
Data Governance and Transparency
for Collaborative Systems

Rauf Mahmudlu, Jerry den Hartog, and Nicola Zannone(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
r.m.o.mahmudlu@student.tue.nl, {j.d.hartog,n.zannone}@tue.nl

Abstract. As social networks, shared editing platforms and other col-
laborative systems are becoming increasingly popular, the demands for
proper protection of the data created and used within these systems
grows. Yet, existing access control mechanisms are not suited for the
challenges imposed by collaborative systems. Two main challenges should
be addressed: collaborative specification of permissions, while ensuring
an appropriate levels of control to the different parties involved, and
enabling transparency in decision making in cases where the access
requirements of these different parties are in conflict. In this paper we
propose a data governance model for collaborative systems, which allows
the integration of access requirements specified by different users based
on their relation with a data object. We also study the practical feasibil-
ity of enabling transparency by comparing different deployment options
for transparency in XACML.

1 Introduction

Collaborative systems such as social networking websites, document shar-
ing/editing platforms and audio/video conferencing tools, are gaining increasing
popularity over the years. These systems provide an environment wherein users
can collaborate and share information. This information, however, can be sen-
sitive and, thus, needs to be protected from unauthorized access and accidental
loss or modification.

Access control is widely used to protect sensitive information. Access control
mechanisms rely on policies defining which actions users are allowed to perform
on data objects. However, existing authorization mechanisms are not able to
deal with the security demands of collaborative environments [21]. In particular,
we identify two main drawbacks that limit their application to collaborative
systems: the lack of (i) a data governance model for shared data objects and
(ii) transparency in decision making.

Most access control mechanisms assume that data objects are under the con-
trol of a single entity (e.g., the system or the owner). However, in collaborative
systems several users can contribute to the creation, governance and manage-
ment of data [3,7]. For instance, data can be provided by one or more users,

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 199–216, 2016.
DOI: 10.1007/978-3-319-41483-6 15

200 R. Mahmudlu et al.

can be stored by some other user, and refer to yet other users where each of
these users retains some level of authority on the data. In particular, each user
can define its own authorization requirements for the protection of data. There-
fore, we need a way to combine those requirements in order to define the policy
ultimately regulating the access to data.

Several approaches for policy combination [8,11,12,14] and integration [13]
have been proposed. These approaches provide strategies to combine policies
specified by different entities and automatically resolve policy conflicts at evalu-
ation time based on predefined priorities between decisions or based on the policy
structure. However, they consider every user ‘equally’ and they do not account
for the relation of users with the data to be protected in order to determine how
user policies should be combined.

Although the use of these strategies is necessary to guarantee the proper
functioning of the system as a conclusive decision has to be made (either allow-
ing or denying the access to the data), it results in a decision making process
that is non-transparent to users. Every user expects its policies to be enforced by
the system. This, however, is often not possible, for instance when users specify
conflicting authorization requirements for the same resource. To resolve policy
conflicts, policy combination strategies sacrifice some policies to reach a conclu-
sive decision. Authorization mechanisms make decisions in a blackbox manner
[5] and, thus, users are often unaware whether their policies have actually been
enforced. This lack of confidence may reduce the level of trust users have towards
the system and thus users’ willingness to engage in collaboration.

In a previous work [2] we have introduced the notions of archetype and policy
mismatch to address these issues. Archetypes are used to represent the relation
of users with a given data object. Policy mismatches are used to identify the
difference between the authorization requirements of single users and the final
decision enforced by authorization mechanisms. We have also shown how the
notion of policy mismatch can be used as a baseline for the realization of trans-
parent authorization mechanisms which increases user awareness about access
decision making.

This paper extends our previous work in two directions. First, we propose a
data governance model for collaborative systems, which allows the integration
of authorization requirements specified by different users based on their relation
with a data object. In particular, the governance model provides a general frame-
work to reason on the level of authority that users have over shared data and
allows the use of existing policy combination and integration strategies to resolve
policy conflicts. Moreover, we investigate the feasibility of transparency in exist-
ing authorization mechanisms. In particular, we have developed a transparency
service that has been deployed in SAFAX [10], an XACML-based framework
offering authorization as a service. A main feature of SAFAX is that all the
components of the XACML reference architecture are designed as loosely cou-
pled services. We exploit the flexibility provided by this design to evaluate the
impact of the transparency service with respect to different deployment models.

Data Governance and Transparency for Collaborative Systems 201

The remainder of the paper is organized as follows. The next section intro-
duces preliminaries on XACML. Section 3 presents our approach to shared data
control. Section 4 discusses the problem of decision mismatches, and Sect. 5
describes the design, implementation and deployment of the transparent ser-
vice. Section 6 presents experimental results. Finally, Sect. 7 discusses related
work, and Sect. 8 concludes the paper and provides directions for future work.

2 Preliminaries

This section provides preliminaries on XACML [14], the de facto standard for
the specification and enforcement of access control policies. This work is based
on XACML v2. However, it can be easily adapted to comply with XACML v3.

2.1 Policy Language

XACML provides an attribute-based language that allows the specification of
composite policies by using three policy elements: policy sets, policies and rules.
Policy sets comprise a list of policy sets and policies; policies comprise a list of
rules. Rules specify an effect, i.e. whether an access request should be allowed
(Permit) or denied (Deny). Each policy element has a (possibly empty) target
which restricts the applicability of the policy element. The target is specified in
terms of attributes characterizing the subject, resource, action and environment
and denotes the access requests covered by the policy element. A rule may addi-
tionally have a condition, i.e. a predicate that must be satisfied for a rule to be
applicable. Policy sets and policies can also be associated with obligations, i.e.
mandatory requirements that have to be fulfilled.

The evaluation of an access request against a policy element results in an
access decision. If the request matches both the target and condition of a rule,
the rule is applicable to the request and yields the decision specified by its
effect, either Permit or Deny. If the rule is not applicable, a NotApplicable deci-
sion is returned. If an error occurs during evaluation, an Indeterminate decision is
returned. Each composite policy element (i.e., a policy set or a policy) specifies a
combining algorithm that is used to combine the decisions of its comprising ele-
ments. XACML provides a number of combining algorithms: permit-overrides
(pov), deny-overrides (dov), first-applicable (fa) and only-one-applicable (ooa).
These algorithms evaluate composite policies based on the order of the pol-
icy elements and priorities between decisions. Hereafter, we use the following
abstract notation to represent the policy evaluation process in XACML: P
denotes the set of XACML policies, Q the set of access requests, and function
�p� : Q → {Permit,Deny,NotApplicable, Indeterminate} denotes policy evalua-
tion, i.e. �p�(q) is the decision according to a policy p ∈ P for a request q ∈ Q.

2.2 XACML Architecture

The XACML reference architecture is shown in Fig. 1. Access requests are
intercepted by the Policy Enforcement Point (PEP). Upon receiving an access

202 R. Mahmudlu et al.

Access
Request PEP

CH

PIP

PDP

PAP

request

response

request
response

attribute
request

attribute
values

attribute values

attribute request

request

responsepolicy

Fig. 1. XACML Architecture

request, the PEP forwards the request to the Context Handler (CH) which, after
translating the request from the application’s native format to XACML, sends
it to the Policy Decision Point (PDP) for evaluation. The PDP fetches the poli-
cies from the Policy Administration Point (PAP). If additional attributes are
required to evaluate the request, the PDP queries the CH for such attributes.
The CH retrieves these attributes from the Policy Information Point (PIP) and
sends them to the PDP. The PDP evaluates the request against the policies and
returns a response specifying the access decision (and possibly a set of obliga-
tions to be fulfilled) to the CH. The CH sends the response to the PEP, which is
responsible for the enforcement of the decision and the fulfillment of obligations.

3 Shared Data Control

In collaborative systems like social media and document sharing platforms, data
objects can be under the control of multiple stakeholders. The level of author-
ity that each stakeholder has on a shared data object depends on its relation
with the object. In this section we discuss the problem of shared data control
and propose an approach to regulate the access to data by taking into account
both the authorization requirements of the stakeholders related to the data and
their relationship with the shared data. We start by introducing a scenario in
healthcare that is used as a running example throughout the paper.

Example 1. A University Medical Center (UMC) provides medical treatment
for a variety of diseases. The UMC also has an advanced research program, and
several researchers conduct clinical research studies within the UMC. Patient
data are stored in a central database at the UMC. The UMC is responsible for
guaranteeing the security of patient data and for determining the purposes and
means of its processing. Different departments at the UMC can define policies to
regulate the access to patient data. Here, we consider two such departments: the
Security Department and the Data Center. The Data Center manages the UMC
database and is mainly concerned that medical, research and administrative
staff of the UMC have access to the data they need to perform their duties. On
the other hand, the Security Department mainly focuses on the protection of
patient data and on the compliance with regulations and laws that are in place.

Data Governance and Transparency for Collaborative Systems 203

Table 1. Access Requirements

Stakeholder Access requirements

Alice Her treating doctors and nurses can access her medical information

Any other access to her information is denied

Caroline Doctors and nurses can access her medical information

Researchers can read her genetic information

Any other access to her information is denied

UMC Data Center Doctors and nurses can access patient information

Researchers can access patient information

UMC Security Department Medical staff can access patient data to provide medical treatment

Technicians can access and modify patient data for maintenance

purposes

Regulatory Body Data subjects can access their medical information

Personal data shall be collected and processed only if the data

subject has given his explicit consent to their processing

Access is allowed without data subject’s consent to comply with a

legal obligation imposed upon the controller

Access is allowed without data subject’s consent to protect the

data subject’s vital interests

National Privacy Authority Unlawful and unfair data processing operations are forbidden

Ethical Medical Committee Researchers can only access anonymized patient information

Our scenario focuses on Alice and Caroline, two monozygotic twins, who both
rely on UMC’s services for treatment. Caroline has also engaged in a clinical
trial and shared her genetic information with the UMC for research purposes.

Privacy is a highly regulated subject, especially in healthcare. Most coun-
tries have regulations and laws in force, which impose stringent requirements
on the collection and processing of personal data [6]. To explicitly model the
access requirements defined by privacy regulations, we introduce a Regulatory
Body as a stakeholder in our scenario.1 This entity issues and revises regulations
to protect the privacy of citizens. Privacy regulations like the EU Directive on
data protection (Directive 1995/46/EC) require the creation of an independent
authority to protect the fundamental rights of citizens. This authority, hereafter
referred to as National Privacy Authority, has the task of overseeing the compli-
ance of organizations with privacy regulations. Moreover, it can prohibit unlawful
or unfair data processing operations. Next to the National Privacy Authority,
we also consider an Ethical Medical Committee of the Ministry of Health. This
entity defines requirements on the use of medical data, especially for research
purposes.

Each aforementioned stakeholder can specify requirements to regulate the
access and usage of data. These requirements are summarized in Table 1.

1 Note that legal requirements can also define the relation between stakeholders. In
the next section we will discuss how these requirements can be accommodated in
the framework.

204 R. Mahmudlu et al.

3.1 Data Governance Model

In collaborative systems, multiple stakeholders can contribute to the creation and
management of data objects. Each stakeholder related to a data object should
retain some authority on the object. However, not all these stakeholders might
have the same level of authority. The degree of authority a user has depends on its
role with respect to the data. Thus, the actual permissions on shared data should
be defined by taking into account both stakeholders’ access requirements and
their relation with the data. In this section, we investigate a general framework
to explicitly express the relations between stakeholders and data objects as well
as to prioritize such relations.

To characterize the relation between stakeholders and shared data, we use
the notion of archetype proposed in [2]. The archetypes for a shared data object
capture the roles that stakeholders can have with respect to the object. The role
determines the extent of control over the object. In this work we introduce the
notion of archetype hierarchy to reflect the level of authority that users have on
shared resources.

Definition 1. Let A be the set of archetypes for a shared data object o. An
archetype hierarchy H has the form:

H = L | (L, pr,H)
L = (σ, [a1, . . . , an])
pr = t | + | −

A level L consists of a set of archetypes a1, . . . , an ∈ A, whose requirements
are combined using an intra-level aggregator σ. An archetype hierarchy H is
(recursively) built over levels by concatenating a level with a hierarchy according
to a given priority pr that can be total (denoted by t), positive (denoted by +)
or negative (denoted by −).

Intuitively, a level groups those archetypes that have the same level of author-
ity on shared data. An intra-level aggregator specifies how the requirements of
the stakeholders associated to the archetypes in a level should be evaluated. Our
framework does not pose restrictions on the intra-level aggregator that can be
used. In the next section we provide some examples of intra-level aggregators
and discuss how they can be realized.

Example 2. Consider the genetic information provided by Caroline in the sce-
nario of Example 1. We identify two main archetypes for this information: Data
Controller and Data Subject. The Data Controller is the entity responsible for
the security of the data and defines who can access a data element and how
data can be processed. In our scenario, the UMC plays the role of Data Con-
troller for Caroline’s genetic information. In particular, the UMC Data Center
and Security Department are two instances of the Data Controller. The Data
Subject is the person to whom the information refers. In the scenario, Caroline

Data Governance and Transparency for Collaborative Systems 205

is the Data Subject for her genetic information. In addition, given the twin rela-
tionship between Alice and Caroline, we also consider Alice as the Data Subject
for the genetic information provided by Caroline. Next to these archetypes, we
define an archetype for each of the other stakeholders in the scenario, namely
Regulatory Body, National Privacy Authority and Ethical Medical Committee.

In an archetype hierarchy, levels are ordered according to the degree of
authority that the archetypes forming a level have. We distinguish three types
of priorities between levels: total, positive and negative. Total priority indicates
that the access requirements associated to the higher level always override the
ones associated to lower levels. However, in some cases only the positive access
requirements (i.e., access requirements defining positive authorizations) associ-
ated to the higher level should take precedence; otherwise, the access require-
ments defined by stakeholders at the lower level should also be evaluated. This
is achieved using the positive priority. Negative priority is the dual of positive
priority where only negative requirements from the higher level take precedence.

Example 3. The archetypes for our running example, identified in Example 2,
can be organized in a hierarchy. Figure 2a presents a graphical representation of
this hierarchy. Regulatory Body has the highest priority. The next level comprises
the Data Subject, followed by a level formed by the National Privacy Authority
and the Ethical Medical Committee. The lowest level is formed by the Data
Controller. In order to comply with data protection regulations and to satisfy the
intrinsic characteristics of the roles, the following priorities are defined between
levels:

– The Regulatory Body has the right to override the decisions of the Data Sub-
jects to permit access to patients’ medical records, e.g. to protect their vital
interests or comply with legal obligations [6]. Therefore, a positive priority is
used between the first and second level.

– Data Subjects have the right to determine who can (or cannot) access and
process their information. However, even if they permit access to their infor-
mation, the National Privacy Authority and the Ethical Medical Committee
hold the right to deny it if the request is not in compliance with their require-
ments. Such a requirement is achieved through a negative priority between
the Data Subject and the lower level.

– The National Privacy Authority and Ethical Medical Committee can influence
how the Data Controller processes personal data. In particular, they can
deny an unlawful or unfair access, or permit the access for research purposes
regardless of the Data Controller’s requirements. A total priority between the
levels can be used to achieve this requirement.

3.2 Data Governance Instantiation

Access control policy languages like XACML allow stakeholders to express their
access requirements as policies and provide means to combine these policies

206 R. Mahmudlu et al.

Regulatory Body

Data Subject

National Privacy
Authority

Ethical Medical
Committee

Data Controller

l3

l2

l1

l4

(a) Archetype hierarchy

polRB

polA polC

polNPA polEMC

polSD polDC

l3

l1

l2

l4

(b) Global policy

Fig. 2. Data Governance Model and Instantiation for the scenario in Example 1

in a single policy (hereafter referred to as the global policy), which is used to
determine the actual permissions on shared data. In this section, we present
how the global policy can be created from user policies taking into account the
archetype hierarchy. We first introduce a grammar for the specification of the
global policy. This grammar is inspired by XACML, thus making the encoding
into XACML policies straightforward.

Definition 2. The global policy PH is constructed upon the following grammar:

PH = PL | (fa, [PL, PH]) | (pov, [PL, PH]) | (dov, [PL, PH])
PL = (ca, [Pa, . . . , Pa])
Pa = (ca, [p1, . . . , pn])

where p1, . . . , pn are user policies and ca represents a policy combining algorithm.

An archetype policy Pa combines the policies of those users who are associ-
ated to an archetype a. To this end, every archetype is associated with a policy
combining algorithm that determines how the policies defined by the stake-
holders having such an archetype are combined. A level policy PL combines the
policies associated to the archetypes in a level L. The combining algorithms used
to construct archetype and level policies should reflect the security and privacy
needs for the specific domain. In particular, the combining algorithm for level
policies should reflect the constraints on the combination of archetypes in a level
as given in the archetype hierarchy (Definition 1). Note that our policy language
does not impose any restriction on the policy combining algorithms to be used to
combine user policies and archetype policies.2 For instance, archetype/level poli-
cies can make use of the standard XACML combining algorithms (see Sect. 2) or

2 Although any combining algorithm can be used to combine user policies and
archetype policies, the use of noncommutative algorithms can have undesired effects.
In fact, these algorithms often represent a priority between policies based on their
order (e.g., first-applicable in XACML), whereas there is no order within an archetype
or a level.

Data Governance and Transparency for Collaborative Systems 207

more advanced combining algorithms such as the consensus and majority com-
bining algorithms defined in [11]. The global policy is recursively built over level
policies. This is necessary to account for the use of different priority between
levels in the archetype hierarchy. Priorities are encoded in terms of combining
algorithms. In particular, the total, positive and negative priorities are encoded
using first-applicable (fa), permit-overrides (pov) and deny-overrides (dov), respec-
tively.

Next we define how the global policy is constructed from the archetype hier-
archy and user policies.

Definition 3. Let A be the set of archetypes for an object o and U the set of
users. Let UA ⊆ U × A be the user-archetype assignment, i.e. (u, a) ∈ UA iff
user u has archetype a. Let P be the set of user policies and let pu denote the
policy of user u. We denote by A2ca(a) the combining algorithm ca specified for
archetype a. To combine user policies according to the archetype hierarchy, we
first create archetype policies:

A2P(a) = (A2ca(a), [pu1 , . . . , pum
])

where u1, . . . , um are the users such that (u1, a), . . . , (um, a) are in UA. Next,
archetype policies are combined to form level policies:

L2P((σ, [a1, . . . , an])) = (ca, [A2P(a1), . . . ,A2P(an)])

where ca is the combining algorithm realizing the intra-level aggregator σ. The
global policy is obtained by recursively combining level policies with respect to
the priorities between levels:

{
H2P(L) = L2P(L)

H2P((L, pr,H)) = (pr2CA(pr), [L2P(L),H2P(H)])

where
pr2CA(t) = fa pr2CA(+) = pov pr2CA(−) = dov

In the next example we illustrate how to derive a global policy from the
archetype hierarchy and user policies based on our running example.

Example 4. Figure 2b shows the structure of global policy G obtained by instan-
tiating the archetype hierarchy in Fig. 2a based on the scenario given in Exam-
ple 1. Formally, the global policy can be represented as follows:

G = pov(polRB , dov(pov(polA, polC), fa(wc(polNPA, polEMC), dov(polSD, polDC))))

Here we assume that the policies specified by the data subjects (i.e., Alice and
Caroline) are combined using permit-overrides, i.e. access to the data is granted
if at least one of the data subjects permits the access. The policies of the
UMC Security Department and Data Center are combined using deny-overrides.

208 R. Mahmudlu et al.

Finally, we combine the policies of the National Privacy Authority and the Eth-
ical Medical Committee using the weak-consensus algorithm as defined in [11].
According to this algorithm, user policies should not conflict with each other:
Permit a request if some user policies permit a request, and no user policy denies
it; Deny a request if some user policies deny a request, and no user policy permits
it; otherwise Indeterminate should be yielded.

4 Policy Mismatches

In the previous section, we have shown how the policies of different stakeholders
can be combined by taking into account their relationship with the resource to
be protected. Ideally, the authorization system should enforce the access require-
ments of all stakeholders. However, this is not always possible. In fact, users can
have conflicting authorization requirements, which results in conflicting policies.

Many access control mechanisms like XACML use policy combining algo-
rithms to automatically resolve policy conflicts. Although solving conflicts is
necessary for an authorization mechanism to make a conclusive decision, it makes
the decision making process non-transparent to users. Users expect their policies
to be enforced by the authorization system; however, in practice, their policies
can be overridden by the policies of other entities. The main problem is that,
in most existing authorization systems, policy conflict resolution is embedded in
the policy evaluation process and, thus, policy conflicts are not identified and/or
recorded. This makes users unaware whether their policies have actually been
enforced.

We argue that the lack of transparency can affect the collaboration among
users and, in particular, their willingness of sharing sensitive information needed
for the success of the collaboration. Below we exemplify this issue using our
running example.

Example 5. As shown in Example 1, each stakeholder has certain authorization
requirements over the genetic information provided by Caroline. Suppose that
David, a researcher at the UMC, requests access to this information. Based on
the global policy in Example 4 and access requirements in Table 1, the autho-
rization system allows David to access the information. If we look at the require-
ments of the single users, we have that: the enforced decision is consistent with
Caroline’s and the UMC Data Center’s policy; however, access should have been
denied according to Alice’s policies; finally, the Regulatory Body’s policy returns
a NotApplicable as it delegates the Data Subject the authority to decide whether
its data can be used for research purposes and thus does not define a specific pol-
icy about researcher accessing genetic information. We can observe that Alice’s
access requirements are not enforced. This can reduce her trust towards the
UMC and, thus, can make her reluctant to share information in the future.

We use the notion of policy mismatch introduced in [2] to capture policy
conflicts.

Data Governance and Transparency for Collaborative Systems 209

Definition 4. Let p1, . . . , pn be the policies of n users and p the global policy
obtained by combining such policies. Given an access request q, a user i (with
i ∈ {1, . . . , n}) has a mismatch if �p�(q) �= �pi�(q).

A mismatch occurs when the decision enforced by the authorization system
differs from the decision obtained evaluating the policy of a user. Likely, only
mismatches where a user’s policy is applicable (i.e., �pi� �= NotApplicable) are
relevant for the user. However, we do not restrict the (type of) mismatches that
can be reported to users. In particular, we allows each user to specify mismatches
preferences, indicating the types of mismatches the user wants to be notified (see
Sect. 5.1). In the next section, we show how the notion of mismatch can be used
to augment the XACML reference architecture with a transparency service while
being compliant with the XACML specification.

5 Transparency Service

The goal of this work is to enable collaborations between stakeholders in a
trusted, secure and privacy-preserving way. Sharing resources and managing
access to them are essential for such collaborations. However, as shown in the
previous section, stakeholders may have conflicting authorization requirements.
This section presents a transparency service, which aims to make the stakehold-
ers engaged in a collaboration aware of these conflicts and how they are resolved
by the authorization system.

The transparency service has been designed to be fully compliant with the
XACML standard. This ensures that the service can be used within existing
XACML implementations without these implementations being modified. In the
remainder of the section, we discuss the design and implementation of the trans-
parency service as well as possible deployment configurations within the XACML
reference architecture.

5.1 Service Design

The transparency service aims to detect mismatches between the decision
enforced by the authorization system and the access requirements of a certain
stakeholder. Any mismatch found is then reported to the stakeholders whose
decision was not enforced, provided they are interested in this type of discrep-
ancy.

A näıve approach to identify decision mismatches would be to evaluate an
access request against the global policy and against each user policy, and com-
pare the obtained decisions. In particular, user policies could be stored separately
in the PAP; then, the PDP can fetch one policy at the time for the evaluation of
the access request. This näıve approach, however, has a number of drawbacks.
First, the selective fetching of policies is not supported by most existing XACML
implementations; they typically fetch all policies available in the PAP and then
combine the decisions obtained evaluating the fetched policies using a root com-
bining algorithm [14]. Therefore, this approach would requires a modification

210 R. Mahmudlu et al.

of existing XACML implementations. In addition, it requires instantiating the
PDP for each user policy, affecting performance.

To address these drawbacks, we introduce viewpoints to distinguish user poli-
cies in the global policy. Every user u submits an XACML policy pu implement-
ing its authorization requirements. To reflect the viewpoint the target of pu is
extended with an environment attribute ViewPoint. Two values are assigned to
this attribute: the identifier of u, representing the user viewpoint, and “global”.
The evaluation with respect the global perspective provides the access decision
which is actually enforced by the authorization mechanism. It is worth noting
that the target is applicable to a given access request (and thus a user pol-
icy is evaluated) only if at least one of these two attribute values for attribute
ViewPoint is provided in the request. User policies are combined based on the
role of the corresponding stakeholder with respect to the resource to be protected
as described in Sect. 3. The resulting policy is stored in the PAP and is fetched
by the PDP for the evaluation of access requests.

The architecture of the transparency service is presented in Fig. 3. The ser-
vice comprises three main components: Global Decision Handler, Mismatch Han-
dler and Notification Handler. The service allows users to specify their prefer-
ences about which mismatches they want to be notified (e.g., access is permitted
whereas the user wants to deny it) along with their contact information. Upon
receiving a request, the Global Decision Handler adds attribute ViewPoint with
value “global” to the request and passes on the enriched request for evaluation.
The response is passed on for enforcement; it is also sent to the Mismatch Han-
dler. This component checks the mismatch preferences provided by every user to
determine the users u1, . . . un who are interested in mismatches corresponding
to the decision reached. For each such user u, the Mismatch Handler creates a
new access request which consists of the original request but now extended with
attribute ViewPoint taking value u, the identifier of the user. As the policies
specified by other users will not be applicable (due to a non-matching value for
attribute ViewPoint) this request is only evaluated against the policy of the
corresponding user. When a response to a viewpoint specific requests does not
match the global decision and the user is interested in this specific type of mis-
match, the Mismatch Handler calls the Notification Handler. This component
retrieves the contact information of the users from the database and notifies
them of the mismatches that occurred.

5.2 Service Implementation and Deployment

We have implemented the transparency service within the SAFAX framework
[10]. SAFAX is an XACML-based architectural framework that offers authoriza-
tion as a service. A main characteristic of SAFAX is that all components in the
XACML reference architecture are designed as loosely coupled services. These
services communicate with each other in JSON or XML via preregistered inter-
faces (defined in a service registry). SAFAX has been implemented in Java and
runs on Apache Tomcat server using Jersey as a service framework. Back-end

Data Governance and Transparency for Collaborative Systems 211

Global
Decision
Handler

Mismatch
Handler

Notification
Handler

Mismatch
Preferences

request
response

request(global)

response(global)

response(global)
request(u1). . .
request(un)

response(un)
. . .
response(u1)

. . .
notification(u1)

notification(um)

Fig. 3. Transparency Service Architecture

(a) Mismatch Preferences (b) Response

Fig. 4. SAFAX GUI

persistent data are stored in a MySQL server. To manage the authorization ser-
vice configuration and policies, SAFAX offers a User Interface (referred to as
SAFAX GUI) that consumes SAFAX services.

The transparency service has been implemented as a SAFAX service and the
SAFAX GUI has been extended to manage its configurations. Figure 4a shows
a screenshot of the interface used to manage viewpoints and set stakeholders’
mismatch preferences. These preferences are stored in a persistent database on
the MySQL server and used by the Notification Handler to determine, for each
stakeholder, which mismatches should be notified. For demonstration purposes,
the evaluation outcome for every request and the notified mismatches are shown
in the SAFAX GUI (Fig. 4b).

Thanks to the service-oriented nature of SAFAX, the transparency service
can be deployed at two different locations within the XACML reference archi-
tecture. In particular, it can act as either PEP or PDP. Depending on its use,
the transparency service and its interfaces have to be registered in the SAFAX
service registry accordingly. As shown by the architectures in Figs. 5 and 6, the
transparency service encapsulates rather than replacing the corresponding com-
ponents. By creating a dependency between the transparency service and one

212 R. Mahmudlu et al.

Access
Request

Transparency
Service

PEP

CH

PIP

PDP

PAP

request response

modified requests

responses

modified requests responses

attr. request attr. values

attr. values

attr. request

modified requests

responsespolicy

mismatch
notifications

Fig. 5. Transparency Service as PEP

Access
Request PEP

CH

PIP

Transparency
Service

PDP

PAP

request

response
request response

attr. request attr. values

attr. values

attr. request

request

responsemodified
requests responses

policy

mismatch
notifications

Fig. 6. Transparency Service as PDP

of the existing PEP and PDP services, the expected message flow for the corre-
sponding configuration is achieved.

When the transparency service is used as PEP (Fig. 5), it can be seen as an
external service offered to users by a (possibly) different provider. On the other
hand, when the transparency service is used as PDP (Fig. 6), it can be seen
as additional functionality offered by the authorization service itself. SAFAX is
able to support both configurations without the need of modifying existing com-
ponents due to its service-oriented nature. In contrast, other existing XACML
implementations can only support the transparency service as an external ser-
vice because they implement the XACML reference architecture as a monolithic
component. Deployment of the transparency service as the PDP would require
a modification of these XACML implementations.

6 Evaluation

As discussed in the previous section, the transparency service generates multiple
requests to identify mismatches between the decision enforced by the system and
user policies. Therefore, we need to evaluate the introduced overhead to ensure
it does not affect user experience, thus hampering the adoption of the service
in existing infrastructures. For the experiments we created a dataset consisting
of policies of different size, where the size of a policy is characterized by the
number of rules in the policy. Since the number of generated requests depends
on the number of viewpoints, we added a varying number of viewpoints to these
policies (i.e., 5, 10, 20, 30 and 40 viewpoints). The same policies were evaluated
when the transparency service is deployed as PEP and PDP as well as when the
transparency service is not used. We computed the average evaluation time over
ten runs; a new policy dataset was created for each run.

The results of the experiments are shown in Fig. 7. These graphs show that
the transparency service when deployed as PEP (Fig. 7b) introduces a larger
overhead than when it is deployed as PDP (Fig. 7a). When the transparency
service is deployed as PEP, every generated request has to be handled by the

Data Governance and Transparency for Collaborative Systems 213

(a) Transparency service as PDP (b) Transparency service as PEP

Fig. 7. Evaluation of the overhead introduced by the transparency service (Color figure
online)

PEP, CH and PDP (see Fig. 5). On the other hand, when the service is deployed
as PDP, requests are only handled by PDP (see Fig. 6), thus leading to a lower
overhead. In addition to the deployment method, the results show that the eval-
uation time depends on the number of viewpoints and policy size. In particular,
the number of viewpoints has an impact on the number of requests that are
generated. The observed results imply that the delay introduced by the com-
munication among the components of the system is more significant than the
overhead due to the evaluation of the requests.

Although enabling transparency unavoidably comes at the cost of compu-
tation time, it should be noted that the decision enforced by the authorization
mechanism is obtained from the evaluation of the request with the ‘global’ view-
point. The other requests are only needed to detect policy mismatches and gen-
erate notifications. Therefore, they can be generated and evaluated offline to not
affect the functioning of the system.

7 Related Work

With the growing popularity of collaborative systems, the risks of data breaches
have increased due to the intrinsic difficulty of establishing a data government
model for such systems. Several mechanisms have been proposed to balance the
ease of collaboration and the level of security with collaborative systems (see
[21] for a survey). For instance, solutions such as Role-Based Access Control
[16], Task-Based Access Control [20] and Team-Based Access Control [19] use
the roles within an organization, the purpose of the usage or group membership
to regulate the access to sensitive data. While these solutions provide some basic
features to enable access control in collaborative systems, they usually assume
that data objects are under the control of a single entity and, thus, they lack
support for policy administration of shared resources.

A few models have been proposed for collaborative authorization manage-
ment of shared data. For instance, Squicciarini et al. [18] consider resources co-
owned by multiple users who can separately specify their policies for the shared

214 R. Mahmudlu et al.

data, and use the Clarke-Tax model for the collective enforcement of these poli-
cies. Hu et al. [7] propose a multiparty access control model where, in addition to
the owner of data, other controllers (e.g., contributor, dissiminator, stakehold-
ers) can regulate the access to shared data. The owner of the data can choose an
appropriate strategy (e.g., owner-overrides, full-consensus-permit, majority-permit)
to resolve policy conflicts. To account for the different level of authority, the
model uses a voting scheme that allows the specification of different weights for
controllers. Similarly to the model proposed in [7], our governance model uses
policy combination strategies for conflict resolution; however, our model allows
a more fine-grained governance of shared resources by representing and ordering
levels of authority through an archetype hierarchy that can be instantiated using
an arbitrary combination of policy combining algorithms.

Policy combination strategies are often used by authorization mechanisms to
define how policy conflicts should be resolved. Examples of conflict resolution
strategies are: deny takes precedence [8], permit takes precedence [8], most-
specific takes precedence [8,12] and explicit specification of priorities [17]. Sim-
ilarly, Reeder et al. [15] propose specificity precedence, deny precedence, order
precedence, recency precedence or the combination of these when a single strat-
egy fails. The most prominent authorization mechanism that supports (most of)
these strategies is XACML [14]. In particular, XACML encodes conflict resolu-
tion strategies as policy combining algorithms (see Sect. 2). Our solution, being
based on XACML, natively supports these strategies as well. Moreover, given the
extensible nature of XACML, accommodating other conflict resolution strategies
as the ones proposed in [8,11,12] is straightforward.

Mazzoleni et al. [13] argue that policy combination algorithms provided by
XACML, and in general conflict resolution strategies, are not enough to inte-
grate policies specified by autonomous parties. To this end, they define a policy
similarity process and a number of policy integration algorithms. The policy
similarity process is used to analyze the behavior of policies with respect to
access requests. The result of this analysis, along with policy integration prefer-
ences given by the users, is used to select the policy integration algorithms for
building the global policy. Differently from [13], our framework integrates poli-
cies specified by multiple administration entities based on their relation with a
data object, thus reflecting the level of authority that these entities have on the
object. The policy similarity process and policy integration algorithms proposed
in [13] can be employed in our framework to form archetype and level policies.

Although methods for integrating policies specified by autonomous entities
(as well as conflict resolution strategies) are necessary to ensure the proper
functioning of the system, their application makes access decision making non-
transparent to users. Transparency has become a major demand for modern
IT governance, social and medical systems [1,4,9]. However, very little research
has been conducted towards its introduction into access control. To the best of
our knowledge, CollAC [2] is the only work that proposes a transparent access
control solution which detects conflicts during policy evaluation and notifies the
users whose decisions have been overridden. This work extents [2] along two main

Data Governance and Transparency for Collaborative Systems 215

directions. First, this work introduces archetype hierarchies to reason about the
level of authority that users have over shared objects together with a method
for obtaining the global policy from the archetype hierarchy and user policies.
Moreover, we demonstrate how the notion of transparency can be accommodated
in existing XACML-based access control mechanisms, thus showing its practical
applicability.

8 Conclusion

This paper has introduced a governance model for collaborative systems, which
enables the integration of the access requirements of all entities involved in the
protection of a data object with respect to their relation with the object. This
way, all entities are offered an appropriate level of control over shared resources.
We have implemented the model in XACML, allowing each user to provide its
requirements as a policy and using appropriate combining algorithms to achieve
the right precedence between their policies.

Even if the use of combining algorithms is necessary to automatically resolve
policy conflicts and thus guarantee the proper functioning of the system, it can
result in a user’s policy to be overruled without the user being aware. This may
lower the user’s trust in the system. To this end, we have introduced trans-
parency in the decision making, allowing users to choose to be notified about
conflicts between their access requirements and the decision enforced by the sys-
tem. Our implementation within SAFAX shows that a transparency service can
be deployed both as a PEP and a PDP. Our experiments show that deployment
as a PDP has a lower overhead. While the solution is not optimized for perfor-
mance, it can be applied to many scenarios, especially given the fact that the
introduced overhead is not on the critical path for access to resources.

The proposed transparency service only notifies users about policy mis-
matches. To enhance user awareness, users should be also able to understand
why a certain decision was taken [5]. An interesting direction for future work
is to augment users’ notification with information explaining why their policies
were overridden.

Acknowledgments. This work has been partially funded by the ITEA2 projects
FedSS (No. 11009) and M2MGrid (No. 13011), the EDA project IN4STARS2.0, and
the Dutch national program COMMIT under the THeCS project.

References

1. Albrecht, U.V.: Transparency of health-apps for trust and decision making. J. Med.
Internet Res. 15(12), e277 (2013)

2. Damen, S., den Hartog, J., Zannone, N.: CollAC: Collaborative access control. In:
Proceedings of CTS, pp. 142–149. IEEE (2014)

3. Damen, S., Zannone, N.: Privacy implications of privacy settings and tagging in
facebook. In: Jonker, W., Petković, M. (eds.) SDM 2013. LNCS, vol. 8425, pp.
121–138. Springer, Heidelberg (2014)

216 R. Mahmudlu et al.

4. de Fine Licht, J.: Transparency actually: how transparency affects public percep-
tions of political decision-making. Eur. Political Sci. Rev. 6(02), 309–330 (2014)

5. Ghai, S.K., Nigam, P., Kumaraguru, P.: Cue: A framework for generating mean-
ingful feedback in XACML. In: Proceedings of SafeConfig, pp. 9–16. ACM (2010)

6. Guarda, P., Zannone, N.: Towards the development of privacy-aware systems. Inf.
Softw. Technol. 51(2), 337–350 (2009)

7. Hu, H., Ahn, G.J., Jorgensen, J.: Multiparty access control for online social net-
works: model and mechanisms. TKDE 25(7), 1614–1627 (2013)

8. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

9. Joshi, A., Bollen, L., Hassink, H.: An empirical assessment of it governance trans-
parency: evidence from commercial banking. Inf. Sys. Manag. 30(2), 116–136
(2013)

10. Kaluvuri, S.P., Egner, A.I., den Hartog, J., Zannone, N.: SAFAX – Anextensible
authorization service for cloud environments. Front. ICT 2(9) (2015)

11. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin, D.: Access
control policy combining: theory meets practice. In: Proceedings of SACMAT, pp.
135–144. ACM (2009)

12. Matteucci, I., Mori, P., Petrocchi, M.: Prioritized execution of privacy policies. In:
Di Pietro, R., Herranz, J., Damiani, E., State, R. (eds.) DPM 2012 and SETOP
2012. LNCS, vol. 7731, pp. 133–145. Springer, Heidelberg (2013)

13. Mazzoleni, P., Crispo, B., Sivasubramanian, S., Bertino, E.: XACML policy inte-
gration algorithms. ACM Trans. Inf. Syst. Secur. 11(1), 4:1–4:29 (2008)

14. OASIS XACML Technical Committee: eXtensible Access Control Markup Lan-
guage (XACML) Version 2.0 (2005)

15. Reeder, R.W., Bauer, L., Cranor, L.F., Reiter, M.K., Vaniea, K.: Effects of access-
control policy conflict-resolution methods on policy-authoring usability. CyLab, p.
12 (2009)

16. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

17. Shen, H., Dewan, P.: Access control for collaborative environments. In: Proceedings
of Conference on Computer-supported Cooperative Work, pp. 51–58. ACM (1992)

18. Squicciarini, A.C., Shehab, M., Paci, F.: Collective privacy management in social
networks. In: Proceedings of WWW, pp. 521–530. ACM (2009)

19. Thomas, R.K.: Team-based access control (TMAC): a primitive for applying role-
based access controls in collaborative environments. In: Proceedings of RBAC, pp.
13–19. ACM (1997)

20. Thomas, R.K., Sandhu, R.S.: Task-based authorization controls (TBAC): A family
of models for active and enterprise-oriented authorization management. In: DBSec,
pp. 166–181. Springer, Heidelberg (1997)

21. Tolone, W., Ahn, G.J., Pai, T., Hong, S.P.: Access control in collaborative systems.
ACM Comput. Surv. 37(1), 29–41 (2005)

	Data Governance and Transparency for Collaborative Systems
	1 Introduction
	2 Preliminaries
	2.1 Policy Language
	2.2 XACML Architecture

	3 Shared Data Control
	3.1 Data Governance Model
	3.2 Data Governance Instantiation

	4 Policy Mismatches
	5 Transparency Service
	5.1 Service Design
	5.2 Service Implementation and Deployment

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

