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Abstract. SMT-based program verifiers often suffer from the so-called
butterfly effect, in which minor modifications to the program source cause
significant instabilities in verification times, which in turn may lead to
spurious verification failures and a degraded user experience. This paper
identifies matching loops (ill-behaved quantifiers causing an SMT solver
to repeatedly instantiate a small set of quantified formulas) as a signifi-
cant contributor to these instabilities, and describes some techniques to
detect and prevent them. At their core, the contributed techniques move
the trigger selection logic away from the SMT solver and into the high-
level verifier: this move allows authors of verifiers to annotate, rewrite,
and analyze user-written quantifiers to improve the solver’s performance,
using information that is easily available at the source level but would
be hard to extract from the heavily encoded terms that the solver works
with. The paper demonstrates three core techniques (quantifier splitting,
trigger sharing, and matching loop detection) by extending the Dafny
verifier with its own trigger selection routine, and demonstrates signifi-
cant predictability and performance gains on both Dafny’s test suite and
large verification efforts using Dafny.

1 Introduction

Automated program verifiers like Frama-C [18], AutoProof [26], VeriFast [16],
SPARK 2014 [14], and Dafny [19] provide usable environments in which to write
provably correct programs. By employing efficient (semi-)decision procedures
(found in satisfiability-modulo-theories (SMT) solvers [3,4,9,11]) and aggressive
caching [5,21], these verifiers provide users with generally responsive feedback,
and by shielding the user from all direct interaction with the decision procedures,
the program verifiers offer a gentle learning curve. While SMT solvers are often
pretty darn fast, their efficiency ultimately involves various heuristics, which leads
to a problem in SMT-based program verifiers: we call it the butterfly effect.

The butterfly effect describes the phenomenon that a minor modification
in one part of the program source causes changes in the outcome of the ver-
ification in other, unchanged and unrelated parts of the program. When this
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change in outcome causes the verifier to hit a time limit or other resource limit,
previously succeeding verifications turn into spurious verification failures. The
butterfly effect thus leads to verification instability, user frustration, and overall
a degraded user experience.

By profiling the behavior of an SMT solver (Z3 in the context of the Dafny
program verifier), we have found many spurious verification failures to contain
matching loops—ill-behaved quantifiers causing the SMT solver to repeatedly
instantiate a small set of quantified formulas [11]. Such matching loops are bad
news, but with some luck, the heuristic proof search in the SMT solver may hap-
pen to find a proof without falling into the trap of the matching loop. Evidently,
such “luck” occurs often enough that when an unrelated change in the program
source tickles the heuristics differently, latent matching loops are perceived as
verification instability, whereas the real culprit was the presence of the matching
loop in the first place.

In this paper, we contribute strategies for making quantifiers better behaved.
The major part of the novelty of our strategies lies in a willingness to rewrite
user-defined quantifiers. Our technique automatically selects matching triggers,
which give a way to control how the SMT solver processes quantifiers. Because
our technique finds candidate matching triggers before it rewrites quantifiers,
we achieve better trigger selection than if the user had rewritten the quantifiers
manually. Part of our strategies is also to select the triggers at the program-
source level, rather than at the level of formulas in the SMT input. This is a good
idea, because it lets our technique avoid some liberal triggers that consist only
of functions added during the generation of verification conditions. Moreover,
source-level trigger selection gives a clear way to explain to users which triggers
were selected and how matching loops were averted, a simple but important
feature for which we have received praise from users. We have implemented our
strategies in the Dafny program verifier. Our paper also contributes experimental
data that shows that our strategies significantly improve both predictability and
performance of the verifier.

2 Background

In this section, we give the necessary background on how matching triggers are
used by the SMT solver to handle quantifiers and on the architecture of the
program verifier.

2.1 Matching Triggers

We assume the SMT solver deals with quantifiers along the lines proposed by
Nelson [24], which has been implemented, for example, in Simplify [11] and
Z3 [8,9]. The idea can be described as follows.

At any time during its proof search, the state of the SMT solver includes the
set of formulas from which it is attempting to discharge the proof goal. These
formulas are represented by various cooperating decision procedures. The deci-
sion procedure for uninterpreted functions is of special importance, as it not only
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keeps tracks of equivalence classes of terms (typically in a data structure called
an E-graph [12,25]), but also serves as a mediator between the theories. When
an existentially quantified formula is equated with true, it is Skolemized and
the resulting formula is equated with true in the E-graph. When a universally
quantified formula is equated with true, the strategy of the SMT solver is to
instantiate the quantifier and equate the resulting formulas with true.

Logically, it is sound to instantiate a universal quantifier with anything at
all. However, arbitrary instantiations are not likely to help the proof search. To
make more informed instantiation decisions, the SMT solver relies on matching
patterns, also known as matching triggers or just triggers. Given some triggers
for a quantifier, the SMT solver looks for terms in the E-graph that match any
of the triggers and then instantiates the quantifier accordingly. The process is a
bit like in term rewriting, except that the new instantiations are added to the
E-graph, rather than somehow replacing the matching terms.

Let us illustrate with an example. A possible trigger for the quantifier

forall x: int · f(x) == 3 * g(x) + 5

is f(x), meaning that the presence of any term f(E) in the E-graph gives rise to
the instantiation x := E (yielding the formula f(E) == 3 * g(E) + 5). From now
on, we will surround the terms of a trigger with curly braces. In this example,
we may choose to understand the trigger as saying “wherever there is an interest
in f, instantiate the quantifier”. Another possible trigger is {g(x)}, which would
have the effect of producing information about g in terms of f. It is possible to
associate both triggers with the quantifier, which says to instantiate the quanti-
fier if either an f term or a g term is found in the E-graph: {f(x)} {g(x)}. Yet
another possibility is to use the trigger {f(x), g(x)}, which says to instantiate
the quantifier only with those terms that appear in the E-graph as arguments
to both f and g.

Here is more subtle example. The quantifier

forall x: int · 0 < x =⇒ f(x) == f(x-1) + f(g(x))

may tempt us to consider any of {f(x)}, {f(x-1)}, or {f(g(x))} as candidate
triggers. However, {f(x)} is problematic. If the E-graph contains a term f(E),
then the instantiation x := E will produce a term f(E-1), which gives rise to
another possible instantiation, x := E-1. This is known as a matching loop [11]
and should be avoided. The fact that the term f(E-1) in the instantiation is
guarded by the antecedent 0 < E does not help, because E may be term whose
distance from 0 cannot be determined from the proof context.

Candidate trigger {f(x-1)} is also problematic, but for another (or rather,
additional) reason: it contains the symbol -, which is interpreted by the decision
procedure for arithmetic. When a symbol is interpreted, one cannot rely on it
appearing in this form in the E-graph. For example, the E-graph may contain
a term f(y+2) but this may still not cause the instantiation x := y+3, because
the term y+3, let alone the equality y+2 == (y+3)-1, may be unknown to the
E-graph.
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Candidate {f(g(x))} does not suffer from the problems we just described.
It is rather discriminating—it will cause an instantiation x := E only if the E-
graph contains a term that applies f to a term in the equivalence class where
g is applied to E. Of course, depending on the application, this is possibly too
discriminating to give rise to the instantiations that are needed to reach the
proof goal.

Triggers can be specified as part of the SMT-LIB 2 input to the SMT solver.
In effect, this provides a way to program the SMT solver [22]. If the input does
not specify a trigger for a quantifier, the SMT solver attempts to select triggers
from the terms in the quantifier’s body. As we argue in this paper, leaving trigger
selection to the SMT solver can contribute to verification instabilities. Instead,
we show a strategy for selecting triggers at a level closer to the problem domain.
A formal semantics of triggers, as well as ways to define decision procedures
using quantifiers and triggers, has been studied by Dross et al. [13].

2.2 Architecture of the Program Verifier

The verification conditions generated for a Dafny program contain quantifiers
from three major sources. One source is the axiomatization of standard Dafny
operators and types, like the axiomatization of finite sequences. These quantifiers
have hand-written triggers. A second source is the encoding of constructs defined
in the Dafny program, like user-defined recursive functions. The triggers for
these quantifiers come from hand-crafted schemas (see, e.g., [1]). The third form
is user-written quantifiers. Previously, these were translated into SMT input
without any attempts at computing triggers. Consequently, it had been left to
the SMT solver to select triggers. To better understand why this can cause
problems, let us say a few words about the architecture of the verifier and about
what we will call parasitic terms.

The architecture of the Dafny verifier is the standard one of translating the
source language into an intermediate verification language (Dafny uses Boogie
[2,20]) and then generating (using the Boogie tool) verification conditions from
it. Each of these two steps does a translation into more coarse-grained types and
more concrete encodings.

For example, consider the Dafny expression

forall x · 0 ≤ x < a.Length =⇒ a[x] == 31

where a denotes a reference to an integer array. In the translation of this expres-
sion into Boogie, the heap dereference is made explicit and the offset into the
array is computed from the integer x. Here is (a slight simplification of) the
Boogie encoding:

forall x: int · 0 ≤ x ∧ x < _System.array.Length(a) =⇒
Unbox(read($Heap, a, IndexField(x))) == 31

As one can glean from this expression, the logical encoding of Dafny uniformly
stores array elements as being of a type Box, so the read from the heap is followed
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by an Unbox operation. Furthermore, when Boogie translates this expression into
SMT input, the formula becomes:

forall x: int · 0 ≤ x ∧ x < _System.array.Length(a) =⇒
U_2_int(Unbox(intType, MapType1Select($Heap, a, IndexField(x)))) == 31

Here, we see yet another translation between types, where most of Boogie’s
types are collected into a type called U and the formula includes a mapping from
U to int [20].

As can be seen in this example, what at the level of Dafny seems like a good
trigger—the term a[x], which would express “whenever there is an interest in
an element of a, instantiate the quantifier”—is not easily identifiable in the SMT
formula. In fact, at the SMT level, the term IndexField(x) may look like a good
trigger, but that is quite a liberal trigger and is likely to lead to far too many
irrelevant instantiations. We call the terms involving these additional functions
parasitic. In other words, parasitic terms are terms introduced by Dafny’s trans-
lation solely for encoding purposes; examples include Box, Unbox, and IndexField.

The Dafny front-end and verifier already infer from the given program various
pieces of information, like omitted types and rank functions for termination.
Dafny IDEs make this information available as hover text. In line with this
tradition of informing users about inferred elements, our attitude is that Dafny
users should not need to write triggers themselves, but may need to understand
triggers in order to diagnose poor verification performance. It would thus be nice
to communicate selected triggers to the user. Unfortunately, triggers selected in
the SMT solver are difficult to obtain, and their inclusion of parasitic terms
would not make sense to the Dafny user. Moreover, in many cases, translating
back from a trigger picked by the SMT solver to a Dafny expression is hard: the
translation from Dafny to the SMT solver’s language is not a bĳection.

These two aspects (avoiding parasitic terms and informing the user about
trigger selections) lead us quite naturally to argue that it makes sense to select
triggers at the source level rather than leaving this task to the SMT solver. From
the use of good triggers, one can hope for better behaved instantiations and
thus more stable verification. Moreover, information from the trigger-selection
process can more easily be explained to the user through hover text. Of course,
selecting triggers at the source level would be easy to accomplish by applying the
SMT solver’s algorithms to the nodes of a different abstract syntax tree (AST).
However, our strategy goes beyond merely selecting triggers at the source level,
as we explain in the next section.

3 Trigger Selection

When tasked with adding triggers to a quantifier, our code proceeds in a series
of small steps. At a high level, it first walks down the AST of the body of the
quantifier, collecting terms that could be part of a trigger. Then, it enumerates
subsets of these terms, thus generating a large collection of trigger candidates
(each candidate trigger is a set of terms). It then rejects candidates that fail
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to mention all quantified variables, and filters the set of candidates to remove
redundancy and improve the performance of the SMT solver. Finally, it uses
heuristics to select relevant triggers, attempting to predict and prevent matching
loops, and issuing warnings if matching loops seem unavoidable.

Each individual step is detailed below. Though previous literature has not
given them extensive treatment, and in particular not with a focus on efficiency
of implementation, some of these steps have appeared in one form or another in
previous work. Apart from a rigorous description, our contribution lies beyond
these steps: in addition to annotating single quantifiers, we introduce two new
techniques, quantifier splitting and trigger sharing. These techniques are the key
to preserving as much expressiveness as possible despite matching loop suppres-
sion. We describe them in detail at the end of this section.

3.1 Annotating the AST

Our extension first annotates subterms of each quantifier’s body by labeling
some of them as trigger heads, and others as trigger killers. Trigger killers are
terms that are not permitted to appear in triggers: typically, these have forms
that do not reduce to uninterpreted functions, such as arithmetic operations
(a + b) or logical connectives (a =⇒ b). Conversely, Trigger heads are terms
that may appear in triggers, such as applied functions (P(x)), array accesses
(a[x]), member accesses (this.someField), or set membership tests (a in S).
More precisely, trigger heads are nodes of the AST of a quantifier’s body whose
children include at least one of the quantified variables, and do not include trigger
killers. After annotating each subterm, our code collects all trigger heads, and
attaches them to the quantifier.

As an example, in forall x · x in S ⇐⇒ f(x) > f(x+1), our prototype
annotates x in S and f(x) as trigger heads, and x+1 and f(x) > f(x+1) (and
thus all of their ancestors, like f(x+1) and the whole body of the quantifier) as
trigger killers.

This phase takes time linear in the cumulative size of the ASTs all quantifiers
in the source program, which is bounded by the size of the source program itself.

3.2 Generating Candidates

After collecting terms suitable for inclusion in a trigger, our code generates
candidate triggers by enumerating combinations of these suitable terms. Since
the powerset of all collected terms can quickly grow large, this enumeration is
restricted by ensuring that each generated candidate has two properties: ade-
quacy as a trigger (each candidate mentions all variables, as required by the
SMT solver), and parsimony (removing a term from any candidate causes it to
become inadequate). This parsimony property is highly desirable: since it puts
more constraints on quantifier instantiations, any non-parsimonious candidate
matches less often than its parsimonious counterparts.

As an example of the effect of the parsimony requirement, consider a col-
lection of three suitable terms P(x, y), Q(y, z), and R(x, z). From this
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collection, our code constructs three candidate triggers: {P(x, y), Q(y, z)},
{P(x, y), R(x, z)}, and {Q(y, z), R(x, z)}. {P(x, y), Q(y, z), R(x, z)}
is eliminated because it is redundant (we call a candidate trigger redundant
when it is strictly more specific than another candidate trigger; this happens
when any match against the more specific trigger induces a match against the
less specific one).

The parsimony requirement is particularly useful when the body
of a quantifier mentions many predicates (in the extreme case of
forall x · P1(x) . . . Pn(x), it allows our code to generate only n candidates,
instead of the naïve 2n), but implementing it efficiently is non-trivial. Indeed, it
is not enough to check as subsets are enumerated that each added term men-
tions a previously unmentioned variable: the addition of a new term can make a
previous term redundant, as for example when adding R(x, y, z) to a candidate
containing P(x) and Q(y). To track parsimony efficiently, our code keeps track of
ownership relations between terms and variables. When recursively construct-
ing subsets of a given set of terms, our code first ensures that the newly added
term does mention a previously unmentioned variable; if so, the term is added,
and it gains ownership of all variables that it mentions. After this operation, if
any term is left without ownership of any variable, the whole subset is marked
as redundant, and that branch of the subset generation recursion is cut. For
performance, as it recursively constructs subsets, our code equips each partially
constructed set of terms with two hashmaps: one hashmap from each term to
the set of variables owned by that term, and the other hashmap from each vari-
able to its (single) owner, if any. By incrementally constructing these hashsets
of variables owned by each term and hashmaps associating each variable to its
owner term, our code can efficiently (in time linear in the number of quanti-
fied variables in the context) determine whether adding a term to a partially
constructed set makes it redundant (with regard to variables mentioned)1.

Continuing on the previous example forall x · x in S ⇐⇒ f(x) > f(x+1),
our code generates only two triggers: {f(x)} and {x in S}. The candidate trigger
{f(x), x in S} is redundant, and thus our code excludes it.

Without the parsimony requirement, this step would have for each quantifier
a worst-case time complexity exponential in the number of previously collected
trigger heads. Thanks to that requirement, however, this step has complexity
k · n · n1 · . . . · nk where k is the number of quantified variables and n =

∑
i ni is

the number of trigger heads in the quantifier’s body (each ni counts how many
of these terms mention the ith quantified variable). This yields an upper bound
of k · nk+1; in practice, this upper bound is seldom reached: each trigger head
often mentions a single quantified variable.

3.3 Picking Triggers and Preventing Matching Loops

In its last phase, our code uses a (necessarily incomplete) heuristic to evalu-
ate whether each candidate trigger may cause a matching loop. Roughly, this
1 Curious readers are directed to the CopyWithAdd method of the SetOfTerms class

implemented in the Triggers/TriggerUtils.cs part of our implementation.
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heuristic flags a trigger as potentially looping if instantiating the quantifier may
lead to a ground term that again matches the trigger.

In more details, our code proceeds as follows for each candidate:

1. For each term t of the candidate, our code collects all terms of the
quantifier’s body that match the term t. For example, it may pick
f(x+1), f(if a then b else c), and f(0) for the candidate term f(x) (a
match occurs with a term t’ when t’ can be unified with t; that is, when
there exists an instantiation of the variables of t that yields t’).

2. For each matching term, our code decides whether the match should be
deemed a false positive, and if so removes it. False positives are terms that

– are equal to the trigger (a term f(x) does not cause loops if the trigger
is f(x)),

– also appear in the trigger (a term f(g(x)) does not cause loops if the
trigger is {f(y), f(g(x))}, despite being a match for f(y)),

– differ from the trigger only by variables (a term f(y, x) is
not deemed to cause a loop if the trigger is f(x, y); indeed,
forall x,y · f(x, y) == f(y, x) is a quantifier that harmlessly can use
either term as a trigger), or

– differ by terms that do not contain bound variables (a term f(0) does not
cause loops if the trigger is f(x)).

3. If any terms are left that could cause loops, our code marks the trigger as
risky, recording the terms with which it may loop, and excludes it from the
pool of candidate triggers.

With matching loops mostly eliminated, our code then proceeds to pick triggers:
it analyzes the set of generated trigger candidates, ordering them according to a
trigger specificity relation (wherein a trigger is less specific than another one if
every match of the latter is also a match of the former), and excluding all non-
minimal candidates. Indeed, just like non-parsimonious candidates, non-minimal
candidates are redundant.

Note that, crucially, this selection phase happens after the matching loop
suppression phase. As an example of minimality, and of the importance of this
ordering, consider a collection of two terms f(x) and f(f(x)). In this case, our
minimality heuristic would retain only one trigger, {f(x)}. But since its match-
ing loop detection logic preemptively removes {f(x)} from the candidate pool,
{f(f(x))} is selected instead, indeed preventing a matching loop.

This phase has, for each quantifier, a time complexity bounded by k · n2,
where k is the number of candidates, and n the size of the body of the quantifier
(the quadratic factor is obtained by bounding the cost of comparing two terms
for equality by the size of the quantifier’s entire body).

3.4 Splitting Quantifiers and Sharing Triggers

The strategy presented above suffers from one crucial weakness: in practice, users
tend to collect related conditions under a single quantifiers. Thus, expressions
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of the form forall x · P(x) ∧ (Q(x) =⇒ P(x+1)) are quite common. The algo-
rithm presented above finds {P(x)} and {Q(x)} as reasonable trigger candidates,
but proceeds to eliminate {P(x)} from the candidates pool, noticing its potential
to loop with {P(x+1)}. Unfortunately, this means that with the naïvely auto-
generated trigger {Q(x)}, this quantifier is not enough to prove a proposition
such as P(0), which should follow trivially.

To offset this over-specificity, our code implements quantifier splitting,
a Dafny-to-Dafny rewriting technique that splits user-written quantifiers
to reduce the chances of large quantifier bodies causing self-loops. For
the example above, it thus produces two quantifiers, not one, and pro-
ceeds to annotate them separately. forall x · P(x) gets a trigger {P(x)}, and
forall x · Q(x) =⇒ P(x+1) gets a trigger {Q(x)}.

Exactly how to perform trigger splitting is an interesting design concern: on
one extreme, one could simply split the body of the quantifier around conjunc-
tions.

On the other extreme, one could rewrite the body into conjunctive normal
form before splitting. The former approach is too weak: it fails to split quanti-
fier bodies in the common case where a collection of properties is predicated by
a common condition, such as forall i · 0 ≤ i < |a| =⇒ (... ∧ ... ∧ ...).
The latter approach correctly handles this pattern, producing three predicated
quantifiers, but can introduce exponential increases in formula size. Our app-
roach is therefore a compromise between these two extremes, where only one
level of normalization is allowed, around =⇒.

This properly handles the example above, without leading to significant
increases in formula size. It is also in line with Dafny’s predicated quantifier
notation: the example above can be written forall i | 0 ≤ i < |a| · ... ∧ ... ∧ ...,
which gets split into three quantifiers of the same shape forall i | 0 ≤ i < |a| · ....

Splitting a quantifier before performing matching loop detection, however, is
still not enough to recover its original expressiveness: after splitting the exam-
ple above into forall x · P(x) and forall x · Q(x) =⇒ P(x+1), and assigning
{P(x)} as the trigger for the first split quantifier and {Q(x)} for the second,
adding a term Q(n) to the collection of ground terms of the SMT solver does not
immediately entail learning P(n) (it did for the original quantifier with {Q(x)}
as the trigger). To recover more of the lost expressiveness, our code enriches
the pool of terms to be considered for trigger elaboration at the beginning of
the trigger generation process by sharing candidates between all quantifiers that
derive from the same split quantifier. This strategy, which we call trigger sharing,
yields two triggers for the first split quantifier forall x · P(x), namely {P(x)}
and {Q(x)}. The second quantifier still only gets one trigger, since {P(x)} would
loop with P(x+1). Interestingly, this strategy leads to quantifiers whose triggers
are composed of terms that do not necessarily appear in the quantifier’s body;
an otherwise uncommon, but not undesirable, situation: in a sense, the shared
trigger captures insight gathered from the programmer about weak connections
between relatively independent propositions.

This phase has a time complexity linear in the size of each quantifier.
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4 Evaluation

Our new trigger selection strategy brings three main benefits:

– Verification is more predictable: adding auto-generated triggers to split
quantifiers significantly reduce verification instabilities. We demonstrate this
effect on Dafny’s test suite by comparing the standard deviations of test
running times across multiple runs with different seeds, with and without
Dafny-generated triggers.

– Verification is faster: Dafny-generated triggers prevent certain matching
loops from occurring, improving verification times. We demonstrate this effect
on a large verification effort from the IronFleet project [15].

– Debugging is easier: Dafny-generated triggers are built from terms found in
the bodies of user-written quantifiers, allowing Dafny to print detailed warn-
ings and error messages. We discuss our experience using these messages as
a debugging aid while adjusting examples that relied on promiscuous trigger
instantiations to verify, and while verifying new programs.

We discuss these three aspects in the following subsections, before presenting
experimental results supporting these conclusions.

4.1 Improved Predictability

Measuring the impact of Dafny-level trigger generation on predictability is par-
ticularly difficult. Indeed, triggers selected at the Dafny level are often much
more specific triggers than those which the SMT solver would have picked from
encoded terms. This is mostly desirable, but it still causes a number of problems:
certain examples for which the SMT solver was lucky and could find a proof of
thanks to absurdly liberal triggers stop working; other examples that (again,
due to luck) had a short proof using promiscuous triggers take much longer to
verify. In most cases, the problems are easily fixable: tightening the proof by
adding a few assertions is often enough to drive the solver down the right proof
path, without using unreasonable triggers. To ensure fairness, our experiments
separate the contribution of these modifications to improvements in verification
performance or stability; yet we still view these added annotations as net gains:
it is preferable to invest slightly more work in ensuring that a verification is
stable than to rely on luck and liberal trigger choices.

Looking more closely at instabilities, we see two ways in which unpredictable
performance manifests itself: one derives from variations in solver behavior due
to choices of random seeds, and the other derives from the specific way in which
the verification problem is stated by the user. Ideally, we wish our verification
tool to be robust to both.

In the first case, we expect a robustly annotated collection of quantifiers to
be agnostic to the random choices that inform the solver’s behavior, and thus
verification times to be mostly independent from the choice of random seed
used by the solver, or from the version of the solver used. We call this static
predictability, or robustness to prover changes.
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In the second case, we expect equivalent formulations of verification condi-
tions to lead to roughly similar verification performance, and equal verification
results. In particular, we do not expect users to adjust their writing to minimize
unpredictable verification performance, or to make insignificant source changes
to finding “the” right formulation that causes Dafny to succeed (unfortunately,
the current verification process encourages users to do precisely this: since trig-
gers are hard to debug, it is often simpler to experiment with various formulations
of the problem, until one is found that does not seem to send the prover into a
loop). We call this dynamic predictability, or robustness to source changes.

4.2 Improved Verification Speeds

Beyond the improved predictability, Dafny-generated triggers offer a significant
performance boost in large verification projects. Analysis of traces produced by
the SMT solver shows that in many cases, lax triggers are the cause of numerous
useless instantiations, slowing down the proof search process. By ensuring that
we never pick generic, uninformative triggers, we can perceptibly reduce the
verification times of many complex developments.

4.3 Easier Debugging and Interaction

Beyond performance and predictability, Dafny-generated triggers provide a
meaningful improvement in user experience:

– Triggers are Dafny terms, and can therefore easily be displayed to the user, in
the form of informative tooltips in Dafny IDEs. In contrast, triggers collected
by the SMT solver are parts of Dafny’s and Boogie’s combined encodings,
and thus hardly meaningful to the user.

– Quantifier splitting happens at the Dafny level, and therefore is also amenable
to presentation to the user, in the form of subtle mouseover messages.

– Potential matching loops can be detected early, and reported to the user.
Instead of being an arcane part of SMT performance debugging, triggers
become a discreet part of the usual verification landscape, which the user is
reminded of only when it may start causing issues.

– Common patterns introducing matching loop (such as forall x · a[x] ≤ a[x+1],
or forall x · f(x) = f(f(x))) can be the object of specific advice, beyond the
“potential matching loop” warnings. Our implementation does not offer such
specialized advice, but it would be a reasonable extension of our current efforts.

In practice, we have received very enthusiastic feedback from users of the new
system, and praise for the integrated, single-language experience that triggers at
the Dafny level allow.
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4.4 Experimental Results

We evaluate the impact of Dafny-generated triggers on Dafny programming
through three experiments:2

– In the first one, we run most of the Dafny test suite (about 350 test files
of varying complexity and running times) with varying random seeds, and
measure per-test completion times and standard deviations across ten runs.
We run the original Dafny code on the original test suite, followed by our
own version of Dafny with and without triggers, on a version of the test
suite updated to verify successfully with Dafny-generated triggers. Running
these three tests allows us to evaluate performance and static predictability
gains derived both from adding triggers to user-written quantifiers, and from
editing the test suite to correct the warnings issued by our trigger-generating
code.

– In the second experiment, we use our implementation to process a large code
base after enabling Dafny-generated triggers, and show significantly improved
verification times.

– In the third, informal experiment, we fully verify a version of the classic
Union-Find algorithm, and discuss how auto-triggers improve the verifica-
tion experience as the code and its proofs are being written. Contrary to
our performance and static predictability tests, this experiment shows the
dynamic predictability benefits of using Dafny-generated triggers throughout
the process of developing and verifying new code.

Performance and Stability Evaluation Across Multiple Runs of the
Test Suite.
Most of Dafny’s test suite (perhaps 70 %) is unaffected by the addition of Dafny-
generated triggers: verification is and remains stable, with newly added triggers
often slightly reducing variance across multiple runs, and performance remaining
mostly unchanged. This is expected (and fortunate!), for two reasons: first, most
of the test suite is made up of small programs, whose complexity is too low to
cause significant verification issues. In that case, more precise triggers can help
direct the search faster, but not by very much. Second, we expect matching loops
to be relatively uncommon (especially given that the more complex examples in
Dafny’s test suite were written by experts). Figure 1 shows a high-level summary
of these results, by comparing the distribution of standard deviations of verifi-
cation times across the entire updated test suite, with and without Dafny-level
triggers. In general, the addition of triggers slightly improves stability, diminish-
ing variance across the entire test suite.

Beyond this general improvement in stability, measuring performance and
instabilities across prover runs for the remaining 30 % of the test suite shows

2 All experiments in this section were run on two cores of an Intel Core i7-4810MQ
CPU (2.80 GHz), on a machine equipped with 32 GB of RAM and running Z3 version
4.4.1.
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Fig. 1. Histogram of standard deviations of verification times in seconds across five
runs of Dafny’s entire test suite, with and without Dafny-generated triggers. The right
figure shows that using Dafny-generated triggers yields a marked shift towards lower
deviations (i.e. towards the top of the figure). (Color figure online)

many interesting patterns. Figure 2 shows detailed measurements for a few
such examples. To produce it, we repeatedly ran Dafny in three distinct
configurations:

– With Dafny-generated triggers, on a copy of the test suite modified to work
with these new triggers (these modifications are described at the end of this
section)

– Without Dafny-generated triggers, on the same modified test-suite
– Without Dafny-generated triggers, on the original test suite

In all three cases we ran Dafny 10 times, passing a new random seed to Z3’s
arithmetic, SMT and SAT modules on each run3.

Figure 2 shows the performance and predictability consequences of automat-
ically selecting triggers for a corpus of six example programs taken from Dafny’s
test suite. These programs are a mix of algorithms and submissions to various
verification competitions, with about 100 to 300 lines of Dafny code each.

We conclude this section with a quick review of the changes that adapting the
Dafny test suite to use our trigger generation strategy required. With automati-
cally generated triggers, but no loop detection nor quantifier splitting, about 55
tests (out of 350) initially failed to verify. Adding matching loop detection fixed
about 10. Adding quantifier splitting with trigger sharing fixed 10 more. For the
remaining 35 tests, the causes were distributed as follows:

– About 10 tests were using explicitly recursive constructs, where matching
loops were expected, and needed no changes beyond silencing warnings

– About 10 tests were implicitly relying on excessively liberal triggering to prove
complex correspondences between expressions involving sequences (looking at
a Z3 trace for the offending quantifier would show that Z3 was picking a very
unspecific term to trigger on, and triggering a lot). Adding stricter triggering
annotations caused these sequence equivalences to become unprovable; it was
easy to fix these issues by adding extra annotations.

3 The seeds used were 32901, 52510, 15712, 371, 65410, 21223, 38836, 27584, 7013,
and 11502.
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Fig. 2. Verification times in seconds for six example programs taken from Dafny’s
test suite, running the original Dafny on its test suite, our own version of Dafny with
trigger generation turned off on an updated copy of the test suite, and our own version
of Dafny with trigger generation turned on that same copy of the test suite. Error bars
show the standard deviation of verification times across ten runs with distinct random
seeds. (Color figure online)

– About 5 tests had unnecessary matching loops, which can be fixed by rephras-
ing quantifiers, thus acting upon the warning issued by our implementation.

– The rest had various issues, where specific properties were not being proved
due to stricter triggering. In most cases, adding extra assertions was enough
to lead Z3 to a proof, in a much more principled way that the haphazard
matching that was occurring in the original Dafny.

Performance Results on Large Verification Efforts.
Focusing on verification performance, our second experiment pitted our imple-
mentation against the original Dafny to check the proofs of the implementation
layer of IronFleet’s IronRSL, a Paxos-based replicated-state-machine library. The
focus of our attention was thus a collection of 48 source files totaling 13916 lines
of Dafny source code. Figure 3 compares the running times of each of the 48
files with and without Dafny-generated triggers, sorted by descending relative
improvement. Across the full corpus, our implementation achieves an overall
speedup factor of 1.6, reducing the total running time from 1 hour and 4 min
to 39 min. The average speedup across the test suite is 1.15, and the average
speedup on tests that the change significantly affects (>20 % speedup or slow-
down) is 1.45. These results are even more encouraging that these programs were
written by experienced Dafny hackers.

Experience Report on Verifying a Simple Algorithm with and Without
Dafny-Generated Triggers.
As a final experiment, we informally assessed the dynamic robustness of our new
implementation. We verified a number of small programs using Dafny with auto-
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Fig. 3. Verification times in seconds for the 48 programs composing the implementation
layer of IronRSL, with trigger generation at the Dafny level turned on and off. The
experiment shows a significant speedup across the entire library, with programs that
suffer from the change being only slowed down by a small proportion. (Color figure
online)

generated triggers, including a Union-Find implementation. As we worked on it,
we did not notice significant differences: everything was running smoothly, and
Dafny was not reporting specific warnings about our quantifiers. Switching to
a different environment, however, revealed how much Dafny-level triggers were
doing for us: at multiple points we tried to verify the program without these
auto-selected triggers; in most cases, verification simply timed out.

In total, it took about 10 h to write 330 lines of verified Dafny code. The
program includes 25 universal quantifiers; checking its proofs takes 18 s with
Dafny-generated triggers, and 31 s without. Most of the performance difference
results from Z3 exploring fruitless paths due to overly permissive triggers.

Figure 4 shows an example of a quantifier annotation, displayed as an in-
editor mouseover tooltip.

Fig. 4. Emacs’ dafny-mode (part of the boogie-friends package) showing a trigger-
related message. Our code has correctly split the quantifier, adding two triggers
({P(x)} and {Q(x)}) to the first half, and a single one ({Q(x)}) to the second half,
thus avoiding a matching loop. This type of information was useful for our Union-Find
experiment.
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5 Related Work

The idea of using matching triggers to instantiate quantifiers in SMT solvers
stems from Nelson’s PhD thesis [24] and they were first implemented in the SMT
solver Simplify [11]. When a quantifier is not given an explicit trigger, Simplify
attempts to select one. It first looks for single, minimal terms that can be used as
triggers, and selects all of these, except ones that would give rise to a matching
loop for the quantifier according to a simple heuristic. If no such triggers exist,
then Simplify attempts to find a trigger with multiple terms. It only picks one
multiple-term trigger in order to avoid having to consider exponentially many.
In contrast, we may consider polynomially many. This gives us extra flexibility
in trigger choices.

Z3 has a similar trigger-selection mechanism, but due to its more efficient
matching technique [8], it does not make a hard distinction between single-term
triggers and multiple-term triggers. On the downside, Z3 does not check for
matching loops.

SMT solvers CVC4 [3] and Alt-Ergo [4] also support quantifiers and triggers.
We have tried running Dafny with CVC4 version 1.4, which supports SMT-LIBv2
input. Unfortunately, this version of CVC4 fails to verify most of Dafny’s test
suite, except in tiny examples where the verification conditions do not involve
any significant quantifiers. Some preliminary experiments with the upcoming
version 1.5 show promise of being a viable alternative to Z3 for Dafny.

The program verifier VCC [7] also computes its own triggers for user-written
quantifiers, rather than leaving this to the SMT solver. The selection criteria is
aware of the VCC style of specifications and gives priority to certain terms, for
example those that mention the special “ownership” field \owns or user-defined
functions. The quantifiers are not rewritten for the purpose of finding better
triggers, but some form of loop prevention is used.

There have been other attempts to rewrite verification conditions in order to
make them perform better with SMT solvers. Böhme and Moskal measured the
performance impact of different heap encodings [6]. In the context of Viper [23],
Uri Juhasz has implemented Boogie-to-Boogie transformations that summarize
in join nodes information common to all branches, which can reduce the need
for case splits in the SMT solver and thus increase performance [17].

6 Future Work

While our work addresses the most prevalent source of verification instability we
have found, there are other sources.

One other source that involves quantifiers involves a quantifier that many
users write: expressing with a quantifier that an array is sorted

forall i · 0 ≤ i < a.Length - 1 =⇒ a[i] ≤ a[i+1]

For this quantifier, our technique reports that it cannot find a valid trig-
ger without introducing a possible matching loop. This provides a noticeable
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improvement over Dafny’s previous behavior of silently accepting the quantifier,
because it calls to the user’s attention the fact that the quantifier may cause
problems for the verifier. We could, however, go one step further and rewrite the
quantifier:

forall i,j · 0 ≤ i < a.Length - 1 ∧ j == i+1 =⇒ a[i] ≤ a[j]

The trigger {a[i], a[j]} for this quantifier has the nice property that the
instantiations it causes do not introduce any more array-dereference terms. We
would like to introduce automatic rewrites of this form, but have not yet imple-
mented them.4

Such automatic rewrites of problematic quantifiers could be investigated sys-
tematically, and could be distributed as an auto-fix IDE feature: in cases where
obtaining a confirmation from the user before doing a rewrite is desirable, we
would display a tooltip offering the rewrite. Such an investigation would make
for good future work.

Another source of verification instability is the use of non-linear arithmetic.
To keep such issues manageable, the Ironclad Apps project chose to mostly turn
off Z3’s support of non-linear arithmetic and instead rely on manually crafted
lemmas about the needed properties. Providing better automated and stable
support for non-linear arithmetic remains fertile research ground.

Finally, we would like to comment on the fact that we have implemented our
matching-loop detection inside Dafny on a per-quantifier basis. Our infrastruc-
ture has the basic building blocks for doing the matching-loop detection given a
larger collection of quantifiers. Within Dafny, a possible extension of our work
would be to look for possible matching loops within some cluster of declara-
tions, for example among all loop invariants that a user has supplied for a loop;
a significant difficulty would be to deal with the exponential number of combina-
tions that arise from matching sequences involving triggers composed of multiple
terms in multiple quantifiers.

Outside Dafny, matching-loop detection could do well at the Boogie or Z3
level. This would allow non-Dafny tools to benefit from this functionality. One
could also imagine an automatic postmortem analysis of an SMT-solver run
to detect loops that caused bad performance. Trying to prove the absence of
matching loops in a given verification condition would be wonderful. This seems
related to termination issues in rewriting systems (see, e.g., [10]), but we are
unaware of any work that specifically addresses this problem for triggers where
congruence closure is involved.

7 Conclusion

We have presented effective strategies for selecting matching triggers for quanti-
fiers that make the proof search of SMT solvers better behaved, thus improving
4 For this particular property, the quantifier forall i,j · 0 ≤ i < j < a.Length =⇒
a[i] ≤ a[j] is often even better, because it makes it more readily usable without
having to appeal to transitivity of ≤ and induction.
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the experience of users of automated program verifiers. Our implementation of
these techniques in the Dafny program verifier demonstrates significant improve-
ments in verification stability, verification performance, and proof elaboration
and debugging experiences. We have received extremely positive feedback from
early users of our implementation, on large verification efforts. By rewriting
some quantifiers, our technique is able to select suitable triggers for quantifiers
that otherwise would be ill-behaved or rejected for fear of matching loops. By
applying our technique at the level of source expressions, we avoid triggering on
parasitic terms introduced in the translation to first-order formulas, and obtain
better-behaved triggers that we can directly report to users, thereby giving them
meaningful feedback about the automatic trigger selection process.

We have tightened up a major source of verification instability. While other
sources remain, we argue that our strategies are ready to be used in program
verifiers and look forward to further stability improvements.
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A Pseudo-Code for the Main Algorithm

This annex offers high-level pseudo-code for the main algorithm introduced in
this paper; it simplifies the types of many of the relevant functions for clarity,
and glosses over most performance optimizations discussed in the body of the
paper.

def AnnotateAndSplit(quantifier):

AnnotateSubtree(quantifier.body, quantifier.variables)

candidates = TriggerCandidates(quantifier)

for split_q in SplitQuantifier(quantifier):

safe_candidates = RemoveLoops(candidates, split_q)

split_q.triggers = PickTriggers(safe_candidates)

def AnnotateSubtree(node, variables):

for c in node.children:

AnnotateSubtree(c, variables)

if (node.type in KILLER_TYPES or

any(c.annot == TriggerKiller for c in node.children)):

node.annot = TriggerKiller

elif any(node.mentions(v) or any(c.mentions(v) for c in node.children)
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for v in variables):

node.annot = TriggerHead

def TriggerCandidates(quantifier):

for subset in Subsets(quantifier.trigger_heads):

# Adequacy: All quantified variables are mentionned

if is_adequate(subset, quantifier.variables):

# Parsimony: No term can be removed without breaking adequacy

if not is_redundant(subset):

yield TriggerCandidate(subset)

def SplitQuantifier(quantifier):

if quantifier.type == ForallNode:

if quantifier.body.type == AndNode:

for c in quantifier.body.children:

yield ForallNode(c, quantifier.variables)

else: yield quantifier

# (... Similar case of existential quantifiers omitted)

def RemoveLoops(candidates, split_quantifier):

for candidate in candidates:

matches = []

for term in candidate.terms:

for desc in split_quantifier.descendants:

if desc.can_unify_with(term, split_quantifier.variables):

if not FalsePositive(desc, term, candidate):

matches.append(desc)

if not any(matches): yield candidate

def FalsePositive(desc, term, candidate):

return (desc == term or desc in candidate.terms or

all(is_var(t) or is_const(t) for t in term.disjoint_union(desc)))

def PickTriggers(candidates):

for candidate in candidates:

if not any(candidate.more_specific_than(other) for other in candidates):

yield candidate
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