Skip to main content

Gambogic Acid and Its Role in Chronic Diseases

  • Chapter
  • First Online:
Anti-inflammatory Nutraceuticals and Chronic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 928))

Abstract

Kokum, a spice derived from the fruit of the Garcinia hanburyi tree, is traditionally used in Ayurvedic medicines to facilitate digestion and to treat sores, dermatitis, diarrhoea, dysentery, and ear infection. One of the major active components of kokum is gambogic acid, also known as guttic acid, guttatic acid, beta-guttilactone, and beta-guttiferin. Gambogic acid’s anti-proliferative, anti-bacterial; antioxidant and anti-inflammatory effects result from its modulation of numerous cell-signaling intermediates. This chapter discusses the sources, chemical components, mechanism of action, and disease targets of the kokum spice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo Q et al (2006) Toxicological studies of gambogic acid and its potential targets in experimental animals. Basic Clin Pharmacol Toxicol 99(2):178–184

    Article  CAS  PubMed  Google Scholar 

  2. Noguer O, Villena J, Lorita J, Vilaro S, Reina M (2009) Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells. Exp Cell Res 315(5):795–808

    Article  CAS  PubMed  Google Scholar 

  3. Jang SW et al (2007) Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc Natl Acad Sci USA 104(41):16329–16334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qi Q et al (2008) Studies on the toxicity of gambogic acid in rats. J Ethnopharmacol 117(3):433–438

    Article  CAS  PubMed  Google Scholar 

  5. Udvadia AJ, Linney E (2003) Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 256(1):1–17

    Article  CAS  PubMed  Google Scholar 

  6. Zhang HZ et al (2004) Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 12(2):309–317

    Article  PubMed  CAS  Google Scholar 

  7. Pandey MK et al (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway. Blood 110(10):3517–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li X et al (2013) Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo. Cell Rep 3(1):211–222

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y et al (2014) Methyl jasmonate sensitizes human bladder cancer cells to gambogic acid-induced apoptosis through down-regulation of EZH2 expression by miR-101. Br J Pharmacol 171(3):618–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palempalli UD et al (2009) Gambogic acid covalently modifies IkappaB kinase-beta subunit to mediate suppression of lipopolysaccharide-induced activation of NF-kappaB in macrophages. Biochem J 419(2):401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang LJ, Chen Y (2013) New targets for the antitumor activity of gambogic acid in hematologic malignancies. Acta Pharmacol Sin 34(2):191–198

    Article  CAS  PubMed  Google Scholar 

  12. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488

    Article  CAS  PubMed  Google Scholar 

  13. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983–8998

    Article  CAS  PubMed  Google Scholar 

  14. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13(2):140–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li R et al (2009) Gambogic acid induces G0/G1 arrest and apoptosis involving inhibition of SRC-3 and inactivation of Akt pathway in K562 leukemia cells. Toxicology 262(2):98–105

    Article  CAS  PubMed  Google Scholar 

  16. Yi T et al (2008) Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res 68(6):1843–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandey MK et al (2014) Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways. Exp Hematol 42(10):883–896

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Sun X, Yang Y, Yang X, Zhu H, Dai S, Chen X, Zhang H, Guo Q, Song Y, Wang F, Cheng H, Sun X (2016) Gambogic acid enhances the radiosensitivity of human esophageal cancer cells by inducing reactive oxygen species via targeting Akt/mTOR pathway. Tumour Biol 37(2):1853–1862

    Google Scholar 

  19. Ma J et al (2015) Gambogic acid inhibits osteoclast formation and ovariectomy-induced osteoporosis by suppressing the JNK, p38 and Akt signalling pathways. Biochem J 469(3):399–408

    Article  CAS  PubMed  Google Scholar 

  20. Chen J et al (2008) Microtubule depolymerization and phosphorylation of c-Jun N-terminal kinase-1 and p38 were involved in gambogic acid induced cell cycle arrest and apoptosis in human breast carcinoma MCF-7 cells. Life Sci 83(3–4):103–109

    Article  CAS  PubMed  Google Scholar 

  21. Lu N et al (2007) Gambogic acid inhibits angiogenesis through suppressing vascular endothelial growth factor-induced tyrosine phosphorylation of KDR/Flk-1. Cancer Lett 258(1):80–89

    Article  CAS  PubMed  Google Scholar 

  22. Wang LH et al (2014) Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-kappaB and MAPK/HO-1 signalling. Br J Cancer 110(2):341–352

    Article  CAS  PubMed  Google Scholar 

  23. Yan F et al (2012) Gambogenic acid induced mitochondrial-dependent apoptosis and referred to phospho-Erk1/2 and phospho-p38 MAPK in human hepatoma HepG2 cells. Environ Toxicol Pharmacol 33(2):181–190

    Article  PubMed  CAS  Google Scholar 

  24. Shi X et al (2014) Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin Cancer Res 20(1):151–163

    Article  CAS  PubMed  Google Scholar 

  25. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23(48):7906–7909

    Article  CAS  PubMed  Google Scholar 

  26. Benati D, Baldari CT (2008) SRC family kinases as potential therapeutic targets for malignancies and immunological disorders. Curr Med Chem 15(12):1154–1165

    Article  CAS  PubMed  Google Scholar 

  27. Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 12(8):599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4(2):97–105

    Article  CAS  PubMed  Google Scholar 

  29. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19(56):6613–6626

    Article  CAS  PubMed  Google Scholar 

  30. Clevenger CV (2004) Roles and regulation of stat family transcription factors in human breast cancer. Am J Pathol 165(5):1449–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prasad S, Pandey MK, Yadav VR, Aggarwal BB (2011) Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev Res 4(7):1084–1094

    Article  CAS  Google Scholar 

  32. Pandey MK, Rastogi S, Kale VP, Gowda T, Amin SG (2014) Targeting CXCL12/CXCR4 axis in multiple myeloma. J Hematol Thrombo Dis 2:159

    Article  Google Scholar 

  33. Bachelerie F et al (2014) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):1–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Murphy PM et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52(1):145–176

    CAS  PubMed  Google Scholar 

  35. Hansell CA, Hurson CE, Nibbs RJ (2011) DARC and D6: silent partners in chemokine regulation? Immunol Cell Biol 89(2):197–206

    Article  CAS  PubMed  Google Scholar 

  36. Nakayama T et al (2003) Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 170(3):1136–1140

    Article  CAS  PubMed  Google Scholar 

  37. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  CAS  PubMed  Google Scholar 

  38. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931

    Article  CAS  PubMed  Google Scholar 

  39. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318

    Article  CAS  PubMed  Google Scholar 

  40. Legube G, Trouche D (2003) Regulating histone acetyltransferases and deacetylases. EMBO Rep 4(10):944–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qi Q et al (2015) Involvement of RECK in gambogic acid induced anti-invasive effect in A549 human lung carcinoma cells. Mol Carcinog 54(Suppl 1):E13–E25

    Article  CAS  PubMed  Google Scholar 

  42. Abbi S, Guan JL (2002) Focal adhesion kinase: protein interactions and cellular functions. Histol Histopathol 17(4):1163–1171

    CAS  PubMed  Google Scholar 

  43. Guan JL (2010) Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life 62(4):268–276

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18(5):516–523

    Article  CAS  PubMed  Google Scholar 

  45. Guan JL (1997) Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 29(8–9):1085–1096

    Article  CAS  PubMed  Google Scholar 

  46. Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14(9):598–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tai YL, Chen LC, Shen TL (2015) Emerging roles of focal adhesion kinase in cancer. BioMed Res Int 2015:690690

    PubMed  PubMed Central  Google Scholar 

  48. You D et al (2015) FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells. Cell Rep 10(12):2055–2068

    Article  CAS  PubMed  Google Scholar 

  49. Hu YL et al (2014) FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep 4:6024

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schlaepfer DD, Jones KC, Hunter T (1998) Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18(5):2571–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janakiram NB, Rao CV (2012) iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem 4(17):2193–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kostourou V et al (2011) The role of tumour-derived iNOS in tumour progression and angiogenesis. Br J Cancer 104(1):83–90

    Article  CAS  PubMed  Google Scholar 

  53. Lechner M, Lirk P, Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15(4):277–289

    Article  CAS  PubMed  Google Scholar 

  54. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194(1):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. CB 24(10):R453–R462

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Geng J, Xiao S, Zheng Z, Song S, Zhang L (2013) Gambogic acid protects from endotoxin shock by suppressing pro-inflammatory factors in vivo and in vitro. Inflammation research: official journal of the European Histamine Research Society… [et al.] 62(2):165–172

    Google Scholar 

  57. Stasinopoulos I, Shah T, Penet MF, Krishnamachary B, Bhujwalla ZM (2013) COX-2 in cancer: Gordian knot or Achilles heel? Front Pharmacol 4:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Greenhough A et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386

    Article  CAS  PubMed  Google Scholar 

  59. Tindall E (1999) Celecoxib for the treatment of pain and inflammation: the preclinical and clinical results. J Am Osteopath Assoc 99(11 Suppl):S13–S17

    Article  CAS  Google Scholar 

  60. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629

    Article  CAS  PubMed  Google Scholar 

  62. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  CAS  PubMed  Google Scholar 

  63. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    Article  CAS  PubMed  Google Scholar 

  64. Shay G, Lynch CC, Fingleton B (2015) Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 44–46:200–206

    Article  PubMed  CAS  Google Scholar 

  65. Qi Q et al (2008) Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. J Mol Med 86(12):1367–1377

    Article  CAS  PubMed  Google Scholar 

  66. Qi Q et al (2008) Anti-invasive effect of gambogic acid in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol 86(5):386–395

    Article  CAS  PubMed  Google Scholar 

  67. Etienne-Manneville S (2010) From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 22(1):104–111

    Article  CAS  PubMed  Google Scholar 

  68. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  CAS  PubMed  Google Scholar 

  70. Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9(11):910–916

    Article  CAS  PubMed  Google Scholar 

  71. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572

    Article  CAS  PubMed  Google Scholar 

  72. Hosokawa Y, Arnold A (1998) Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosom Cancer 22(1):66–71

    Article  CAS  PubMed  Google Scholar 

  73. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8(3):193–204

    Article  CAS  PubMed  Google Scholar 

  75. Krajarng A et al (2015) Apoptosis induction associated with the ER stress response through up-regulation of JNK in HeLa cells by gambogic acid. BMC Complement Altern Med 15:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Thida M, Kim DW, Tran TT, Pham MQ, Lee H, Kim I, Lee JW (2016) Gambogic acid induces apoptotic cell death in T98G glioma cells. Bioorg Med Chem Lett 26(3):1097–1101

    Google Scholar 

  77. Yang LJ et al (2012) Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS. Oncol Lett 3(5):1159–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29(11):1275–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lee JY, Lee BH, Lee JY (2015) Gambogic acid disrupts toll-like receptor4 activation by blocking lipopolysaccharides binding to myeloid differentiation factor 2. Toxicol Res 31(1):11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liao CH, Sang S, Liang YC, Ho CT, Lin JK (2004) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 in downregulating nuclear factor-kappa B pathway by Garcinol. Mol Carcinog 41(3):140–149

    Article  CAS  PubMed  Google Scholar 

  81. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    Article  CAS  PubMed  Google Scholar 

  82. Juin P, Geneste O, Gautier F, Depil S, Campone M (2013) Decoding and unlocking the BCL-2 dependency of cancer cells. Nat Rev Cancer 13(7):455–465

    Article  CAS  PubMed  Google Scholar 

  83. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5(6):468–479

    Article  CAS  PubMed  Google Scholar 

  84. Xu J et al (2013) Gambogic acid induces mitochondria-dependent apoptosis by modulation of Bcl-2 and Bax in mantle cell lymphoma JeKo-1 cells. Chin J Cancer Res 25(2):183–191

    PubMed  PubMed Central  Google Scholar 

  85. Liu W et al (2005) Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J Gastroenterol 11(24):3655–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gu H et al (2009) Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. J Cancer Res Clin Oncol 135(12):1777–1782

    Article  CAS  PubMed  Google Scholar 

  87. Zhai D et al (2008) Gambogic acid is an antagonist of antiapoptotic Bcl-2 family proteins. Mol Cancer Ther 7(6):1639–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao L, Guo QL, You QD, Wu ZQ, Gu HY (2004) Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biol Pharm Bull 27(7):998–1003

    Article  CAS  PubMed  Google Scholar 

  89. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  CAS  PubMed  Google Scholar 

  90. Ma SB et al (2014) Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ 21(12):1925–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xie H et al (2009) GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms. Acta Pharmacol Sin 30(3):346–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13(8):1351–1359

    Article  CAS  PubMed  Google Scholar 

  93. Fang L et al (2012) Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells. Int J Nanomed 7:4109–4118

    CAS  Google Scholar 

  94. Li C et al (2012) Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol 90(6):718–730

    Article  CAS  PubMed  Google Scholar 

  95. Ishaq M et al (2014) Gambogic acid induced oxidative stress dependent caspase activation regulates both apoptosis and autophagy by targeting various key molecules (NF-kappaB, Beclin-1, p62 and NBR1) in human bladder cancer cells. Biochim Biophys Acta 1840(12):3374–3384

    Article  CAS  PubMed  Google Scholar 

  96. Tang C et al (2009) Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis. Anticancer Drugs 20(4):249–258

    Article  CAS  PubMed  Google Scholar 

  97. Wen J et al (2014) Gambogic acid exhibits anti-psoriatic efficacy through inhibition of angiogenesis and inflammation. J Dermatol Sci 74(3):242–250

    Article  CAS  PubMed  Google Scholar 

  98. Costa S, Reina-Couto M, Albino-Teixeira A, Sousa T (2016) Statins and oxidative stress in chronic heart failure. Rev Port J Cardiol 35(1):41–57

    Google Scholar 

  99. Urbieta Caceres VH et al (2011) Early experimental hypertension preserves the myocardial microvasculature but aggravates cardiac injury distal to chronic coronary artery obstruction. Am J Physiol Heart Circ Physiol 300(2):H693–H701

    Article  PubMed  CAS  Google Scholar 

  100. Liu S et al (2013) Gambogic acid suppresses pressure overload cardiac hypertrophy in rats. Am J Cardiovasc Dis 3(4):227–238

    PubMed  PubMed Central  Google Scholar 

  101. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219

    Article  CAS  PubMed  Google Scholar 

  102. Wruck CJ et al (2011) Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis 70(5):844–850

    Article  CAS  PubMed  Google Scholar 

  103. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kahlenberg JM, Fox DA (2011) Advances in the medical treatment of rheumatoid arthritis. Hand Clin 27(1):11–20

    Article  PubMed  PubMed Central  Google Scholar 

  105. Forestier R et al (2009) Non-drug treatment (excluding surgery) in rheumatoid arthritis: clinical practice guidelines. Joint Bone Spine 76(6):691–698

    Article  PubMed  Google Scholar 

  106. Cascao R et al (2014) Potent anti-inflammatory and antiproliferative effects of gambogic acid in a rat model of antigen-induced arthritis. Mediat Inflamm 2014:195327

    Article  CAS  Google Scholar 

  107. Zhao B, Shen H, Zhang L, Shen Y (2012) Gambogic acid activates AMP-activated protein kinase in mammalian cells. Biochem Biophys Res Commun 424(1):100–104

    Article  CAS  PubMed  Google Scholar 

  108. Gupta MA, Simpson FC, Gupta AK (2015) Psoriasis and sleep disorders: a systematic review. Sleep Med Rev 29:63–75

    Article  PubMed  Google Scholar 

  109. Coimbra S, Figueiredo A, Castro E, Rocha-Pereira P, Santos-Silva A (2012) The roles of cells and cytokines in the pathogenesis of psoriasis. Int J Dermatol 51(4):389–395; quiz 395–388

    Google Scholar 

  110. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621

    Article  CAS  PubMed  Google Scholar 

  111. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19

    Article  CAS  PubMed  Google Scholar 

  112. Zhu X et al (2009) Mechanisms of gambogic acid-induced apoptosis in non-small cell lung cancer cells in relation to transferrin receptors. J Chemother 21(6):666–672

    Article  CAS  PubMed  Google Scholar 

  113. Mu R et al (2010) An oxidative analogue of gambogic acid-induced apoptosis of human hepatocellular carcinoma cell line HepG2 is involved in its anticancer activity in vitro. Eur J Cancer Prev 19(1):61–67

    Article  CAS  PubMed  Google Scholar 

  114. He D et al (2009) The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma. BMC Cancer 9:343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Xu X et al (2009) Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. Int J Dermatol 48(2):186–192

    Article  CAS  PubMed  Google Scholar 

  116. Wang X et al (2009) Proteomic identification of molecular targets of gambogic acid: role of stathmin in hepatocellular carcinoma. Proteomics 9(2):242–253

    Article  CAS  PubMed  Google Scholar 

  117. Wang F et al (2014) Gambogic acid suppresses hypoxia-induced hypoxia-inducible factor-1alpha/vascular endothelial growth factor expression via inhibiting phosphatidylinositol 3-kinase/Akt/mammalian target protein of rapamycin pathway in multiple myeloma cells. Cancer Sci 105(8):1063–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang T et al (2008) Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett 262(2):214–222

    Article  CAS  PubMed  Google Scholar 

  119. Rong JJ et al (2010) Gambogic acid triggers DNA damage signaling that induces p53/p21(Waf1/CIP1) activation through the ATR-Chk1 pathway. Cancer Lett 296(1):55–64

    Article  CAS  PubMed  Google Scholar 

  120. Qin Y et al (2007) Gambogic acid inhibits the catalytic activity of human topoisomerase IIalpha by binding to its ATPase domain. Mol Cancer Ther 6(9):2429–2440

    Article  CAS  PubMed  Google Scholar 

  121. Wu ZQ, Guo QL, You QD, Zhao L, Gu HY (2004) Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells. Biol Pharm Bull 27(11):1769–1774

    Article  CAS  PubMed  Google Scholar 

  122. Yu J et al (2006) Repression of telomerase reverse transcriptase mRNA and hTERT promoter by gambogic acid in human gastric carcinoma cells. Cancer Chemother Pharmacol 58(4):434–443

    Article  CAS  PubMed  Google Scholar 

  123. Kasibhatla S et al (2005) A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc Natl Acad Sci USA 102(34):12095–12100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pandey MK, Kale VP, Song C, Sung SS, Sharma AK, Talamo G, Dovat S, Amin SG (2014) Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways. Exp Hematol 42(10):883–896

    Google Scholar 

  125. Gu H et al (2008) Gambogic acid induced tumor cell apoptosis by T lymphocyte activation in H22 transplanted mice. Int Immunopharmacol 8(11):1493–1502

    Article  CAS  PubMed  Google Scholar 

  126. Chi Y et al (2013) An open-labeled, randomized, multicenter phase IIa study of gambogic acid injection for advanced malignant tumors. Chin Med J 126(9):1642–1646

    PubMed  Google Scholar 

  127. Li D et al (2015) Antitumor activity of gambogic acid on NCI-H1993 xenografts via MET signaling pathway downregulation. Oncol Lett 10(5):2802–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yue Q et al (2016) proteomic analysis revealed the important role of vimentin in human cervical carcinoma HeLa cells treated with gambogic acid. MCP 15(1):26–44

    CAS  PubMed  Google Scholar 

  129. Huang GM, Sun Y, Ge X, Wan X, Li CB (2015) Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways. WJG 21(20):6194–6205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi X et al (2015) Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition. Sci Rep 5:9694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang Y et al (2007) Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett 256(2):259–266

    Article  CAS  PubMed  Google Scholar 

  132. Lu N et al (2013) Gambogic acid inhibits angiogenesis through inhibiting PHD2-VHL-HIF-1alpha pathway. Eur J Pharm Sci 49(2):220–226

    Article  CAS  PubMed  Google Scholar 

  133. Wang J, Yuan Z (2013) Gambogic acid sensitizes ovarian cancer cells to doxorubicin through ROS-mediated apoptosis. Cell Biochem Biophys 67(1):199–206

    Article  CAS  PubMed  Google Scholar 

  134. Li Q et al (2010) Gambogenic acid inhibits proliferation of A549 cells through apoptosis-inducing and cell cycle arresting. Biol Pharm Bull 33(3):415–420

    Article  PubMed  Google Scholar 

  135. Zhao J et al (2008) Inhibition of alpha(4) integrin mediated adhesion was involved in the reduction of B16-F10 melanoma cells lung colonization in C57BL/6 mice treated with gambogic acid. Eur J Pharmacol 589(1–3):127–131

    Article  CAS  PubMed  Google Scholar 

  136. Guo QL, You QD, Wu ZQ, Yuan ST, Zhao L (2004) General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice. Acta Pharmacol Sin 25(6):769–774

    CAS  PubMed  Google Scholar 

  137. Wang C, Wang W, Wang C, Tang Y, Tian H (2015) Combined therapy with EGFR TKI and gambogic acid for overcoming resistance in -T790M mutant lung cancer. Oncol Lett 10(4):2063–2066

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pandey, M.K., Karelia, D., Amin, S.G. (2016). Gambogic Acid and Its Role in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-41334-1_15

Download citation

Publish with us

Policies and ethics