆ V ′ ⊆ V , E′ = E ∩ V ′ × V ′, v′

entry is the only node in
V ′ into which control can flow in P from program points outside V ′ and v′

exit

is the only node in V ′ from which control can leave V ′. We denote the entry
node and exit nodes of a sub-CFG L by Entry(L) and Exit(L), respectively. We
denote the set of sub-CFGs pertaining to the natural loops2 in the CFG of P by
Loops(P ).

Our technique is independent of the choice of primitive commands; we only
require that they can be handled by the underlying shape analysis. Thus, we
leave this set unspecified. In our examples, we use a set of typical commands for
heap-manipulating programs: assignments between variables, dynamic allocation
and deallocation of objects, (possibly destructive) accesses to fields of objects,
and conditionals involving pointer expressions. The meaning of these commands
is standard (see, e.g., [23]).

Operational Semantics. The concrete semantics of a program is defined as a
concrete transition relation T ⊆ Σ × Σ over a set of concrete states σ ∈ Σ.
We assume an unbounded set o ∈ O of object identifiers (objects for short).
We only expect that a concrete state σ = 〈v,A, F, . . .〉 records the value of the
program counter, denoted by v(σ) = v, the finite, but unbounded, set of allocated
objects, denoted by A(σ) = A, and the unbounded set of free (unallocated)
objects, denoted by F (σ) = F . Concrete transitions induce a concrete evolution
relation. That is, a relation that for each (σ, σ′) ∈ T connects the objects in σ
to the corresponding objects in σ′3. We place no other restrictions on the form
of states or on the transition relation.
2 Intuitively, a natural loop is the CFG-analogue of a while loop: It has a single header
(entry) node, and every two natural loops are either nested, disjoint, or share the
header node. See [1].

3 Intuitively, this relation is identity, although in reality a garbage collector can
relocate objects in memory.
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if x nil

assume in nil
assume out nil
x := in

return

y := out

if y nil y.d x.d

if y nil then
y.n := new Node(y.n, x.d)

x := x.n

y := y.n

N1

N2 N3

N4

N5

N6

N7

F
i
n
dD
o
u
b
l
e

Fig. 1. CFG for Double (with extended basic blocks). Dashed edges represent false
condition branches.

Running Example. In the rest of the paper, we exemplify our analysis using
a simple program in a Java-like language whose control-flow graph (CFG) is
shown in Fig. 1. The program operates over two disjoint acyclic singly-linked
lists pointed-to by in and out, respectively. List elements are declared as

class Node { Node n; int d; } .

The outer loop scans the in list and uses the inner loop, shown by the sub-CFG
Find, to find an identical element in the out list. If it finds one, it splices a copy
of that element next to it. The sub-CFG of the outer loop is consists of the nodes
in the CFG except N1 and N3, and its header is N2. The sub-CFG of the inner
loop consists of the nodes N5 and N6, and its header is N5.

3 Termination Analysis

This section defines our termination analysis, which is shown as pseudo-code in
Fig. 2.

The analysis is based on the following principles: (i) using a partition-based
shape analysis (Sect. 3.1) to approximate the concrete transition relation and to
approximate the flow of objects between heap regions by a so-called evolution
relation; (ii) using the flow of objects between heap regions to define a well-
founded relation4 over heap regions and then lift it to a well-founded relation
over the abstract heap descriptors (Sect. 3.2); (iii) using the well-founded relation
to discover a loop cut for each loop—a set of transitions that strictly decrease
the well-founded relation and must be taken in each loop iteration (Sect. 3.3);
and (iv) summarizing loops to handle loop nesting (Sect. 3.4).

3.1 Shape Analysis

Our termination analysis is built on top of an underlying shape analysis,
which is first applied to the entire program (ObjectFlowTermCheck line 1).
4 A relation is well-founded if it has no infinite descending chains.
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OBJECTFLOWTERMCHECK(P ) {
1 (τ, ev) ←− SHAPEANALYSIS(P )
2 L1, . . . , Ln ←− LOOPS(P )
3 (τ [L1, . . . , Ln], ev [L1, . . . , Ln]) ←− SUMMARIZE(P, τ, ev)
4 foreach i = 1..n do
5 // Compute well-founded relation over regions, for the loop-specific evolution relation.
6 ev≺ ←− EVOLUTIONTOWF(ev [Li])
7 τ ←− τ [Li] // Get loop-specific abstract transition relation.
8 // Remove decreasing abstract transitions.
9 foreach (s, s ) ∈ τ do

10 if ∃([(s, ρ)], [(s , ρ )]) ∈ ev≺(s, s ) then
11 τ ←− τ \ (s, s ) //since s ≺ s
12 NonDecreasingCycles ←− {b ∈ SCC(τ )||b| > 1}
13 if NonDecreasingCycles = ∅ then
14 Print “Loop L may not terminate!”

}

EVOLUTIONTOWF(evL) {
1 {[r1], . . . , [rm]} ←− SCC(MAY(evL))
2 // Merge region ranks possibly containing loop-allocated objects.
3 foreach [ri] ∈ {[r1], . . . , [rm]} do
4 if (ρfree, ri) ∈ ev∗

L then
5 [ρfree] ←− [ρfree] ∪ [ri]
6 // Maintain strictly-decreasing evolution edges.
7 ev≺ ←− evL

8 foreach ((s, ρ), (s , ρ )) ∈ ev≺ do
9 if [(s, ρ)] = [(s , ρ )] ∨ ¬MUST((s, ρ), (s , ρ )) then

10 ev≺ ←− ev≺ \ {((s, ρ), (s , ρ ))}
11 return ev≺

}

Fig. 2. Soundly checking termination. May(ev) and Must(ev) return the subset of
evolution may edges and evolution must edges, respectively

x, z ∈ Var Variables
v ∈ V CFG nodes

E ::= x | Expressions
P ::= E = E | ¬P Simple pure formulae
Q ::= | P | Q ∧ Q Pure formulae
A ::= (x 
→ E) | (E, E) Atomic spatial formulae
H ::= A | | H ∗ H Spatial formulae

〈v, Q ∧ H〉 Symbolic heaps
(E, F ) = E 
→ F ∨ ∃z . E 
→ z ∗ (z, F )

Fig. 3. Symbolic heaps
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The shape analysis must produce two relations—an abstract transition relation
and an (abstract) evolution relation. The abstract transition relation is a finite
graph whose nodes are (abstract) heap descriptors and edges overapproximate
the concrete transition relation between the concrete heaps they represent. A
heap descriptor consists of a finite set of heap regions (or simply regions), which
partition the set of objects in each concrete heap it represents. The evolution
relation is a (finite) graph whose nodes are the regions in the heap descriptors.
The edges (over- and under-) approximate the flow of objects between the regions
of any two heap descriptors related by an abstract transition. To identify a heap
region ρ in a specific heap descriptor s, we write (s, ρ).

To exemplify our analysis, we assume basic familiarity with shape analysis
based on separation logic [3] and use the analysis of singly-linked lists [12]. In this
analysis, the heap descriptors are represented by symbolic heaps and the heap
regions are represented by spatial formulae, both of which are defined in Fig. 3.

Example 1. Figure 4 shows a concrete transition from state σ to state σ′, result-
ing from executing the statement y:=y.n. The objects in each state are parti-
tioned as shown by the spatial formulae annotations. The red edges that connect
corresponding objects comprise the so-called concrete evolution relation. Specif-
ically, notice that the transition moves the object e from the region ls(y, nil) to
the region ls(out, y).

To approximate the concrete transition relation for a given statement, a sep-
aration logic-based analysis applies a sequence of derivation rules. To approxi-
mate the concrete evolution relation, each derivation rule must be augmented
with two types of edges between the regions of the pre and post symbolic heaps.
A may edge means that an object in the source region may exist in the desti-
nation region. A must edge means that at least one object in the source region
must exist in the destination region. To maintain soundness, may edges can be
overapproximated and must edges can be underapproximated.

Figure 5 shows (a simplified subset of) such derivation rules used in analyzing
the Find loop. For the given rules, the set of evolution may edges and the set of
evolution must edges are equal. The double-lined arrows stand for the bijection
between the spatial formulae appearing in the pre formula and the corresponding
spatial formulae appearing in the post formula.

out y

nil

y

nil

x

x

in

in

(out, y) (y, ) (x, ) (in, x)

(x, ) (in, x)(y, )(out, y)

out

Fig. 4. A concrete transition annotated with evolution edges and spatial formulae
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v Q H E, F

v Q H * E F

Unroll1 v Q H E, F

v Q H * E z E, F z

Unroll>1 v Q H * E z z, F

v Q H * E, F

Fold

v Q H         * y w y y.n

v’ Q H[y/w, z/y] * z y z

Next v Q H assume E F

v’ Q E F H

assume E F

Fig. 5. Derivation rules augmented with abstract evolution edges. For the statement
rules, we have that (v, v′) ∈ E and c(v) is the statement at hand

(y, ) (out, y) (in, x) (x, )

(y, ) (out, y) (in, x) (x, )

(v, ) (out, y) (in, x) (x, )(y v)

(y, ) (out, w) (in, x) (x, )(w y)

assume E F

Unroll>1

Next

y

y

w Fold

(a)
(y, ) (out, y) (in, x) (x, )

(y, ) (out, y) (in, x) (x, )y

(b)

Fig. 6. (a) Symbolic execution augmented with evolution edges, and (b) the resulting
transition relation and evolution relation

Figure 6(a) shows how the symbolic heap s2 is derived from s1 and how s1
is derived from s2 via the intermediate symbolic heaps s3 and s4 (redundant
variables are removed after each rule application). By composing the relations
(using natural join) across the intermediate states of the symbolic execution, we
obtain the abstract transitions edges (s1, s2), (s2, s1) and the evolution relation
shown in Fig. 6(b).

The edges (s1, s2), (s2, s1) form a cycle in the abstract transition relation.
How do we show that every execution represented by this cycle terminates?

3.2 From Shape Analysis to a Well-Founded Relation

Consider a concrete execution whose states are represented by s1 and s2. Every
concrete transition represented by the abstract transition (s2, s1) shrinks the
region ls(y, nil) of s2 by moving an object (e in our example) to the region
ls(out, y) of s1 (i.e., from the suffix of the list to its prefix, relative to y). Further-
more, this transition appears infinitely often in every infinite path that contains
this cycle. Since no objects flow into this region other than from itself, after
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taking this transition a number of times that is bounded by the number of cells
in the out list, this region becomes empty and the execution must exit the cycle.

In EvolutionToWF, line 1, the procedure accepts the evolution relation
induced by the transitions between CFG nodes of a loop and uses the may edges
to compute its strongly-connected components in linear time [11]. It then pro-
duces a so-called condensation graph by collapsing the set of regions in each
component to a single node and removing self-loops. This results in a finite and
acyclic graph, which is therefore a well-founded relation. The region rank, or
simply rank, of a region (s, ρ), denoted [(s, ρ)], is the component in the conden-
sation to which it belongs. We write [(s, ρ)] 	 [(s′, ρ′)] if [(s′, ρ′)] is reachable
from [(s, ρ)] in the condensation graph. Figure 7 shows the condensation graph
induced by s1 and s2.

The well-founded relation · 	 · induces a well-founded relation over the
concrete states represented by the abstract transition relation. Intuitively, we
map each object o in a concrete state to the rank of the region representing o,
denoted by rank(o). We then lift this relation to pairs of concrete states related
by the execution of a statement by comparing the objects in the post-state to
the objects in the pre-state.

(y, ), s1)
(y, ), s2)

(in, x), s1)
(in, x), s2)

(x, ), s1)
(x, ), s2)

(out, ), s1)
(out, ), s2)

Fig. 7. The condensation graph induced by the evolution edges between s1 and s2

Our reasoning depends on depleting regions. To account for this, care must be
taken when objects are allocated inside a loop. To account for this, we introduce a
special free region (not explicitly represented by the symbolic heaps) to represent
the (infinite) region of unallocated objects. We merge its region rank with any
region rank that may contain loop-allocated objects (lines 2–5). This way, loop-
allocated objects never decrease the relation.

By definition (Sect. 5), all concrete transitions preserve the resulting well-
founded relation. To show termination, however, we need to show that this
relation strictly decreases infinitely often for each cycle. For this purpose, we
maintain only evolution must edges that decrease the well-founded relation (lines
6–10).

3.3 Computing Loop Cuts

Let L be a loop and τ(L) ⊆ S × S be the abstract transition relation computed
by the shape analysis for that loop. To show that L terminates, we follow this
recipe: (i) find a well-founded relation s 	 s′ over the heap descriptors, which
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is preserved by each transition (that is, either the relation stays the same or
it strictly decreases); (ii) find a set Cut(L) ⊆ τ(L) (as large as possible) such
that each transition in Cut(L) strictly decreases 	; and (iii) test whether Cut(L)
forms a cut. That is whether τ(L)\Cut(L) does not contain any cycles, in which
case all executions represented by τ(L) must terminate.

The benefit of this approach is that each abstract transition can be tested
independently. In our case, we only need to check (lines 8–14) whether the tran-
sition includes an edge returned by EVOLUTIONTOWF.

Contrast this with approaches [5] that synthesize loop-specific rank functions.
Those usually choose a priori a set of CFG nodes as loop cutpoints (usually the
loop header) and try to establish that transitions leaving these cutpoints decrease
the rank. If that fails, e.g., due to the level of abstraction at those points, an
alternative set must be searched for. Our approach finds the set of cutpoints
at the fine granularity of abstract transitions. Since this set is maximal, all
alternative choices have been explored in one shot. This is possible only because
we have constructed a well-founded relation that is guaranteed to be preserved
by all (concrete and abstract) transitions.

In our example, the evolution edge ((ls(y, nil), s2), (ls(out, y), s1)) decreases
the rank of every concrete state represented by s2 and therefore the abstract
transition (s2, s1) forms a loop cut.

3.4 Employing Modular Reasoning

To show that a program terminates, we can first infer a sound specification for
each loop, e.g., as a Hoare triple, by a program-wide analysis. We can then reason
about the termination of each loop separately by: (i) using specifications for its
internal loops, and (ii) assuming internal loops terminate. If all loops have been
proven to terminate this way, the entire program terminates.

ObjectFlowTermCheck obtains the set of sub-CFGs corresponding to pro-
gram loops (line 2). Those can be found by linear time loop-reconstruction algo-
rithms based on the dominance. The algorithm then proceeds to produce a loop-
specific version of the abstract transition relation and the evolution relation for
each loop L. This is achieved by the recursive procedure Summarize (line 3),
which works as follows. It computes for each heap descriptor at the loop entry the
heap descriptors it reaches at the loop exit. This can be done in linear time by a
breadth-first search by following the abstract transition relation. Similarly, the
reachability relation can be computed in linear time for the evolution relation.
When a heap descriptor stored at the entry of an inner loop L′ is encountered,
Summarize executes for L′ and caches its result—a pair of relations between the
entry of L′ and its exit. It uses the cached relation of L′ to compute the result
for L. Finally, Summarize returns for each loop L the pair of relations where
inner loops are treated as atomic steps by using their entry-to-exit summarized
relations. Finally (lines 12–14), if a loop cannot be determined to terminate, we
emit a warning.

Conceptually, the well-founded relations of nested loops yield a lexicographic
order. However, summarization lets us avoid reasoning about this lexicographic
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order explicitly. Instead, it is constructed incrementally in reverse order to the
nesting level of the loops. The resulting verification is loop-modular: The outer
loop is verified to terminate under the (proven) assumption that the inner loop
terminates. However, loop-modularity comes with a price: When verifying the
termination of the outer loop we cannot use must-flow edges of the inner loop,
and vice versa.

Using the summary for Find, we apply our algorithm to the outer loop of
Fig. 1 and establish that it terminates.

The overall running time of our algorithm is linear in the size of the program
CFG P , the size of the abstract transition relation τ , and the size of the evolution
relation ev.

We note that our reasoning can only be applied to loops whose number of
iterations is linearly bounded by the number of objects that exist upon entry (this
is because the rank of an object can decrease at most by a number of times equal
to the height of the condensation graph, which is a static constant). In practice,
this does not seem to be a limitation as the overwhelming majority of programs
we have looked at have linear loops and the small number of super-linear loops
(such a fixed-point loops) do not seem to be amenable to automation.

4 Partition-Based Shape Analysis

Our algorithm for proving termination is parametric in the underlying shape
analysis, which is expected to satisfy three natural properties:

1. The analysis should represent (possibly unbounded) sets of states by finite
sets of abstract states, and provide an over-approximation of the program’s
transition relation by means of a finite abstract transition relation between
abstract states.

2. Every abstract state should induce a partitioning of (the unbounded set of)
the allocated objects in every state it represents into a finite set of regions.
Furthermore, the analysis should allow to deduce an evolution relation [30]
which tracks the flow of objects between regions in every transition.

Abstract Semantic Domains
s ∈ S Abstract states
S ∈ S ⊆ 2S Abstract domain
ρ ∈ R Region identifiers
τ ⊆ S × S Abstract transition relation

, ê ⊆ (S, R) × (S, R) Evolution relation

Concretization Functions
γ : S → 2Σ Concretization function
γR : (S × Σ) ⇀ (R → 2O) Region concretization function

Fig. 8. Summary of the abstract semantic domains and expected operations
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3. Given an abstract transition pertaining to a command that allocates memory,
the analysis should be able to determine which regions in the post-state may
contain newly allocated objects. Similarly, for a command that deallocates
memory, it should be able to determine which regions in the pre-state may
contain objects deallocated by the command.

In the rest of the section, we formalize the expected properties of the under-
lying shape analysis and describe the construction of the evolution relation.
Figure 8 summarizes the semantic domains and the operations assumed on them.

4.1 Shape Analysis

We assume that the underlying shape analysis uses an abstract domain S, ranged
over by S, whose elements are finite sets of abstract states. We denote the (arbi-
trary but finite) set of all possible abstract states by S, and range over it by
s. We are not concerned by the way the analysis works, only that it provides
a concretization function γ which determines which (concrete) states every set
S ∈ S ⊆ 2S of abstract states represents. We expect that the latter work in a
pointwise manner, i.e., γ(S) =

⋃
s∈S γ({s}). That is, the set of states represented

by S is the union of the states represented by its members. In addition, we expect
abstract states to record the value of the program counter, i.e., all the (concrete)
states represented by an abstract state s have the same value for the program
counter, and all the abstract states in a set S ∈ S record the same value of the
program counter.

Definition 1 (Shape Domain). A shape domain (S, γ) is comprised of a set
of sets of abstract states S ⊆ 2S and a concretization function γ : S → 2Σ

mapping sets of abstract states to sets of (concrete) states, such that for any
S ∈ S the following holds:

γ(S) =
⋃

s∈S

γ({s}) , and

∀s1, s2, σ1, σ2. ({s1, s2} ⊆ S ∧ σ1 ∈ γ({s1}) ∧ σ2 ∈ γ({s2})) =⇒ v(σ1) = v(σ2) .

Recall that the semantics of the program is described using a transition
relation between states. We expect that the underlying shape analysis computes
an over-approximation of this relation as a relation between abstract states.

Definition 2 (Abstract Transition Relation). Let (S, γ) be a shape
domain. An abstract transition relation τ ⊆ S × S is a binary relation over
abstract states. T conservatively represents a concrete transition relation T if

T ⊆ {(σ1, σ2) | (s1, s2) ∈ τ, σ1 ∈ γ({s1}), σ2 ∈ γ({s2})} .
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4.2 Partition-Based Shape Analysis

Partition-based shape analyses utilize abstract states which induce a finite par-
titioning of the (the unbounded set of) allocated objects in every state they
represent into a finite set of regions. The regions induced by an abstract state
often have a semantic meaning, e.g., different regions may correspond to different
data structures. However, for our purpose, such a meaning is of no importance.
We only care that for a given program, the number of regions induced by any
abstract state is finite. We abstract away from the particular details of this
kind of partition-based abstractions using the notion of a region concretization
function γR. Formally, we assume to be given a finite set of regions identi-
fiers R, ranged over by the metavariable ρ, and use them to identify subsets
of the dynamically allocated objects in a state. γR maps an abstract state s
and a concrete state σ represented by it to a function from region identifiers
to (the possibly empty) the set of objects they represent. For technical reasons,
we assume that R includes a specially designated region identifier ρfree , which
represents the free (unallocated) memory locations.

Definition 3 (Partition-Based Shape Domains). A partition-based shape
domain A = (S, γ, γR) is comprised of a shape domain (S, γ) and a region
concretization function γR : (S× Σ) → (R → 2O) , such that for every abstract
state s ∈ S and any concrete state σ ∈ γ(s), the following holds:

1. The free region represents the unallocated objects: γR(s, σ, ρfree) = F (σ), and
2. Every object is represented by exactly one region:

∀o ∈ O.∃!ρ ∈ R. o ∈ γR(s, σ, ρ).

The definition formalizes our intention that an abstract state s induces a
partitioning of the objects of every concrete state σ it represents. For example,
if a heap containing a single linked list, then all the objects comprising the list
may be in one region or in two regions, separating, e.g., the head of the list
from its tail. However, it is not possible for an object to appear in two different
regions. The partitioning of allocated objects is parametric in the chosen shape
domain. By introducing the free region, we ensure that all the objects, and not
only the allocated ones, are associated with a region. In our experiments, a region
is comprised of a connected set of objects. However, for our purposes, a region
may contain an arbitrary set of objects.

The success of a shape analysis algorithm to prove interesting properties often
depends on its ability to record properties which are common to all the objects
that reside in the same region. For example, in TVLA [26], it is often crucially
important to track the reachability relation between heap allocated object, e.g.,
that all the elements in the list pointed-to by a variable out can be reached
from it by following a finite number of n-pointer fields. To be able to record such
information, the partitioning induced by abstract states is dynamic—changes to
the state might lead objects to flow from one region to another.
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Perhaps the most important property that we require from the underlying
shape analysis is that it should be possible to deduce an evolution relation [30],
which tracks the flow of objects between the regions of abstract states related
by an abstract transition. We have shown an example of how to compute this
relation for separation logic. TVLA uses a similar approach.

Definition 4 (May Evolve Relation). Let (S, γ, γR) be a partition-shape
domain. A may evolution relation ev ⊆ (S,R)× (S,R) is a binary relation over
pairs of abstract states and region identifiers. We denote the abstract transition
relation underlying ev by

τ(ev) def= {(s1, s2) | ((s1, ρ1), (s2, ρ2)) ∈ ev} .

The evolution relation ev conservatively represents a concrete transition
relation T if

1. T is conservatively represented by τ(ev).
2. There is a transition from (s1, ρ1) to (s2, ρ2) if an object in a state represented

by s1 in region ρ1 flows to region ρ2 in a state represented by s2:

∀σ1, σ2, s1, s2, ρ1, ρ2.
(
(σ1, σ2) ∈ T ∧ σ1 ∈ γ({s1}) ∧ σ2 ∈ γ({s2}) ∧

γR(s1, σ1)(ρ1) ∩ γR(s2, σ2)(ρ2) �= ∅)
)

=⇒ ((s1, ρ1), (s2, ρ2)) ∈ ev.

The evolution relation records the way objects may flow between regions.
The last requirement we place is the ability to (conservatively) determine that
some of the evolution transitions correspond to must flow information, i.e., that
an object actually moves from one region to another.

Definition 5 (Must Evolve Relation). Let (S, γ, γR) be a partition-based
shape domain, ê an evolution relation, and T be a concrete transition relation.
ê conservatively under-approximates the flow of objects in T if

∀σ1, σ2, s1, s2, ρ1, ρ2.
(
((s1, ρ1), (s2, ρ2)) ∈ ê ∧ (σ1, σ2) ∈ T ∧

σ1 ∈ γ({s1}) ∧ σ2 ∈ γ({s2})
)

=⇒ γR(s1, σ1)(ρ1) ∩ γR(s2, σ2)(ρ2) �= ∅) .

5 Establishing Well-Founded Relations

Our termination algorithm ensures that a program P terminates by: (i) estab-
lishing a well-founded relation over the pre- and post- states of every transition
in P ’s concrete transition relations T , and (ii) attempting to prove the existence
of a cutting set of transitions that strictly decrease the relation.

We now describe how to construct this well-founded relation from the
abstract transition relation τ and the evolution relation ev, and how to detect
decreasing transitions via the must-evolve relation ê, computed using a partition-
based shape domain A = (S, γ, γR).
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Establishing a Well-Founded Relation Over Regions. Given the (finite) evolution
relation ev, we construct the graph induced by its strongly connected compo-
nents. Formally, every node in this graph corresponds to an equivalence class
of pairs r = (s, ρ) of abstract states and region identifiers. We refer to such a
pair as an abstract region (region for short). Recall that our algorithm verifies
the termination of every loop in the program separately. It does so by tracking
the flow of objects which were allocated at the entry to the loop. To prevent
us from considering objects which are allocated inside the loop in our termi-
nation argument, we collapse together all the nodes that contain a (s, ρ) pair
which is reachable in the evolution relation from the free region of some input
abstract state into a single ρfree region. We refer to the resulting graph as the
condensation graph and to its nodes as region ranks, and denote the region rank
corresponding to a region r by [r]. We say that a region r is less than or equal
to a region r′, denoted r 	 r′, if [r′] is reachable from [r].

Lemma 1. The relation r 	 r′ is well-founded.

Establishing a Well-Founded Relation Across Loop Iterations. We define a rela-
tion 	 between states that occur in T by lifting the relation between region rank
to objects in a pointwise manner. Note that we do not care about relating states
that do not occur in T and recall that a state encodes the value of the program
location. Thus, it is sufficient to only define a relation between pairs of states
(σ1, σ2) ∈ T that appear as transitions in T and then take its transitive closure.

Let s be an abstract state and σ ∈ γ({s}) a state represented by s. We define
the rank map of σ according to s, denoted by ranks,σ to be a mapping from
objects to region ranks according to the partitioning induced by s:

ranks,σ(o) = (s, ρ), where o ∈ γR(s, σ, ρ) .

Let (σ1, σ2) ∈ T be a concrete transition of P . We say that an abstract
transition (s1, s2) represents (σ1, σ2) if σ1 ∈ γ(σ1) and σ1 ∈ γ(σ1). We say
that σ1 is less than or equal to state σ2, denoted by σ1 	1 σ2, if there exists
an abstract transition (s1, s2) ∈ τ such that for every o ∈ O, it holds that
ranks1,σ1(o) ≤ ranks2,σ2(o). We write σ1 ≺1 σ2 if σ1 	1 σ2 and σ2 �	 σ1. We
define the binary relation · 	 · as the reflexive transitive closure of the smaller
or equal relation · 	1 · induced by T .

Lemma 2. The relation σ1 	 σ2 is well-founded, and if (σ1, σ2) ∈ T then
σ1 	 σ2.

Theorem 1. Let T+ denote the (irreflexive) transitive closure of T . If the loop
contains a cutting set of transitions, then the relation defined as

σ1 � σ2
def= {σ1 	 σ2 | (σ1, σ2) ∈ T+ ∧ v(σ1) = v(σ2)}

(that is, σ2 is the result of executing at least one loop iteration and reaching the
same program location) is well-founded.
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6 Interprocedural Analysis

We now briefly discuss the extension of our approach to verify termination of
recursive heap-manipulating programs. We forbid mutual-recursion and assume
procedures have local variables, but no input parameters nor return values5.
Syntactically, every procedure call is represented by a call node and a return node
in the program’s CFG. Every call node of p has a control-flow edge associated
with a call command connecting it to the entry node of p’s sub-CFG, and the
exit node of the latter is connected to each of p’s return nodes via a control-flow
edge associated with a return command. The operational semantics is extended
to handle procedures via reduction: we treat the call stack as a heap-allocated
list. This allows treating recursive procedures as loop commands that explicitly
manipulate the call stack. This kind of reduction has been employed successfully
in previous shape analysis algorithms to verify safety properties [24,25]. As far
as we are aware, we are the first to employ it to verify termination.

A disadvantage of this approach is that it does not allow us to take advantage
of the modular structure of the program— the underlying shape analysis becomes
a whole program analysis and has to cope with an additional heap-allocated data
structure. Our approach for verifying termination is, however, loop-modular, and
thus can still treat procedures in a modular way.

7 Implementation and Experimental Evaluation

We implemented our algorithm on top of the existing shape analysis of TVLA,
a parametric framework for shape analysis based on 3-Valued-Logic [17,26], and
used it to verify termination for the suite of benchmarks listed in Table 1. The
experiments were performed on a machine with a 2.5 GHz i7 Intel processor
and 16 GB memory. The Time column measures the overall time of the shape
analysis and the termination analysis combined. The overhead column lists the
fraction of the time of the analysis spent to prove termination. As expected, the
termination analysis is rather efficient.

We extended our programming language to handle bounded parallelism by
allowing the program’s CFG to have multiple pairs of entry and exit nodes.
Every pair corresponds to a thread: The entry node corresponds to the program
location of the thread when the program starts. The program terminates when
every thread reaches its exit nodes. We assume that the sub-CFG pertaining to
different threads are not connected. We record in every state the program loca-
tion of every thread, and define the operational semantics to be the interleaving
of primitive commands executed by different threads.

The suite of benchmarks consists of a variety of programs, concurrent and
single-threaded, both recursive and iterative, flat and deeply nested loops. We
handle several classic sorting algorithms, trees and graphs algorithms. We imple-
mented and verified 16 out of the 21 benchmarks used to evaluate Mutant [5],
5 Mutually recursive procedures can be handled by merging them into a single recur-
sive procedure, and parameter transfer by using specially-designated global variables.
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which we had access to. One of the 16 benchmarks has a termination bug in which
a lasso is created in a linked list, preventing traversing loop from ever reaching
back to the head, and thus making it iterate forever. Our analysis correctly
warned against non-termination. Some other interesting examples which were
successfully verified for termination include Deutsch-Schorr-Waite tree-traversal
algorithm [18] which involves double-reversal of links, the phases of a Mark-and-
sweep garbage collection algorithm, the Even-Odd-marking [16] program which
marks the elements of a singly-linked list as odd or even regarding their distance
from the end of the list. We successfully prove termination of some concurrent
programs including Treiber stack and CAS-based queue. A faulty implementa-
tion of the Treiber stack was correctly warned for non-termination.

Table 1. Benchmarks, analysis times, relative overhead over the original shape analysis
times, and loop-nesting depth

Benchmark Time (sec.) Overhead ND

a. Shallow programs manipulating acyclic lists

Search, Insert, Reverse, Delete-all, Merge-sorted ≤0.7 ≤0.1% 1

b. Deeply nested programs manipulating acyclic lists

Bubble-sort 5.1 14% 2

Insertion-sort 0.9 1% 2

Insertion-sort with malloc 1.1 2.7% 2

Odd-even-marking 0.2 5.1% 2

Nested-loop-depth-4 4.4 4.5% 4

c. Shallow programs manipulating cyclic lists

Mutant 1–16 0.113 0.1% 1

Search, Insert ≤0.1 ≤0.1% 1

d. Recursive programs manipulating acyclic lists

Search, Insert, Append, Reverse, Delete ≤0.3 ≤0.3% 1

Merge 38.9 0.5% 1

e. Programs manipulating binary trees

Insert-to-sorted-tree 0.9 1% 1

Delete-from-sorted-tree 42.1 6% 1

Deutsch-Schorr-Waite 14.5 4.8% 1

f. Programs manipulating graphs

Mark-and-sweep 0.8 1.25% 1

g. Concurrent programs (lock-freedom)

CAS Merge two lists (2 threads) 9.21 4% 1

Treiber stack (2 threads) 1.4 2.5% 1

Treiber stack (3 threads) 21.2 13% 1

Faulty Treiber stack (2 threads) 1.6 1.25% 1
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8 Related Work

In this section, we discuss and compare our work with other approaches for
verifying termination of heap-manipulating programs. This body of work can
broadly be classified according to the following dimensions: (i) lattice of heap
invariants and supported data structures, and (ii) type of “heap measures” used
for reasoning about termination.

In terms of supported program features, we are the only ones to support side-
effecting recursive procedures. However, we completely abstract away integers.
Approaches Based on Inductive Heap Invariants. Approaches based on
separation logic [4,5,8,9,19] and tree automata [16] are restricted to programs
operating on inductively-defined data structures, preventing them from handling
programs operating on graphs of unbounded treewidth such as arbitrary graphs.
Our algorithm is parametric in the underlying shape analysis and can therefore
be used both with separation logic and 3-valued shape analysis. Our implementa-
tion uses 3-valued shape analysis as the underlying domain to prove termination
of programs manipulating both inductively-defined data structures as well as
arbitrary graphs.

Both Berdine et al. [4,5] and Brotherson et al. [8,9] use the number of unfold-
ings of inductively-defined definitions as a basis for their reasoning. Berdine
et al. [4,5] modify a separation logic-based analysis to track changes in the num-
ber of unfoldings of inductive predicates and produce a numeric program whose
termination implies the termination of the original program. The termination of
the numeric program can be checked by termination proving tools for numeric
programs. Brotherson et al. [8] develop a proof framework for cyclic proofs where
termination is done by directly relating (cyclic) inference trees with inductive
predicates. Brotherson and Gorogiannis [9] introduce a method for synthesizing
inductive predicates, allowing them to automatically adapt to the data struc-
tures appearing in a program.

Magill et al. [19] develop a flexible analysis that simultaneously tracks both
shape invariants and related numeric measures such as the sizes of lists and trees.
They generate a numeric program whose termination proof implies termination
of the original program. Proving termination of the numeric program is done by
using tools dedicated for that purpose (Armc-Live).

Tracking numeric properties is both expensive and requires making mod-
ifications to the shape analysis. Proving termination of numeric programs is
undecidable in general and expensive in practice. Our algorithm avoids these
problems by directly processing the result of the shape analysis in linear time.
We note that computing the evolution relation is relatively simple and efficient.

Haberhmehl et al. [16] use shape analysis based on tree automata to
generate a counter automaton that simulates the original program. They
use counterexample-guided abstraction refinement to obtain a high degree of
automation (and to prove relative completeness for a subclass of programs).
They track measures suitable for termination of tree manipulation such as tree
size, height, and distance of pointers from the root. However, they only handle
tree rotations and do not handle dynamic allocation.
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Approaches Based on FOTC Shape Invariants. A family of analyses approx-
imate the shape of the heap via predicates expressible in first-order logic with
transitive closure (FOTC). These enable to indirectly capture some recursive data
structures as well as reason about arbitrary data structures in a sound manner.

Podelski et al. [22] present an analysis for inferring necessary preconditions
for termination of list-manipulating programs. Their analysis starts with a coarse
heap abstraction and proves termination by translation to numeric programs. If
an abstract counterexample is found, the heap abstraction is refined. The heap
abstraction is converted to a numeric program which tracks the lengths of heap
paths between two pointer variables.

Gulwani et al. [14] develop an abstract interpretation framework for tracking
numerical relations betweens the sizes of heap regions, and use it to manually
obtain ranking functions for bubble-sort and the mark and sweep garbage col-
lector benchmark. One disadvantage of combining shape and size information
(other than the expensive cost incurred by tracking numeric properties and per-
forming partial reduction between the shape domain and numeric domain) is the
unpredictability brought by widening operations that are usually necessary for
the numeric sub-domain. Additionally, the termination of some programs, e.g.,
Odd-even-marking [16], does not depend on the sizes of heap regions.

Albert et al. [2] and Fausto et al. [27] develop heap abstractions based on
sharing, cyclicity, and aliasing and use access path lengths to prove termination.
Technically, they translate Java byte code to constraint logic programs (CLP)
where the actual termination reasoning is done. Giesl et al. [21] define a shape
analysis based on sharing, aliasing, and reachability patterns. This allows them
to analyze programs manipulating integers and tree-shaped data structures and
prove their termination by reduction to term rewriting systems (TRS). The
termination measures available by TRS go beyond region sizes (e.g., flattening a
tree). They later extend their technique to handle certain cyclic data structure
patterns [6] and recursive procedures without side-effects [7]. Their analysis has
been implemented in the AProVE tool [13], which analyzes both Java and C
programs.

The main limitation of the last three approaches is the rigidity of the heap
abstraction—adapting the abstraction to precisely handle new data structures
and new data structure manipulation patterns requires reworking the analysis.
In particular, proving termination for programs manipulating arbitrary graphs
seems to be out of reach. In contrast, our algorithm is not tied down to any
specific shape analysis technique, allowing us to take advantage of advances
in the field of shape analysis, e.g., compositional analysis [10], and automatic
synthesis of inductive predicates [9,15]. Our implementation on top of TVLA
allows us to quickly adapt to new data structures by refining the abstraction with
new predicates (soundness is automatically guaranteed). Finally, our treatment
of recursion allows us to quite precisely track intricate properties between the
heap and the call stack.
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Efficiency. As far as we know, our algorithm is the only one that operates in
linear time with respect to an underlying shape analysis. This is due to two
factors—the properties of the well-founded relation our analysis constructs and
our modular treatment of loops and recursive procedures.
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