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Abstract. The growing popularity of social networks has generated
interesting data analysis problems. At the same time, it has raised impor-
tant privacy concerns, because social networks contain personal and sensi-
tive information. Consequently, social graphs, which express the relations
between the actors in a social network, ought to be sanitized or anonymized
before being published. Most work on privacy-preserving publication of
social graphs has focused on dealing with passive attackers while active
attackers have been largely ignored. Active attackers can affect the struc-
ture of the social network graphs actively and use structural information,
as a passive attacker does, to re-identify a user in a social graph. In this
article we propose, to the best of our knowledge, the first anonymization
method that resists to active attacks.
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1 Introduction

Human interaction and socialization has changed as communication and informa-
tion technology evolves. Emotions, feelings, thoughts, can all be shared instantly
by simply pressing a button in one’s favorite social network application. This
adds a degree of freedom to what we share and how we show it in comparison
to, for example, face-to-face communication. While the latter is confined to a
bounded physical space and builds upon the subtleties of human physical inter-
action, online social networks make it easier to disclose personal feelings as users
are typically hidden behind a computer screen.

A social graph is a static representation of a social network; a sort of snapshot.
Every vertex corresponds to a user who connects to other users through edges
representing social links, e.g., friendship, co-authorship, and financial exchange.
Researchers rely on graph theory and methods from modern sociology to extract
useful knowledge by means of community detection, link prediction, identifica-
tion of prominent actors, etc.

People tend to appreciate the discovery and revelation of new knowledge, but
when it comes to personal information, one immediately perceives a privacy risk.
Social graph analysis, although useful, may indeed jeopardize an individual’s
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privacy. An adversary could identify a user in a published social graph and
learn sensitive information such as political and religious preferences. Ergo, social
graphs ought to be sanitized or anonymized before making them available for
analysis.

A fundamental anonymization technique consists in removing identifying
attributes from the social graph, such as name, email address, and social secu-
rity number [8]. Other types of attributes, often called quasi-identifiers, which in
combination may uniquely identify an individual, ought to be removed as well.
This makes it harder to identify the user behind a node in a social graph, which
is often call re-identification. The challenge is that even a simple graph without
attributes attached to its vertices can be subject to re-identification attacks. For
example, an adversary who knows the number of social links of a target victim
can identify the victim as a hub! in the social network. The re-identification can
be made more precise if the number of connections is unique in the network.

Re-identification attacks to social graphs are typically categorized as passive
or active. In a passive attack the adversary attempts to re-identify the victim
only after the social graph has been published. In an active attack, instead, the
adversary proactively inserts sybil nodes in the network and tries to establish
links with the targeted victims. The links are made in such a way that every
victim connects to the set of sybil nodes in a unique and re-identifiable manner.
Once the social graph is released, the adversary identifies his own set of sybil
nodes, which are used to re-identify users by using their connections to the set
of sybil nodes [1,13].

Active attacks are by definition stronger than passive attacks, yet little atten-
tion has been paid to counteract this type of privacy attack. The first privacy
notion that accounts for such active privacy attacks has been proposed just
recently in [10]. This notion, which is called (k,¢)-anonymity, expresses that
a user cannot be re-identified with probability higher than 1/k by an active
attacker able to introduce ¢ sybil nodes in the graph. It has been shown in [10]
that real-life social graphs tend to be (1, 1)-anonymous, which is the lowest pri-
vacy level possible. Indeed, in terms of offered privacy, (k,¢)-anonymity forms
a lattice (a square grid) where (1,1)-anonymity is the minimum. This leads to
the question whether it is possible to define privacy-preserving transformation
techniques that defy active attacks by transforming a graph with low anonymity
into a graph with higher anonymity that can be published without risking re-
identification. In this paper, we take a first stab at defining such transforma-
tions. In particular, we will study the transformation of a graph into a graph
with higher anonymity than (1, 1)-anonymity, while only adding edges.

Contributions: In this article we propose, to the best of our knowledge, the
first privacy-preserving anonymization approach that resists active attacks. We
use the privacy measure (k,¢)-anonymity as proposed in [10] and provide an
efficient method to transform a graph G into another graph G’ such that G’

1 A hub is a special node in a network with significant more connections than other
nodes.
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is not (1, 1)-anonymous. That is to say, the obtained graph G’ satisfies (k, ¢)-
anonymity with £ > 1 or £ > 1. Our anonymization method is based on edge
addition operations only. As such, it preserves the original number of vertices
in the graph. We provide a theoretical bound on the number of edges that our
method needs to add in order to transform a graph into one that is not (1,1)-
anonymous. Finally, we provide empirical results showing the impact of our
transformational approach in terms of resistance to well-known active attacks
such as the walk-based attack [1].

Structure of the Paper: Section2 explains in detail passive and active pri-
vacy attacks in social graphs. Definitions and useful notions used throughout
this article are provided in Sect. 3. Section4 presents and proves properties of
(1, 1)-anonymous graphs, which form the theoretical foundation of the proposed
anonymization approach (also introduced in Sect. 4). Section 5 consists of empir-
ical evaluations of the proposed method on random graphs. Conclusions are
drawn in Sect. 6.

2 Related Work

Most privacy notions for social graphs are based on k-anonymity [9], which
was originally proposed as a privacy measure for microdata. We thus start this
section by briefly depicting the role of k-anonymity in microdata, and how it has
been adapted to social graphs in order to resist passive attacks. Related work
on active attacks is provided at the end of this section.

k-anonymity in microdata. A pioneer study on re-identification attacks was
published in 2002 by Sweeney [9]. Sweeney estimated that 87 % of the population
in United States can be uniquely identified by combining seemingly innocuous
attributes such as gender, date of birth and zip code.

Background knowledge is what makes a privacy attacker stronger. Either
through public sources (e.g., census data) or by malicious actions, an adversary
harvests information about a target victim which is used later to re-identify
the victim in other databases. Hence, the challenge is how to publish data in
such a way that users cannot be re-identified, regardless of the adversary’s back-
ground knowledge. A property known as k-anonymity gives a possible solution
approach [8].

A dataset is said to satisfy k-anonymity if every record is indistinguishable
from k — 1 other records with respect to a given adversary’s background knowl-
edge. Consequently, k-anonymity ensures that the considered adversary cannot
pinpoint the user behind a record with probability higher than 1/k. Moreover,
a k-anonymous dataset can still be considered useful for analysis; researchers
are interested in aggregate data describing the general behavior of a population
rather than in the characteristics of a single individual.

k-anonymity in social graphs. While Sweeney’s revelation mainly concerns
relational databases, later in 2009 Narayanan et al. showed that one third of
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social network users in Flickr and Twitter can be re-identified by a simple passive
attack on the anonymized Twitter graph with only 12 % error rate [6]. Several
notions of k-anonymity have been consequently proposed in order to mitigate
the impact of passive attacks in social graphs.

Privacy notions based on k-anonymity rely on a proper definition of the
adversary’s background knowledge. In microdata this knowledge consists of a
set of quasi-identifiers, while in social graphs it is normally defined as a struc-
tural property on the graph, e.g., vertex degree or distance. Two vertices are said
to be indistinguishable if they are structurally equivalent with respect to the con-
sidered structural property. For example, Liu et al. [4] considered an adversary
who knows the degree of the victim node. This simple structural property leads
to the notion of k-degree anonymity, which is satisfied if for every vertex there
exist k — 1 other vertices with the same degree.

A privacy notion strictly stronger than k-degree anonymity is k-
neighbourhood anonymity [14]. This property requires that for every vertex v
in the graph there exist at least k — 1 other nodes vy, ...v;_1 such that the sub-
graph induced by v’s neighbours is isomorphic to the subgraph induced by v;’s
neighbours, for every ¢ € {1,...,k — 1}. This notion was soon generalized to
k-automorphism [3,15]. Two vertices u and v are equivalent if there exists an
isomorphism from the graph to itself where u maps to v [3]. The problem, how-
ever, is that real-life social graphs can hardly satisfy k-anonymity with respect
to automorphism [15].

Active attacks. The privacy notions described above do not account for an
adversary with the ability to actively manipulate the structure of the social
network. That would allow the adversary to influence the structural property of a
victim node, which is actually stronger than just knowing structural information.

Backstrom et al. were the first to show the impact of active privacy attacks
in social networks [1]. They propose an attack where the adversary plants a well-
constructed and uniquely identifiable subgraph in the social network graph. The
nodes in the adversary’s subgraph are used to establish links with the victim
nodes (e.g., by sending friendship requests), in such a way that every victim has
a unique fingerprint of links to the adversary’s subgraph. Once the social graph
is released, the adversary retrieves the planted subgraph and re-identifies those
nodes that preserve the expected fingerprint.

A recent improvement over the methods in [1] is the Seed-and-Grow attack
proposed by Wei et al. [13]. They combine the creation of a uniquely identifiable
subgraph with a progressive and self-reinforcing strategy, which starts with the
initial fingerprint and extends to other new vertices by using the knowledge
acquired during the re-identification procedure.

Preventing active attacks is challenging. Indeed, none of the privacy notions
described above [3,4,14,15] is well-suited to counteract active attacks. To the
best of our knowledge, the first privacy measure to evaluate the resistance of
social graphs to active attacks was proposed just recently in [10]. Trujillo-Rasua
and Yero model the adversary’s background knowledge as the distance vector
of a vertex with respect to the adversary’s subgraph. This leads to the privacy
notion (k, ¢)-anonymity [10].
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In this article we take a first step on defining graph transformations aimed
at improving privacy in terms of (k, £)-anonymity. Therefore, we provide in the
next section a formal definition for this privacy concept and introduce various
notations that we use throughout the article.

3 Preliminaries

We model a social graph G = (V, E) as a simple graph where V' represents
individuals and E their relationships. The distance dg(v, u) between two vertices
v and u in G is the number of edges in the shortest path connecting them. Often
we simply write d(v,u) if it does not lead to ambiguity. The degree of a vertex
is the number of edges connected to it. An end-vertex is a vertex with degree
one. The eccentricity ec(v) of a vertex v in a connected graph G is the greatest
number of edges in a shortest path between v and any other vertex in G. We
call a shortest path an eccentricity path for v if its length is equal to eq(v).

Definition 1 (Metric representation). The metric representation of a vertex
v with respect to an ordered subset of vertices S = {uy,...,ur} in a graph G =

(V, E) is the vector r(v|S) = (dg(v,u1),...,da(v,u)).

The metric representation is the structural property used in [10] to represent
the adversary’s background knowledge in active attacks.

Definition 2 (k-antiresolving set). Let G = (V, E) be a simple connected
graph and let S = {uy,--- ,us} be a subset of vertices of G. The set S is called a
k-antiresolving set if k is the greatest positive integer such that for every vertex
v €V — S there exist at least k — 1 different vertices vy, -+ ,v5_1 € V. — S with
r(|S) =r(v]S) =+ =r(vk_1]S).

As an example, consider the star graph in Fig.1. The distance from v; to
any other vertex in the graph is 1, thus {v1} is a 4-antiresolving set. On the
other hand, any set {v;} with i € {2,3,4,5} is a l-antiresolving set because
r(vi|{v;}) = (1) while r(v;|{v;}) = (2) for every j € {2,3,4,5} and j # ¢. Finally,
we consider the subset {v1, v5}. We observe that r(va|{v1,vs}) = r(vs|{v1,v5}) =
r(vg[{vi,v5}) = (1,2), implying that {v1,v5} is a 3-antiresolving set.

Fig. 1. A star graph.

Definition 3 (k-metric antidimension). The k-metric antidimension of a
simple connected graph G = (V,E) is the minimum cardinality amongst the
k-antiresolving sets in G.
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Considering again the star graph depicted in Fig. 1, we observe that {vs} is
a l-antiresolving set with cardinality 1. Ergo, the 1-metric antidimension of this
graph is 1. Determining the 2-metric antidimension is a bit more troublesome.
We should first notice that v; should be included in any 2-antiresolving set,
while {v;} itself is a 4-antiresolving set. Therefore, the 2-metric antidimension
of the star graph is greater than or equal to 2. However, the subset {vi,v;}
for every i € {2,3,4,5} is a 3-antiresolving rather than a 2-antiresolving set.
Consequently, the 2-metric antidimension of the graph in Fig. 1 is 3, given that
{vs,v1,v3} is a 2-antiresolving set. We refer the interested reader to [2] and [11]
for results on the metric dimension and the k-metric antidimension, respectively.

Definition 4 ((k,{)-anonymity). A graph G is said to meet (k,£)-anonymity
if k is the smallest positive integer such that the k-metric antidimension of G is
lower or equal than £.

A graph G satisfying (k, £)-anonymity ensures that every subset of vertices
with cardinality at most £ is a k’-antiresolving set for some &’ > k. Thus, every
vertex in G is indistinguishable from at least k — 1 other vertices with respect
to their metric representation to any subset of vertices of cardinality at most £.

4 Protecting (1,1)-anonymous Graphs

In this section we provide theoretical properties of (1, 1)-anonymous graphs, and
use them to prove convergence of our anonymization method.

4.1 Properties of (1,1)-anonymous Graphs

If G contains a l-antiresolving set, say {v}, then there exists a vertex u such
that d(v,u) # d(v,w) for every w € V — {v, u}. Following terminology from [10],
we call such a vertex u a 1-resolvable vertex, in particular, we say that wu is
1-resolvable by {v}. It follows that containing a 1-resolvable vertex is a sufficient
and necessary condition for a graph G to be (1, 1)-anonymous.

Proposition 1. A simple connected graph G = (V, E) satisfies (1, 1)-anonymity
if and only if it contains a 1-resolvable vertez.

Proof. If G contains a 1-resolvable vertex v, then there exists a vertex u in G
such that {u} is a l-antiresolving set. Ergo G is (1, 1)-anonymous.

Now, let us assume that G is (1, 1)-anonymous and that there does not exist a
1-resolvable vertex in G. This implies that there does not exist a 1-antiresolving
set of cardinality 1 in G. Therefore, if a 1-antiresolving set in G exists then G
is (1, £)-anonymous for some ¢ > 1, otherwise G is (k,¢)-anonymous for some
k > 1. In either case G is not (1, 1)-anonymous, which is a contradiction. O

Because the presence of 1-resolvable vertices implies (1, 1)-anonymity, we are
interested in finding those vertices in the graph which are 1-resolvable. A first
trivial result in this direction is the following.
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Lemma 1. For every end-vertex v in a graph G = (V,E) it holds that v’s
neighbour is 1-resolvable by {v}.

Proof. We should first notice that if |[V| = 2 then both v and v’s neighbour are 1-
resolvable. Thus, let us assume that |V| > 2 and let u be v’s neighbour. Because
any path to v passes through u, we obtain that d(w,v) = d(w,u) + d(u,v) >
d(u,v) =1 for every w € V' — {v,u}. Therefore, {v} is a l-antiresolving set and
u is a vertex 1-resolvable by {v}. O

A consequence of Lemma 1 is that every graph with end-vertices is (1,1)-
anonymous. Hereinafter we thus assume that social graphs do not contain end-
vertices; they can be either removed from the social network or connected to
other nodes. It is also worth remarking that, if v is an end-vertex, then v’s
neighbor lies in every eccentricity path of v. We prove next that, indeed, every
vertex 1-resolvable by {v} lies in an eccentricity path of v.

Lemma 2. Let G be a simple connected graph, let {v} be a 1l-antiresolving set
in G, and let vy - - - vy, be an eccentricity path of v, i.e., v1 = v. For every vertex
u that is 1-resolvable by {v} there exists i € {1,...,m} such that u = v;.

Proof. Let us assume that u # v; Vi € {1,..., m}. By definition, the eccentricity
of v satisfies that e(v) > d(v,w) for every w € V(G) and, in particular, e(v) >
d(v,u). Given that d(v,v,,) = e(v) > d(v,u), there must exist i € {1,...,m}
such that d(v,u) = d(v,v;) (see Fig.2 left). Consequently, either u = v; or u is
not 1-resolvable by {v}, which both lead to a contradiction. O

The next result is rather simple, yet it is the core of our anonymization
approach. It provides a necessary condition for a vertex to be not 1-resolvable
by vertices within a cycle of odd order.

Proposition 2. A cycle graph C,, of odd order satisfies (2,1)-anonymity.

Proof. Every vertex v in C,, has two diametral vertices (see Fig.2 right), ergo
{v} is a 2-antiresolving set. O

Fig. 2. Left: An eccentricity path vi — v; — v, and a vertex u located out of that
path. Right: A cycle of odd order. A vertex (in Black) has the same distance to both
diametral vertices (in Gray).
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4.2 A Graph Transformation Approach

Our elimination approach of 1-resolvable vertices is based on Proposition 2 and
Lemma 2. We aim at including all 1-resolvable vertices lying in a given eccentric-
ity path into a cycle of odd order by adding a single edge. This transformation
is defined as follows.

Definition 5 (v-transformation). Let v be a vertex in a graph G = (V, E)
such that {v} is a 1-antiresolving set, and let vy - - - vy, be an eccentricity path of
v where vy = v. Let i and j be the lowest and largest positive integers, respectively,
such that v; and v; are 1-resolvable by v in G. A v-transformation results in the
graph (V,EU{(vi—1,v;)}) if j — i is odd, otherwise in (V,E U {(vi—2,v;)}).

The remaining results within this section are aimed at proving properties of
a v-transformation in a graph.

Theorem 1. Let G = (V, E) be a simple connected graph, {v} a 1-antiresolving
set, and G' the graph resulting from a v-transformation in G. Let S be the set
of vertices in G contained in an eccentricity path of v in G. Every w € S is not
1-resolvable by {v} in G'.

Proof. Let vy ---v,, be an eccentricity path where v; = v. Let 7 and j be the
lowest and largest positive integers, respectively, such that v; and v; are 1-
resolvable by v in G. G; and G> denote the v-transformation of G when j —
i is odd and even, respectively. Next, we consider a vertex w € {v1,..., v}
and analyze different cases regarding the position of w in the eccentricity path
v1 -+ - Uy Figure 3 depicts the three scenarios.

Case 1 Case 2 Case 3

Fig. 3. An eccentricity path v1 — vy, within the graph G. The dashed edge G1 (resp.
G2) represents the vi-transformation if j — ¢ is odd (resp. even).

Case 1 (w € {v1,...,v;—2}). In this case w is not l-resolvable by {v;} in G.
Therefore, let w' € V — {v1,...,v} such that dg(vi,w) = dg(vy,w’). We
choose k € {1,...,m} to be the largest positive integer such that dg(vy,w’) =
de(v1, vk)+da(vk, w'). On the one hand, it holds that dg (v, w') = dg, (vg, w') =
da,(vg,w'). On the other hand, it is easy to note that k < i — 1, otherwise
dg(vi,w') > i—1 > dg(vi,w). This implies that dg(vi,vr) = dg, (v1,v%) =
dg,(v1,vx) and, thus, dg(vi,w) = dg,(v1,w) = dg,(vi,w) = dg(v1,w’)
de, (v1,w") = dg,(v1,w). Ergo, w is not 1-resolvable by {v} in G; and Gs.
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Case 2 (w € {v;_1,...,v;}). Now consider that w € {v;_1,...,v;}, which means
that w is contained in the cycles v;_1v; - - - v;v;—1 and v;_2v; - - - v;v;_2 from G
and Gs, respectively. Considering Proposition 2, we obtain that if j — 4 is odd
then w is not 1-resolvable by {v} in Gi, otherwise w is not 1-resolvable by {v}
in GQ.

Case 3 (w € {vj11,...,Un}). Finally, consider that w € {vj;1,...,vn}. In this
case we obtain the following.

dg, (v1,w) = dg, (v1,vi-1) + dg, (vi-1,v5) + dg, (vj, w)
=dg(vi,w) — (j — 1) (1)

Similarly we obtain:
de, (v1,w) = dg(v1,w) = (j—i+1) (2)

On the other hand, d¢, (vi,w') = dg, (v1, vk) +da, (vi, w') and dg, (v, w') =
dg, (v1,vk) + dg, (vpr,w') for some k&' € {1,...,m}. We notice that
de, (vg,w'") = dg(vk,w’) and dg, (vi,v;) > dg(vi,v;) — (j — i), which gives
the following inequality.

dg, (vi,w') > de(vi, vi) + de (v, w') — (j —19) 3)
Analogously we obtain:
dGz (vlv wl) > dG(Uh Uk’) + dG(Uk’7 wl> - (.7 —i+ 1) (4)

Moreover, dg(v1, vk) +dg (v, w') > da(vi, w') = dg(vi, w) and dg(v1, v ) +
de(vgr,w') > dg(v1,w") = dg(v1,w), which applied to Egs. 3 and 4 gives:

dG1 (Ulvw,) > dG(th) - (] - Z)
da, (vi,w') > de(vi,w) — (j —i+1). (5)

Finally, Egs. 1 and 2 together with the inequalities in 5 give that dg, (v1, w') >
de, (v1,w) and dg, (v1,w’) > dg, (v, w). Therefore, there exists a vertex w” in
the v — w’ path such that dg, (v, w"”) = dg, (v1,w). We observe that w” # w,
given that dg(v1, w’) > dg, (v1,w’) > k implying that dg(v1,w) must be greater
or equal than k as well. We conclude that w is not 1-resolvable by {v} in Gj.
We draw the same conclusion for G5 by following an analogous reasoning.

We conclude this proof by recalling Lemma 2, which states that every 1-
resolvable vertex by {v} lies in the path v; - - - v,,. This means that ¢ and j are
unique amongst all eccentricity paths of v in G. O

Theorem 1 states that a v-transformation G’ satisfies that all vertices in G
which are included in an eccentricity path of v are not l-resolvable by {v} in
G’'. Consider, for example, the vertex v; in Fig. 3. While dg(v1,v;) # dg(vi,u)
for every vertex u in G, it is easy to see that dg, (v1,v;) = dg, (v1,v;) and
da,(v1,v;) = dg,(v1,vj-1). We next determine sufficient conditions by which a
vertex not contained in an eccentricity path of v is not 1-resolvable by {v} in a
v-transformation.
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Theorem 2. Let G = (V, E) be a simple connected graph, {v} a 1-antiresolving
set, and G’ the graph resulting from a v-transformation in G. Let S be the
set of vertices in G contained in an eccentricity path of v in G. Let vy -+ vy,
an eccentricity path of v where vi = v. For a given vertex w € V — S let
ke {1,...,m} be the largest positive integer such that dg(v1,w) = dg(v1,vg) +
de(vi,w). Then k < i or k > j implies that w is not 1-resolvable by {v} in G'.

Proof. As above, we use G; and G2 to denote the v-transformation of G when
J — 1 is odd and even, respectively, where ¢ and j are the lowest and largest
positive integers, respectively, such that v; and v; are 1-resolvable by v in G.

First, consider that k < 4, in which case dg(vi,w) < dg(vi,v;), other-
wise there exists w' € V — {vy,...,v,,} such that dg(vy,w’) = dg(vi,v;), a
contradiction. This means that dg(vi,w) < i — 2. Because G and Gs result
from the addition of one edge to G, then dg, (v1,w) < dg(vi,w) < i—2 and
dg, (v, w) <dg(vi,w) <i—2.If dg(vi,w) = i—2, then v;_; and v; satisfy that
da, (v1,w) = dg, (v1,v;-1) = i—2 and dg, (v1, w) = dg, (v1,v;) =i—2in Gy and
G2, respectively. If dg(vi,w) < i—2, then dg, (vi,w) = dg, (v1,v) = dg, (v1, 1)
where | = dg (v, w) + 1. We conclude that in both G; and Go the vertex w is
not 1-resolvable by {v}.

Next, consider that k > j. Given that G; and G5 result from the addition of
the edge (vi—1,v;) and (v;_2,v;), respectively, to G, we obtain that dg (v, w) =
da, (vj,w) = dg, (vj, w). Therefore, we obtain the following equalities.

da(vi,w) = dg(v1,v;) + da(v;, w)
dg, (v1,w) = dg, (v1,v) + da (v, w)
da, (v1,w) = dg, (v1,v;) + da(vj, w)
Let v; be the vertex in vy - - - vy, such that dg(vi,v;) = dg(v1,w). It should
be noticed that [ > j and dg(vi, v;) = da(v1,v;) +da(vj, vp), hence dg (v, w) =

da(vj,vi). As before, we obtain that dg(vj,v;)) = da, (vj,v) = da, (vj,v1).
Because dg(vj, w) = dg(vj,v;), we can rewrite the equalities above as follows.

da(vi,w) = dg(vi,v;) + de(vj, w)
dg, (v1,w) = dg, (v1,v)) + da, (vj, 1)
da, (v, w) = dg, (v1,v;) + da, (v5, v1)

Consequently, dg, (v1,w) = dg, (v1,v;) and dg, (v1,w) = dg,(v1,v;), imply-
ing that in both G; and G5 the vertex w is not 1-resolvable by {v}. O

We observe that even if i < k < j a vertex w can still remain not 1-
resolvable by {v} in a v-transformation. This is the case, for example, in the
v1-transformation shown by Fig.4. We thus provide next a sufficient condition
for a vertex w to be not 1l-resolvable by {v} in a v-transformation regardless of
the position of k£ with respect to 7 and j.

Proposition 3. Let G = (V,E) be a simple connected graph, {v} a 1-
antiresolving set, G' the graph resulting from a v-transformation in G, and
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Fig. 4. An example showing that a v-transformation may create new 1-resolvable ver-
tices.

V1 - U an eccentricity path of v where v = v. For everyw € V. —{v1,..., v}
it holds that dg(vi,w) < m — j+i— 1 implies that w is not 1-resolvable in G'.

Proof. Let vy ---v,, be an eccentricity path where v; = v. Let 7 and j be the
lowest and largest positive integers, respectively, such that v; and v; are 1-
resolvable by v in G. We call G; and G5 to the v-transformation of G when j —1
is odd and even, respectively.

If dg, (v1,vm) > dg, (v1, w) then w is not 1-resolvable by {v;} in Gy. It is easy
to note that dg, (vi,vm) = dg, (v1, vi—1)+da, (vi—1, v;)+da, (Vj, Um) = i—14+m—
j and analogously dg, (v1, vm) = i—2+m—j. Given that dg, (v, w) < dg(vi, w)
and dg, (v1,w) < dg(vi,w) we conclude that if dg(vi,w) < m—j+i—1
then w is not 1-resolvable by {v;} in G;. Similarly, we can conclude that if
dg(vi,w) <m —j+1i—2 then w is not 1-resolvable by {v1} in Ga. O

Finally, we provide a convergence result for our approach.

Theorem 3. Let G be a simple graph. We define a sequence of graphs G; (for
i > 0) inductively as follows:

- Gy =G.

— If there exists a 1-antiresolving set {v} in G; then G4 is the result of applying
a v-transformation to G;.

— Otherwise, Gi11 = G;.

Let S; be the set of vertices in G; such that v € S; implies that {v} is a 1-
antiresolving set in G;. Then S is empty for j > >, v €a,(v) — |V

Proof. Consider G;—1 = (V;_1,FE;—1) and G; = (V;, E;) where G,_1 # G;.
That is to say, G; results from a v-transformation to G;_; where {v} is a 1-
antiresolving set in G;_1. Let vy - - - v, be the eccentricity path of v in G;_1, i.e.,
v1 = v, such that G; = (V;_1, E;—1 U {(v;,v;)}) for some i,j € {1,...,m}.

On the one hand, dg,(vi,vm) = dg,(v1,v:) + dg, (vi,v;) + dg, (v, vm) =
da, ,(vi,v;) + 1 + dg, ,(vj,vm). On the other hand, by definition of a v-
transformation the edge (v;, v;) satisfies that j—i > 2. Therefore, dg,_, (v;,v;) >
2, which implies that dg, ,(vi,vm) > dg,(v1,vm). We conclude then that
€G; (U) < GGi—l(U)'
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The result above states that every v-transformation from G;_; to G; makes
the eccentricity of v to decrease. Because an eccentricity path cannot be shorter
than 1, the maximum number of v-transformations that can be applied to Gg is
bounded by €g,(v) — 1. Considering that every vertex could potentially form a
l-antiresolving set, we obtain the following upper bound: » ., .y €g,(v) — [V].
Consequently, the graph G; with i = >, -\, €g,(v) — [V does not contain 1-
resolvable vertices. O

Our anonymization approach simply consists of the successive application
of v-transformations until a graph without 1-resolvable vertices is found. The
number of v-transformations depends on how fast these transformations converge
to a graph without 1-resolvable vertices. According to Theorem 3, this number is
upper bounded by >, <y €a(v)—|V|, which is higher than or equal to |V|(eg—1)
where eg is the eccentricity of G. Considering that finding the shortest path
between every pair of vertices in a graph has computational complexity O(|V|?),
we obtain that the computational complexity of our method is O(|V|*(eg — 1)).

We end this section by remarking that the upper bound provided in Theo-
rem 3 is tight. That is, there exists a graph G = (V, E) such that the number of
edges added by our method is equal to ), .y €a(v) — [V/|. Moreover, such an
upper bound corresponds to the minimum number of edges required to trans-
form G into G’ through edge addition operations only and such that G’ is not
(1, 1)-anonymous. The graph G we are referring to can be constructed as follows.

Consider the complete graph C,, = (V| E) with n vertices V = {vy,...,v,}.
Given a vertex v,41, G is defined by G = (V U {vp11}, E U {(vn,vn11)}) (see
Fig.5). On the one hand, any edge added to G has the form (v,,41,v;) for some
i €{1,...,n}, which makes the distance between v, and v; to become 1. On
the other hand, if the edge (v,+1,v;) for some ¢ € {1,...,n} is not added to
G, then the distance between v,y; and v; remains equal to 2, implying that
Un41 is 1-resolvable by {v;}. Therefore, there exists only one transformation
of G into a graph that is not (1, 1)-anonymous, that is, the transformation to
the complete graph C, 1. This requires n additional edges, which is equal to

Sveev €6(0) = [V = €(tn) + Cper — (o, () = IV = 1420 — (n+1) =n.

@ Vg V1

Fig. 5. An example graph.
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5 Experiments

In this section we evaluate the proposed anonymization method in terms of
privacy and utility loss?. Privacy is measured as the resistance of a graph to the
walk-based attack introduced in [1], while utility loss is measured as the number
of added edges.

5.1 The Walk-Based Attack

Given a social graph G = (V, E), the walk-based attack consists of inserting
new nodes X = {x1,...,z,} into G, resulting in the graph G' = (VU X, E).
The attacker chooses an arbitrary set Y = {y1,...,ym} of users in G as the
target of the attack. For each vertex y; € Y, a subset N; C X is designated as
the fingerprint of y;, such that ¢ # j = N; # N; Vi,j € {1,...,m}. The
fingerprint is created by connecting each vertex y; € Y to all vertices in N;. It is
worth remarking that such a fingerprint is nothing but the metric representation
of the vertex y; € Y with respect to X, i.e., 7(y;|X).

The goal of the attacker is to re-identify the set of vertices X in an
anonymized version of G’, which is used to re-identify the set of targeted ver-
tices Y by considering their unique fingerprints with respect to X. To do so,
the attacker creates random internal connections between the vertices in X by
adding the edge (z;,2;) with probability 1/2 for every i # j € {1,...,n}. We
use G(X) to denote the sub-graph in G’ induced by the vertices in X. Once
G’ is released, the attacker computes the set X' containing all sub-graphs in
G’ isomorphic to G(X). Assuming that G(X) does not have a trivial automor-
phism as advocated in [1], the adversary determines for each fingerprint N; with
i € {1,...,m} the candidate set V; = {v € V|u € N; < dg/(v,u) = 1}
containing all vertices in V' whose fingerprint to G(X) is determined by N;. We
consider that the adversary succeeds if all vertices in Y are correctly re-identified.
Therefore, the probability of success of the attack is:

ZG(X)GX ngigmpi
| X

Uil i e
where p; = {0 otherwise.

5.2 Empirical Evaluation on Random Graphs

In order to validate the performance of the proposed anonymization method we
ran experiments on random graphs with different density values. We fix 50 as
the number of vertices in each random graph, implying that every density value
corresponds to a fixed number of edges. A random graph is thus created by
adding random edges, i.e., connecting random pairs of vertices, until the desired
number of edges is reached.

The density values range in {0.1,...,1}, while we considered attacks with 1
and 4 sybil nodes. For each density value and a given number of sybil nodes,

2 Experiments were performed on the UL HPC platform [12].
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we build a random graph G with the previously mentioned density. In order to
simulate the walk-based attack, G is transformed into G’ by adding the sybil
nodes and their connections to the victim nodes. Two anonymized versions of G’
are considered: G| and GY corresponding to our anonymization method and a
random approach, respectively. The random approach consists in adding random
edges to G’. The particularity is that the random approach adds as many edges
as our approach, i.e., the number of edges in G is equal to the number of edges
in GY. Doing so, both approaches perform equally in terms of utility loss. Their
performance in terms of privacy are depicted in Fig. 6.

: I

H Our approach —— || Our approach ——
6 [rend Zbbroach lRandomagpmach

F \ riginal - | riginal -

Pl

Probabilty of success
°
&

N et

0.1 02 0.3 0.4 05 06 07 0.8 0.9 101 02 03 0.4 05 06 07 0.8 09 1
Density Density

(a) One attacker node (b) Four attacker nodes

Fig. 6. Two charts depicting the average probability of success of the walk-based attack
in three types of graphs: random graphs (“Original”), random graphs anonymized
by our method (“Our approach”), and random graphs anonymized by the random
approach (“Random approach”). Left: the adversary can enrol a single node in the
network. Right: the adversary can enrol four nodes. (Color figure online)

Figure 6 shows the average probability of success of the walk-based attack in
250, 000 random graphs, and their corresponding anonymization versions by our
method and the random approach. Both anonymization approaches improve the
resistance to the walk-based attack with respect to the original graph. Indeed,
this attack succeeds with probability close to 1 on the original graphs for all den-
sity values above 0.2. Amongst the two anonymization approaches, ours performs
significantly better for most density values. In particular, our method ensures
that the probability of success of an adversary with the capability to insert a
single attacker node into the network is 0.

The pronounced non-monotonic behaviour of the curves in Fig. 6 corresponds
to the same type of behaviour of the curves in Fig. 7, which shows the average num-
ber of added edges by both our method and the random approach. It is indeed an
open question what would be the trend of a curve depicting the minimum number
of edges needed to transform a graph into another that is not (1, 1)-anonymous for
different density values. We observe that, for example, 1 and 2 edges need to be
added to a path graph of odd and even order, respectively. This means that such
minimum number of edges does not depend on the graph density only.
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Added Edges

Fig.7. Two charts depicting the average number of edges added by our method,
referred to as “Our approach”. The charts also show the upper-bound as determined
in Theorem 3 (“Upper-bound”) and the maximum number of edges that can be added
(“Maximum”). Left: the adversary can enrol a single node in the network. Right: the
adversary can enrol four nodes. (Color figure online)

Figure 7 shows, as sketched in the previous section, that the minimum number
of edges added by our method, the upper bound provided by Theorem 3, and
the maximum number of edges that can be added, meet when the density of
the random graph is 1 and the adversary adds a single node to the graph. This
leads to the type of graph shown in Fig.5. For other density values, the upper
bound in Theorem 3 is clearly above the actual number of edges added by our
technique.

6 Conclusions

In this article we have proposed, to the best of our knowledge, the first privacy-
preserving transformation method for social graphs that counteracts active
attacks. The proposed method is theoretically sound and outputs a graph that
satisfies (k,¢)-anonymity with & > 1 or £ > 1. We provide a theoretical upper-
bound on the utility loss, in terms of number of added edges, of our approach.
And we prove that such upper-bound is tight. Experiments on random graphs
show that the proposed method effectively counteracts active attack even when
the adversary is able to insert more than one sybil node in the network.
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