
Towards Creating Believable Decoy Project
Folders for Detecting Data Theft

Stefan Thaler1(B), Jerry den Hartog1, and Milan Petkovic1,2

1 Technical University of Eindhoven,
Den Dolech 12, 5600 MB Eindhoven, Netherlands

{s.m.thaler,j.d.hartog}@tue.nl
2 Philips Research Laboratories, High Tech Campus 34, Eindhoven, Netherlands

milan.petkovic@philips.com

Abstract. Digital data theft is difficult to detect and typically it also
takes a long time to discover that data has been stolen. This paper intro-
duces a data-driven approach based on Markov chains to create believ-
able decoy project folders which can assist in detecting potentially ongoing
attacks. This can be done by deploying these intrinsically valueless fold-
ers between real project folders and by monitoring interactions with them.
We present our approach and results from a user study demonstrating the
believability of the generated decoy folders.

Keywords: Data theft detection · Data theft · Intrusion detection ·
Decoy · Honey pot · Trap-based defense · Deception

1 Introduction

Digital data theft is becoming a huge problem in our ever more digitalized society.
The total number of data breach incidents as well as the damage caused are rising
an alarming rate. One strategy to detect ongoing digital attacks is baiting data
thieves with digital decoys. These decoys are valueless, therefore any interaction
with them is suspicious and will alert the responsible security offer.

One type of decoys is decoy documents. A decoy document is a file which
contains seemingly sensitive information. These documents are usually stored
with other sensitive documents and closely monitored. Interactions with them are
reported and stored. However, while decoy documents are useful tools to obtain
intelligence about an ongoing attack, most of a company’s intellectual property
comprises multiple files and folders, grouped together in a project folder. Yet,
deceptive approaches as detection strategy are hardly used in this setting, since
manually creating believable project decoys is a cumbersome, labor intensive task.

In this work we present a data-driven approach for dynamically creating
new project folders from a set of existing folders based on multiple Markov
models using maximum-likelihood parameter estimation. After the decoy model
is learned, it can be used to sample believable project folders which resemble

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 161–169, 2016.
DOI: 10.1007/978-3-319-41483-6 12



162 S. Thaler et al.

the original folders and can be used as deceptive bait. This deceptive bait can
be placed between “real” projects. Assuming the decoys are properly monitored,
they can aid in the detection of malicious activity around these real project
files, since any interaction with a decoy is per definition suspicious. We have
implemented a prototype and conducted a user study to evaluate whether the
generated project decoys are perceived as being realistic.

We begin this paper with a brief review on related approaches in Sect. 2 to
highlight gaps and motivate our approach. In Sect. 3 we describe our approach.
We start by giving a high level intuition of our approach which is followed by a
formal definition of our decoy model. In Sect. 4, we provide empirical evidence
for the believability of the generated decoys. In Sect. 5 we discuss the results and
limitations of our work. We conclude this paper by highlighting possible future
improvements.

2 Related Work

Deception has been an element of warfare since a long time. In the context of
IT security, Clifford Stoll reported one of the first uses of deception [9] to catch
a hacker. Lance Spitzner coined the term honeypot and honeytoken [8], which
are descriptive synonyms for computing resources that are created to deceive an
attacker. Bringer et al.’s survey provides an overview over recent advances in
the field [3].

In this paper we introduce a data-driven approach to create believable project
folders that can be deployed to detect data theft attempts. Previous approaches
focused on creating and placing single decoy documents([2,10,11,13]) or file
systems [6]. Conceptually we also create decoys to detect data theft. However,
instead of creating single documents we focus on creating project folders with a
believable structure, file names and properties.

3 Decoy Project Folder Generation

On a high level our approach can be divided into two phases, a learning phase
and a sampling phase. Both phases are subdivided into two steps each.

The first step of the learning phase is to normalize the training data. In
this step we replace properties of the source files and folders with placeholders.
Examples of such properties are occurrences of the project name or access rights.
We use this normalized training data to learn Markov chains representing the
folders and property distributions, which is the second step of the learning phase.
The decoy model is defined in Sect. 3.2.

In the sampling phase we use the previously learned model to generate decoy
project folders. The first step of this phase is to generate the decoy directory
structure. The second step is to instantiate the decoy project folder by assign-
ing attributes to the nodes of the directory structure and replacing property
placeholders with instantiation values.



Towards Creating Believable Decoy Project Folders for Detecting Data Theft 163

3.1 Preliminaries and Assumptions

We assume the following concepts used in the paper are known: we will use first-
order, finite-state, discrete-time, Markov chains (simply called Markov chains
below) to model the co-occurrence of files and folders within one directory. We
use the maximizing likelihood estimator [5] to learn the Markov chain parameters
from observed sequences of files and folders.

In order to maximize the information of our learned decoy model, we will use
a heuristic based on the mutual information [7] of files occurring together.

We will use a (finite) forest [4], i.e. a set of trees, to model our training file
systems.

Learning requires multiple samples. To be able to effectively learn the content
of folders we assume that two folders with the same name have similar contents.

Assumption 1. If two folders within a context have the same name, they have
similar contents.

3.2 Definition of the Decoy Model

In this section we formally define our decoy model in a bottom-up manner.
To build the model we will use a training file system that contains a number

of projects which structure objects such as files and directories in the form of a
tree and assigns properties to these objects.

Definition 1. We assume a fixed set of objects O, a set of attributes A and a
(training) file system TT over these objects is given. Here an attribute a ∈ A is
a function from objects to a domain Doma and file system TT is a forest over
objects.

Intuitively, Definition 1 states that we use a set of project folders as input
for our decoy model. These project folders are organized within a directory tree,
which is common in Windows- and Unix-based operating systems. An object
represents a file or a folder within a project directory, and each file or folder
has certain attributes such as a name, permissions or creation- and modification
dates.

Some attributes are dependent on the project, for example filenames contain-
ing the project title or creation time of files that will be within the running time
of the project. Therefore, to learn a common structure from different projects
we ‘normalize’ the project to make them consistent. For example, we replace all
occurrences of the project name by a ‘placeholder’. We then refer to the normal-
ized objects as nodes, and the normalized TT as NodeTree. For simplicity a file
is represented as a node without children.

Definition 2. We assume a fixed set N , called Nodes, a node tree NT over nodes
and normalization function µ : O → N , mapping objects to nodes, are given.



164 S. Thaler et al.

The only attribute that we assume is always there is ‘name’. The other
attributes may depend on the operating system, therefore we do not further
specify them here. Instead, we simply assume they are available.

We aim to learn the content of folders. Assumption 1 states that similar
names convey similar contents. Therefore, we group nodes (i.e. normalized files
and folders) by their name. Next, we look at the content i.e. the children of these
nodes.

Definition 3. A NameGroup NG(d) for a name d ∈ Domname is the set
nodes that have name d. A NameGroupChildren NGC(d) for a name d ∈
Domname is a set of sets, capturing the content of these folders.

NG(d) = {n ∈ N | name(n) = d}
NGC(d) = {ch(d′) ∪ {ss, se} | d′ ∈ NG(name(d))}

Here, ss represents an artificial node ‘start state’, i.e. the start of a directory
and se represents the end of a directory.

From a NameGroupChildren we can find the frequencies of occurrence of
nodes. However, simply taking their frequency may not be sufficient; some nodes
will naturally occur together or will exclude each other. As such combination
might allow an attacker to easily spot a fake project folders we need to take such
dependencies into account. Thus we need to estimate the probability of certain
nodes co-occurring in a folder. Yet, learning the complete joint probability of
all nodes with any accuracy is not very realistic because the number of samples
needed grows exponential with the number of (possible) children nodes of a node.

As a compromise we use Markov chains to model the probabilities. This
allows taking into account pairwise dependencies between some nodes. In order to
train our Markov chains we will treat the children of the nodes of a NameGroup
as encountered observations. In this construction the order of the nodes matters;
dependencies are only taking into account between the current and next node.
After visiting an intermediate node this information is lost. As such nodes with
a relevant dependency on each other should occur next to each other to ensure
the dependency is expressed in the model.

Definition 4. To help optimize the amount of information about dependencies
that we can capture in our model we use a simple, greedy heuristic ‘sorted’
which starts with the start state ss and then continuously selects follow-up nodes
with maximum mutual information max(I(ni, ni+1)), where ni+1 has not been
selected before. In case of a tie we prefer nodes that occur together often, i.e.
P(ni+1|ni) is higher. ‘sorted’ always ends with the end state se.

Next, we want to learn a Markov chain with states S and a transition matrix
P for a name group NG. That is, we want to learn a Markov chain that represents
the distribution of files and folders of all directories with the same name (see
Assumption 1). To do so, we treat the sets of nodes c ∈ NGC(d) as sequence of
‘observed events’.



Towards Creating Believable Decoy Project Folders for Detecting Data Theft 165

Definition 5. Let d be a name d ∈ Domname and NGC(d) the name group chil-
dren of d. Then, we define the states S of the Markov Chain MC for a NGC
with:

S = (
⋃

c∈NGC(d)

c)

Furthermore, we will refer to a Markov chain MC that for the
NameGroupChildren of a node NGC(d) as MCd. Next, we estimate transition
probabilities of MCd.

Definition 6. Let us assume that each c ∈ NGC(d) has been sorted by the
heuristic which was introduced in Definition 4. Then the transition probabili-
ties P for two successive nodes ni,ni+1 of a Markov chain MCd are estimated
using a Maximum Likelihood Estimators, using each c ∈ NGC(d) as an observed
sequence of events.

So far we have modeled single directories. A tree model captures a whole
directory tree.

Definition 7. The tree model TM is a function that maps a name d ∈
Domname to a corresponding Markov chain MCd.

TM : d → MCd

In order to capture the probabilities of the node attributes, we learn the
probability that certain nodes have. Here Assumption 1 is used to cluster the
group of properties.

Definition 8. The attribute model captures the frequency of occurrence of
an attribute value within a name group. It is a function from N to probability
measures P over the domain of a. P is defined as:

Pa,NG(n)(x) =
#{n′ ∈ NG(n) | a(n′) = x}

#NG(n)

and the attribute model AM as:

AM(n, a) = Pa,NG(n)

Finally, using the previous definitions we define our decoy model as follows:

Definition 9. The decoy model DM comprises the tree model TM and
attribute model AM . Intuitively, the tree model captures the learned, normalized
directory structure, whereas the attribute model contains the learned, normalized
file- and folder attributes.



166 S. Thaler et al.

3.3 Sampling Decoys

A learned decoy model can be used to sample decoy project folders. First, the
user chooses instantiation values for the placeholders, e.g. a project name for the
decoy project. Then, the directory structure is created by a recursive random
walk over the tree model. This recursive random walk starts with the Markov
chain MCp, where p is the placeholder for the project name. This random walk
generates a set of nodes, which represents the content of this folder. The recursion
step performs random walks over the Markov chains for each of these nodes.

Thereafter, we instantiate the generated directory structure, which outputs
the decoy project folder. We randomly pick the attributes from the attribute
model AM for each node of the directory structure. Finally, we replace all
attribute placeholders with the chosen instantiation values and write the instan-
tiated nodes as files or folders to the disk.

4 Validation

Decoys have several desirable properties ([2,12]), but the most important one
is believability, i.e. capable of eliciting belief or trust [2]. Therefore, we have
conducted a user study to validate whether human judges are able to distin-
guish between real projects and decoys. To conduct the experiments, we have
implemented a prototype of our approach in Python 2.7.

Survey setup. In this study, we presented 30 software project folders to 27 human
judges. Half of the presented software project folders were generated using our
prototype, the other half were real project directories. The study participants
were asked to decided which ones were real and which ones were decoys. The
software project folders were shared on-line and the participants could click
around freely within the projects.

We learned three different decoy models, one for Java projects, one for Python
projects and one for Ruby on Rails projects. We chose three different project
types to identify differences in the trained model and the effect of the believability
of the decoy. In total we used 25 open source projects for each project type to
learn the decoy models. The number 25 was determined using trial and error
and based on believability and variability of the generated decoy projects. The
“real” projects that we use for training were different from the “real” ones that
we presented to the survey participants. We obtained the projects by searching
GitHub for certain terms, e.g. “Java and Security” and chose popular projects
to related topics. Since evaluating 30 projects would take a long time, the study
was split into three parts, one for each project type. Each participant was free
to chose which of the parts and the number of parts they wanted to complete.
Each partial surveys contained a section with demographic questions.

We recorded the answers to the surveys as well as the clicks of the participants
within the folders. We neither counted survey answers where we did not have
any corresponding clicks nor clicks on folders that could not be correlated to



Towards Creating Believable Decoy Project Folders for Detecting Data Theft 167

participants of the study. The data was collected within the period from February
1st to February 8th in 2016.

In total, we had 27 unique participants and we have collected 23 complete
surveys for Java, 19 for Python and 15 for Rails projects resulting in 570 answers.
We rejected 27 answers where the monitoring showed that the corresponding
project was not looked at by this user. Thus in total we collected 543 valid
judgments.

The majority of our study participants (81.5 %) was highly educated, i.e. had
a college or post graduate degree and also most of them (70.37 %) rated their own
software development skills as average or better. Most of the participants (78.3 %
/ 68.3 %) who responded to the Java and Python part of survey stated that
they have at least some knowledge of the Java programming language / Python
programming language respectively, whereas only 20 percent of the participants
had some knowledge of the Rails framework. On average participants rated their
Java, Python and rails framework knowledge respectively as 2.87, 2.43 and 1.40
on a scale from 1 to 5 with 5 being the highest.

To avoid participants’ bias towards project names, we replaced the project
names that occurred in all files and folders of a project with a randomly num-
bered placeholder of the form Pxx, where xx was a randomly chosen number
between 01 and 20. The study participants were informed about this measure.
Apart from that, the participants knew that they were presented partially gen-
erated and partially real folder listings. To counter any bias originating from
this knowledge, we phrased the evaluation question in a non-suggestive way,
i.e.: “The number of real/decoy projects does not necessarily have to be balanced.
There may be 0 real projects, there may also be up to 10 real projects.”.

Survey results. In total, of the 543 valid answers 271 were on real projects and
272 were on decoy projects. 143 of the answers on real projects labeled them
correctly as real and 128 declared them as decoys (52.7 %). 135 of the answers
on decoys labeled them incorrectly as real and 137 were correctly identified as
decoys (50.37 %). The average accuracy per project type was 52.19 % correct
answers for Java projects, 53.63 % for Python projects and 46.32 % for Rails
projects. In total 51.20 % of the 543 answers were correct.

The minimum recorded accuracy of the individual judges was 30 %, and about
a quarter of the participant’s accuracies were below 50 % total accuracy while
the highest accuracy was 90 %. The total average individual performance was
53.3 %, which is slightly better than random guessing.

5 Discussion and Limitations

We have presented a data driven approach to create decoy project folder. These
decoys may aid detecting potential data theft attacks by placing them closely
monitored between real projects. A perfect decoy would be indistinguishable
from the object it tries to mimic, therefore ideally the performance of the judges
should be close to random guesses. In our believability study, the participants



168 S. Thaler et al.

were able to identify real projects and decoys in 51.57 % of the answers, which
suggests that they had difficulty distinguishing generated projects from real ones.

We have empirically shown that the generated decoys are perceived as believ-
able, however, we did so in a limited way. We did not take into account some of
the external factors that can influence the believability of the decoy, for example
the context where a decoy is deployed, the choice of source projects that are used
to train the decoy model as well as the choice of projects that decoys will be com-
pared to during the study. In order to more properly interpret the results of our
study, further investigations on a well-founded baseline are required. Finally, we
have to validate whether the decoys can be effectively used to detect data-thefts.

Our proposed approach has some limitations. First of all, currently we need
to specify instantiation parameters such as the name of the project decoy man-
ually. We assume that these parameters contribute to the effectiveness of our
approach, thus ideally they are also learned from the source projects as well
as the target context. Next, our approach will not work if an attacker already
knows which project they want to steal, because then they do not need to browse
other projects to determine their value. Also, in other contexts simply refusing
access to the data works better than deceiving an attacker [1]. Finally, potentially
sensitive data could be leaked using our approach.

6 Conclusion and Future work

In this paper we presented a data driven approach based on first-order Markov
chains that can be used to automate the generation of decoy project folders
within a specific, topical context. We have implemented a prototype of this app-
roach, generated decoy project folders and validated their perceived believability
via a user study with 27 participants and 543 evaluated projects. The user study
showed that the participants could only correctly identify 51.2 percent of the
projects, which is only slightly better than random guessing.

To address the previously mentioned limitations and thereby improve our
approach, we plan to include methods for learning and generating the patterns of
existing file names so that we can create new ones. Furthermore, we believe that
hybrid methods which are based on templates as well as on data could further
improve the believability of the generated project folder structure. Additionally,
we are investigating on methods to learn instantiation parameters such as the
project name from existing sources.

While our approach has certain limitations, we envision decoy project folders
being deployed as cheap, supportive measure to detect ongoing data thefts.

Acknowledgements. This work has been partially funded by the Dutch national
program COMMIT under the THeCS project.



Towards Creating Believable Decoy Project Folders for Detecting Data Theft 169

References

1. Biskup, J.: For unknown secrecies refusal is better than lying. In: Atluri, V., Hale,
H. (eds.) Research Advances in Database and Information Systems Security. IFIP,
vol. 43, pp. 127–141. Springer, New York (2000)

2. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting inside attackers
using decoy documents. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm
2009. LNICST, vol. 19, pp. 51–70. Springer, Heidelberg (2009)

3. Bringer, M.L., Chelmecki, C.A., Fujinoki, H.: A survey: recent advances and future
trends in honeypot research. Int. J. 4, 63–75 (2012)

4. Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2010).
ISBN 978-3-642-14278-9

5. Kemeny, J.G., Snell, J.L.: Finite Markov Chains, vol. 356. van Nostrand, Princeton
(1960)

6. Rowe, N.C.: Automatic detection of fake file systems (2005)
7. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-

versity of Illinois Press, Urbana (1949)
8. Spitzner, L.: Honeypots: catching the insider threat. In: Proceedings of the 19th

Annual Computer Security Applications Conference 2003, pp. 170–179. IEEE
(2003)

9. Stoll, C.P.: The cuckoos egg: tracing a spy through the maze of computer espionage
(1989)

10. Voris, J., Boggs, N., Stolfo, S.J.: Lost in translation: improving decoy documents
via automated translation. In: 2012 IEEE Symposium on Security and Privacy
Workshops (SPW), pp. 129–133. IEEE (2012)

11. Whitham, B.: Canary files: generating fake files to detect critical data loss from
complex computer networks. In: The Second International Conference on Cyber
Security, Cyber Peacefare and Digital Forensic (CyberSec2013), pp. 170–179. The
Society of Digital Information and Wireless Communication (2013)

12. Whitham, B.: Design requirements for generating deceptive content to protect
document repositories (2014)

13. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive files
for intrusion detection. In: Proceedings from the Fifth Annual IEEE
SMC Information Assurance Workshop, 2004, pp. 116–122. IEEE (2004).
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1437806, http://www.dtic.
mil/cgi-bin/GetTRDoc?AD=ADA484922

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1437806
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA484922
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA484922

	Towards Creating Believable Decoy Project Folders for Detecting Data Theft
	1 Introduction
	2 Related Work
	3 Decoy Project Folder Generation
	3.1 Preliminaries and Assumptions
	3.2 Definition of the Decoy Model
	3.3 Sampling Decoys

	4 Validation
	5 Discussion and Limitations
	6 Conclusion and Future work 
	References


