
Problem Solving in Mathematics
Education

Mathematical problem solving has long been seen as an important aspect of
mathematics, the teaching of mathematics, and the learning of mathematics. It has
infused mathematics curricula around the world with calls for the teaching of
problem solving as well as the teaching of mathematics through problem solving.
And as such, it has been of interest to mathematics education researchers for as long
as our field has existed. More relevant, mathematical problem solving has played a
part in every ICME conference, from 1969 until the forthcoming meeting in
Hamburg, wherein mathematical problem solving will reside most centrally within
the work of Topic Study 19: Problem Solving in Mathematics Education. This
booklet is being published on the occasion of this Topic Study Group.

To this end, we have assembled four summaries looking at four distinct, yet
inter-related, dimensions of mathematical problem solving. The first summary, by
Regina Bruder, is a nuanced look at heuristics for problem solving. This notion of
heuristics is carried into Peter Liljedahl’s summary, which looks specifically at a
progression of heuristics leading towards more and more creative aspects of
problem solving. This is followed by Luz Manuel Santos Trigo’s summary intro-
ducing us to problem solving in and with digital technologies. The last summary, by
Uldarico Malaspina Jurado, documents the rise of problem posing within the field
of mathematics education in general and the problem solving literature in particular.

Each of these summaries references in some critical and central fashion the
works of George Pólya or Alan Schoenfeld. To the initiated researchers, this is no
surprise. The seminal work of these researchers lie at the roots of mathematical
problem solving. What is interesting, though, is the diverse ways in which each of
the four aforementioned contributions draw on, and position, these works so as to fit
into the larger scheme of their respective summaries. This speaks to not only the
depth and breadth of these influential works, but also the diversity with which they
can be interpreted and utilized in extending our thinking about problem solving.
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Taken together, what follows is a topical survey of ideas representing the
diversity of views and tensions inherent in a field of research that is both a means to
an end and an end onto itself and is unanimously seen as central to the activities of
mathematics.

1 Survey on the State-of-the-Art

1.1 Role of Heuristics for Problem Solving—Regina Bruder

The origin of the word heuristic dates back to the time of Archimedes and is said to
have come out of one of the famous stories told about this great mathematician and
inventor. The King of Syracuse asked Archimedes to check whether his new wreath
was really made of pure gold. Archimedes struggled with this task and it was not
until he was at the bathhouse that he came up with the solution. As he entered the
tub he noticed that he had displaced a certain amount of water. Brilliant as he was,
he transferred this insight to the issue with the wreath and knew he had solved the
problem. According to the legend, he jumped out of the tub and ran from the
bathhouse naked screaming, “Eureka, eureka!”. Eureka and heuristic have the same
root in the ancient Greek language and so it has been claimed that this is how the
academic discipline of “heuristics” dealing with effective approaches to problem
solving (so-called heurisms) was given its name. Pólya (1964) describes this dis-
cipline as follows:

Heuristics deals with solving tasks. Its specific goals include highlighting in general terms
the reasons for selecting those moments in a problem the examination of which could help
us find a solution. (p. 5)

This discipline has grown, in part, from examining the approaches to certain
problems more in detail and comparing them with each other in order to abstract
similarities in approach, or so-called heurisms. Pólya (1949), but also, inter alia,
Engel (1998), König (1984) and Sewerin (1979) have formulated such heurisms for
mathematical problem tasks. The problem tasks examined by the authors mentioned
are predominantly found in the area of talent programmes, that is, they often go
back to mathematics competitions.

In 1983 Zimmermann provided an overview of heuristic approaches and tools in
American literature which also offered suggestions for mathematics classes. In the
German-speaking countries, an approach has established itself, going back to
Sewerin (1979) and König (1984), which divides school-relevant heuristic proce-
dures into heuristic tools, strategies and principles, see also Bruder and Collet
(2011).

Below is a review of the conceptual background of heuristics, followed by a
description of the effect mechanisms of heurisms in problem-solving processes.
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1.1.1 Research Review on the Promotion of Problem Solving

In the 20th century, there has been an advancement of research on mathematical
problem solving and findings about possibilities to promote problem solving with
varying priorities (c.f. Pehkonen 1991). Based on a model by Pólya (1949), in a first
phase of research on problem solving, particularly in the 1960s and the 1970s, a
series of studies on problem-solving processes placing emphasis on the importance
of heuristic strategies (heurisms) in problem solving has been carried out. It was
assumed that teaching and learning heuristic strategies, principles and tools would
provide students with an orientation in problem situations and that this could thus
improve students’ problem-solving abilities (c.f. for instance, Schoenfeld 1979).
This approach, mostly researched within the scope of talent programmes for
problem solving, was rather successful (c.f. for instance, Sewerin 1979). In the
1980s, requests for promotional opportunities in everyday teaching were given
more and more consideration: “problem solving must be the focus of school
mathematics in the 1980s” (NCTM 1980). For the teaching and learning of problem
solving in regular mathematics classes, the current view according to which cog-
nitive, heuristic aspects were paramount, was expanded by certain student-specific
aspects, such as attitudes, emotions and self-regulated behaviour (c.f. Kretschmer
1983; Schoenfeld 1985, 1987, 1992). Kilpatrick (1985) divided the promotional
approaches described in the literature into five methods which can also be combined
with each other.

• Osmosis: action-oriented and implicit imparting of problem-solving techniques
in a beneficial learning environment

• Memorisation: formation of special techniques for particular types of problem
and of the relevant questioning when problem solving

• Imitation: acquisition of problem-solving abilities through imitation of an expert
• Cooperation: cooperative learning of problem-solving abilities in small groups
• Reflection: problem-solving abilities are acquired in an action-oriented manner

and through reflection on approaches to problem solving.

Kilpatrick (1985) views as success when heuristic approaches are explained to
students, clarified by means of examples and trained through the presentation of
problems. The need of making students aware of heuristic approaches is by now
largely accepted in didactic discussions. Differences in varying approaches to
promoting problem-solving abilities rather refer to deciding which problem-solving
strategies or heuristics are to imparted to students and in which way, and not
whether these should be imparted at all or not.

1.1.2 Heurisms as an Expression of Mental Agility

The activity theory, particularly in its advancement by Lompscher (1975, 1985),
offers a well-suited and manageable model to describe learning activities and
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differences between learners with regard to processes and outcomes in problem
solving (c.f. Perels et al. 2005). Mental activity starts with a goal and the motive of
a person to perform such activity. Lompscher divides actual mental activity into
content and process. Whilst the content in mathematical problem-solving consists
of certain concepts, connections and procedures, the process describes the psy-
chological processes that occur when solving a problem. This course of action is
described in Lompscher by various qualities, such as systematic planning, inde-
pendence, accuracy, activity and agility. Along with differences in motivation and
the availability of expertise, it appears that intuitive problem solvers possess a
particularly high mental agility, at least with regard to certain contents areas.

According to Lompscher, “flexibility of thought” expresses itself

… by the capacity to change more or less easily from one aspect of viewing to another one
or to embed one circumstance or component into different correlations, to understand the
relativity of circumstances and statements. It allows to reverse relations, to more or less
easily or quickly attune to new conditions of mental activity or to simultaneously mind
several objects or aspects of a given activity (Lompscher 1975, p. 36).

These typical manifestations of mental agility can be focused on in problem
solving by mathematical means and can be related to the heurisms known from the
analyses of approaches by Pólya et al. (c.f. also Bruder 2000):

Reduction: Successful problem solvers will intuitively reduce a problem to its
essentials in a sensible manner. To achieve such abstraction, they often use visu-
alisation and structuring aids, such as informative figures, tables, solution graphs or
even terms. These heuristic tools are also very well suited to document in retrospect
the approach adopted by the intuitive problem solvers in a way that is compre-
hensible for all.
Reversibility: Successful problem solvers are able to reverse trains of thought or
reproduce these in reverse. They will do this in appropriate situations automatically,
for instance, when looking for a key they have mislaid. A corresponding general
heuristic strategy is working in reverse.
Minding of aspects: Successful problem solvers will mind several aspects of a
given problem at the same time or easily recognise any dependence on things and
vary them in a targeted manner. Sometimes, this is also a matter of removing
barriers in favour of an idea that appears to be sustainable, that is, by simply
“hanging on” to a certain train of thought even against resistance. Corresponding
heurisms are, for instance, the principle of invariance, the principle of symmetry
(Engel 1998), the breaking down or complementing of geometric figures to cal-
culate surface areas, or certain terms used in binomial formulas.
Change of aspects: Successful problem solvers will possibly change their
assumptions, criteria or aspects minded in order to find a solution. Various aspects
of a given problem will be considered intuitively or the problem be viewed from a
different perspective, which will prevent “getting stuck” and allow for new insights
and approaches. For instance, many elementary geometric propositions can also be
proved in an elegant vectorial manner.
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Transferring: Successful problem solvers will be able more easily than others to
transfer a well-known procedure to another, sometimes even very different context.
They recognise more easily the “framework” or pattern of a given task. Here, this is
about own constructions of analogies and continual tracing back from the unknown
to the known.

Intuitive, that is, untrained good problem solvers, are, however, often unable to
access these flexibility qualities consciously. This is why they are also often unable
to explain how they actually solved a given problem.

To be able to solve problems successfully, a certain mental agility is thus
required. If this is less well pronounced in a certain area, learning how to solve
problems means compensating by acquiring heurisms. In this case, insufficient
mental agility is partly “offset” through the application of knowledge acquired by
means of heurisms. Mathematical problem-solving competences are thus acquired
through the promotion of manifestations of mental agility (reduction, reversibility,
minding of aspects and change of aspects). This can be achieved by designing
sub-actions of problem solving in connection with a (temporarily) conscious
application of suitable heurisms. Empirical evidence for the success of the active
principle of heurisms has been provided by Collet (2009).

Against such background, learning how to solve problems can be established as
a long-term teaching and learning process which basically encompasses four phases
(Bruder and Collet 2011):

1. Intuitive familiarisation with heuristic methods and techniques.
2. Making aware of special heurisms by means of prominent examples (explicit

strategy acquisition).
3. Short conscious practice phase to use the newly acquired heurisms with dif-

ferentiated task difficulties.
4. Expanding the context of the strategies applied.

In the first phase, students are familiarised with heurisms intuitively by means of
targeted aid impulses and questions (what helped us solve this problem?) which in
the following phase are substantiated on the basis of model tasks, are given names
and are thus made aware of their existence. The third phase serves the purpose of a
certain familiarisation with the new heurisms and the experience of competence
through individualised practising at different requirement levels, including in the
form of homework over longer periods. A fourth and delayed fourth phase aims at
more flexibility through the transfer to other contents and contexts and the
increasingly intuitive use of the newly acquired heurisms, so that students can
enrich their own problem-solving models in a gradual manner. The second and third
phases build upon each other in close chronological order, whilst the first phase
should be used in class at all times.

All heurisms can basically be described in an action-oriented manner by means
of asking the right questions. The way of asking questions can thus also establish a
certain kind of personal relation. Even if the teacher presents and suggests the line
of basic questions with a prototypical wording each time, students should always be
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given the opportunity to find “their” wording for the respective heurism and take a
note of it for themselves. A possible key question for the use of a heuristic tool
would be: How to illustrate and structure the problem or how to present it in a
different way?

Unfortunately, for many students, applying heuristic approaches to problem
solving will not ensue automatically but will require appropriate early and
long-term promoting. The results of current studies, where promotion approaches to
problem solving are connected with self-regulation and metacognitive aspects,
demonstrate certain positive effects of such combination on students. This field of
research includes, for instance, studies by Lester et al. (1989), Verschaffel et al.
(1999), the studies on teaching method IMPROVE by Mevarech and Kramarski
(1997, 2003) and also the evaluation of a teaching concept on learning how to solve
problems by the gradual conscious acquisition of heurisms by Collet and Bruder
(2008).

1.2 Creative Problem Solving—Peter Liljedahl

There is a tension between the aforementioned story of Archimedes and the
heuristics presented in the previous section. Archimedes, when submersing himself
in the tub and suddenly seeing the solution to his problem, wasn’t relying on
osmosis, memorisation, imitation, cooperation, or reflection (Kilpatrick 1985). He
wasn’t drawing on reduction, reversibility, minding of aspects, change of aspect, or
transfer (Bruder 2000). Archimedes was stuck and it was only, in fact, through
insight and sudden illumination that he managed to solve his problem. In short,
Archimedes was faced with a problem that the aforementioned heuristics, and their
kind, would not help him to solve.

According to some, such a scenario is the definition of a problem. For example,
Resnick and Glaser (1976) define a problem as being something that you do not
have the experience to solve. Mathematicians, in general, agree with this (Liljedahl
2008).

Any problem in which you can see how to attack it by deliberate effort, is a routine
problem, and cannot be an important discover. You must try and fail by deliberate efforts,
and then rely on a sudden inspiration or intuition or if you prefer to call it luck. (Dan
Kleitman, participant cited in Liljedahl 2008, p. 19).

Problems, then, are tasks that cannot be solved by direct effort and will require
some creative insight to solve (Liljedahl 2008; Mason et al. 1982; Pólya 1965).

1.2.1 A History of Creativity in Mathematics Education

In 1902, the first half of what eventually came to be a 30 question survey was
published in the pages of L’Enseignement Mathématique, the journal of the French
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Mathematical Society. The authors, Édouard Claparède and Théodore Flournoy,
were two Swiss psychologists who were deeply interested in the topics of mathe-
matical discovery, creativity and invention. Their hope was that a widespread
appeal to mathematicians at large would incite enough responses for them to begin
to formulate some theories about this topic. The first half of the survey centered on
the reasons for becoming a mathematician (family history, educational influences,
social environment, etc.), attitudes about everyday life, and hobbies. This was
eventually followed, in 1904, by the publication of the second half of the survey
pertaining, in particular, to mental images during periods of creative work. The
responses were sorted according to nationality and published in 1908.

During this same period Henri Poincaré (1854–1912), one of the most note-
worthy mathematicians of the time, had already laid much of the groundwork for
his own pursuit of this same topic and in 1908 gave a presentation to the French
Psychological Society in Paris entitled L’Invention mathématique—often mis-
translated to Mathematical Creativity1 (c.f. Poincaré 1952). At the time of the
presentation Poincaré stated that he was aware of Claparède and Flournoy’s work,
as well as their results, but expressed that they would only confirm his own find-
ings. Poincaré’s presentation, as well as the essay it spawned, stands to this day as
one of the most insightful, and thorough treatments of the topic of mathematical
discovery, creativity, and invention.

Just at this time, I left Caen, where I was living, to go on a geological excursion under the
auspices of the School of Mines. The incident of the travel made me forget my mathe-
matical work. Having reached Coutances, we entered an omnibus to go some place or other.
At the moment when I put my foot on the step, the idea came to me, without anything in my
former thoughts seeming to have paved the way for it, that the transformations I had used to
define the Fuschian functions were identical with those of non-Euclidean geometry. I did
not verify the idea; I should not have had the time, as, upon taking my seat in the omnibus, I
went on with the conversation already commenced, but I felt a perfect certainty. On my
return to Caen, for conscience’ sake, I verified the results at my leisure. (Poincaré 1952,
p. 53)

So powerful was his presentation, and so deep were his insights into his acts of
invention and discovery that it could be said that he not so much described the
characteristics of mathematical creativity, as defined them. From that point forth
mathematical creativity, or even creativity in general, has not been discussed
seriously without mention of Poincaré’s name.

Inspired by this presentation, Jacques Hadamard (1865–1963), a contemporary
and a friend of Poincaré’s, began his own empirical investigation into this fasci-
nating phenomenon. Hadamard had been critical of Claparède and Flournoy’s work
in that they had not adequately treated the topic on two fronts. As exhaustive as the
survey appeared to be, Hadamard felt that it failed to ask some key questions—the
most important of which was with regard to the reason for failures in the creation of

1Although it can be argued that there is a difference between creativity, discovery, and invention
(see Liljedahl and Allan 2014) for the purposes of this book these will be assumed to be
interchangeable.
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mathematics. This seemingly innocuous oversight, however, led directly to his
second and “most important criticism” (Hadamard 1945). He felt that only
“first-rate men would dare to speak of” (p. 10) such failures. So, inspired by his
good friend Poincaré’s treatment of the subject Hadamard retooled the survey and
gave it to friends of his for consideration—mathematicians such as Henri Poincaré
and Albert Einstein, whose prominence were beyond reproach. Ironically, the new
survey did not contain any questions that explicitly dealt with failure. In 1943
Hadamard gave a series of lectures on mathematical invention at the École Libre
des Hautes Études in New York City. These talks were subsequently published as
The Psychology of Mathematical Invention in the Mathematical Field (Hadameard
1945).

Hadamard’s classic work treats the subject of invention at the crossroads of
mathematics and psychology. It provides not only an entertaining look at the
eccentric nature of mathematicians and their rituals, but also outlines the beliefs of
mid twentieth-century mathematicians about the means by which they arrive at new
mathematics. It is an extensive exploration and extended argument for the existence
of unconscious mental processes. In essence, Hadamard took the ideas that Poincaré
had posed and, borrowing a conceptual framework for the characterization of the
creative process from the Gestaltists of the time (Wallas 1926), turned them into a
stage theory. This theory still stands as the most viable and reasonable description
of the process of mathematical creativity.

1.2.2 Defining Mathematical Creativity

The phenomena of mathematical creativity, although marked by sudden illumina-
tion, actually consist of four separate stages stretched out over time, of which
illumination is but one stage. These stages are initiation, incubation, illumination,
and verification (Hadamard 1945). The first of these stages, the initiation phase,
consists of deliberate and conscious work. This would constitute a person’s vol-
untary, and seemingly fruitless, engagement with a problem and be characterized by
an attempt to solve the problem by trolling through a repertoire of past experiences.
This is an important part of the inventive process because it creates the tension of
unresolved effort that sets up the conditions necessary for the ensuing emotional
release at the moment of illumination (Hadamard 1945; Poincaré 1952).

Following the initiation stage the solver, unable to come up with a solution stops
working on the problem at a conscious level and begins to work on it at an
unconscious level (Hadamard 1945; Poincaré 1952). This is referred to as the
incubation stage of the inventive process and can last anywhere from several
minutes to several years. After the period of incubation a rapid coming to mind of a
solution, referred to as illumination, may occur. This is accompanied by a feeling of
certainty and positive emotions (Poincaré 1952). Although the processes of incu-
bation and illumination are shrouded behind the veil of the unconscious there are a
number of things that can be deduced about them. First and foremost is the fact that
unconscious work does, indeed, occur. Poincaré (1952), as well as Hadamard
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(1945), use the very real experience of illumination, a phenomenon that cannot be
denied, as evidence of unconscious work, the fruits of which appear in the flash of
illumination. No other theory seems viable in explaining the sudden appearance of
solution during a walk, a shower, a conversation, upon waking, or at the instance of
turning the conscious mind back to the problem after a period of rest (Poincaré
1952). Also deducible is that unconscious work is inextricably linked to the con-
scious and intentional effort that precedes it.

There is another remark to be made about the conditions of this unconscious work: it is
possible, and of a certainty it is only fruitful, if it is on the one hand preceded and on the
other hand followed by a period of conscious work. These sudden inspirations never
happen except after some days of voluntary effort which has appeared absolutely fruitless
and whence nothing good seems to have come … (Poincaré 1952, p. 56)

Hence, the fruitless efforts of the initiation phase are only seemingly so. They not
only set up the aforementioned tension responsible for the emotional release at the
time of illumination, but also create the conditions necessary for the process to enter
into the incubation phase.

Illumination is the manifestation of a bridging that occurs between the uncon-
scious mind and the conscious mind (Poincaré 1952), a coming to (conscious) mind
of an idea or solution. What brings the idea forward to consciousness is unclear,
however. There are theories of the aesthetic qualities of the idea, effective
surprise/shock of recognition, fluency of processing, or breaking functional fixed-
ness. For reasons of brevity I will only expand on the first of these.

Poincaré proposed that ideas that were stimulated during initiation remained
stimulated during incubation. However, freed from the constraints of conscious
thought and deliberate calculation, these ideas would begin to come together in
rapid and random unions so that “their mutual impacts may produce new combi-
nations” (Poincaré 1952). These new combinations, or ideas, would then be eval-
uated for viability using an aesthetic sieve, which allows through to the conscious
mind only the “right combinations” (Poincaré 1952). It is important to note,
however, that good or aesthetic does not necessarily mean correct. Correctness is
evaluated during the verification stage.

The purpose of verification is not only to check for correctness. It is also a
method by which the solver re-engages with the problem at the level of details. That
is, during the unconscious work the problem is engaged with at the level of ideas
and concepts. During verification the solver can examine these ideas in closer
details. Poincaré succinctly describes both of these purposes.

As for the calculations, themselves, they must be made in the second period of conscious
work, that which follows the inspiration, that in which one verifies the results of this
inspiration and deduces their consequences. (Poincaré 1952, p. 62)

Aside from presenting this aforementioned theory on invention, Hadamard also
engaged in a far-reaching discussion on a number of interesting, and sometimes
quirky, aspects of invention and discovery that he had culled from the results of his
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empirical study, as well as from pertinent literature. This discussion was nicely
summarized by Newman (2000) in his commentary on the elusiveness of invention.

The celebrated phrenologist Gall said mathematical ability showed itself in a bump on the
head, the location of which he specified. The psychologist Souriau, we are told, maintained
that invention occurs by “pure chance”, a valuable theory. It is often suggested that creative
ideas are conjured up in “mathematical dreams”, but this attractive hypothesis has not been
verified. Hadamard reports that mathematicians were asked whether “noises” or “meteo-
rological circumstances” helped or hindered research [..] Claude Bernard, the great phys-
iologist, said that in order to invent “one must think aside”. Hadamard says this is a
profound insight; he also considers whether scientific invention may perhaps be improved
by standing or sitting or by taking two baths in a row. Helmholtz and Poincaré worked
sitting at a table; Hadamard’s practice is to pace the room (“Legs are the wheels of
thought”, said Emile Angier); the chemist J. Teeple was the two-bath man. (p. 2039)

1.2.3 Discourses on Creativity

Creativity is a term that can be used both loosely and precisely. That is, while there
exists a common usage of the term there also exists a tradition of academic dis-
course on the subject. A common usage of creative refers to a process or a person
whose products are original, novel, unusual, or even abnormal (Csíkszentmihályi
1996). In such a usage, creativity is assessed on the basis of the external and
observable products of the process, the process by which the product comes to be,
or on the character traits of the person doing the ‘creating’. Each of these usages—
product, process, person—is the roots of the discourses (Liljedahl and Allan 2014)
that I summarize here, the first of which concerns products.

Consider a mother who states that her daughter is creative because she drew an
original picture. The basis of such a statement can lie either in the fact that the
picture is unlike any the mother has ever seen or unlike any her daughter has ever
drawn before. This mother is assessing creativity on the basis of what her daughter
has produced. However, the standards that form the basis of her assessment are
neither consistent nor stringent. There does not exist a universal agreement as to
what she is comparing the picture to (pictures by other children or other pictures by
the same child). Likewise, there is no standard by which the actual quality of the
picture is measured. The academic discourse that concerns assessment of products,
on the other hand, is both consistent and stringent (Csíkszentmihályi 1996). This
discourse concerns itself more with a fifth, and as yet unmentioned, stage of the
creative process; elaboration. Elaboration is where inspiration becomes perspiration
(Csíkszentmihályi 1996). It is the act of turning a good idea into a finished product,
and the finished product is ultimately what determines the creativity of the process
that spawned it—that is, it cannot be a creative process if nothing is created. In
particular, this discourse demands that the product be assessed against other
products within its field, by the members of that field, to determine if it is original
AND useful (Csíkszentmihályi 1996; Bailin 1994). If it is, then the product is

10 Problem Solving in Mathematics Education



deemed to be creative. Note that such a use of assessment of end product pays very
little attention to the actual process that brings this product forth.

The second discourse concerns the creative process. The literature pertaining to
this can be separated into two categories—a prescriptive discussion of the creativity
process and a descriptive discussion of the creativity process. Although both of
these discussions have their roots in the four stages that Wallas (1926) proposed
makes up the creative process, they make use of these stages in very different ways.
The prescriptive discussion of the creative process is primarily focused on the first
of the four stages, initiation, and is best summarized as a cause-and-effect dis-
cussion of creativity, where the thinking processes during the initiation stage are the
cause and the creative outcome are the effects (Ghiselin 1952). Some of the liter-
ature claims that the seeds of creativity lie in being able to think about a problem or
situation analogically. Other literature claims that utilizing specific thinking tools
such as imagination, empathy, and embodiment will lead to creative products. In all
of these cases, the underlying theory is that the eventual presentation of a creative
idea will be precipitated by the conscious and deliberate efforts during the initiation
stage. On the other hand, the literature pertaining to a descriptive discussion of the
creative process is inclusive of all four stages (Kneller 1965; Koestler 1964). For
example, Csíkszentmihályi (1996), in his work on flow attends to each of the stages,
with much attention paid to the fluid area between conscious and unconscious
work, or initiation and incubation. His claim is that the creative process is intimately
connected to the enjoyment that exists during times of sincere and consuming
engagement with a situation, the conditions of which he describes in great detail.

The third, and final, discourse on creativity pertains to the person. This discourse
is dominated by two distinct characteristics, habit and genius. Habit has to do with
the personal habits as well as the habits of mind of people that have been deemed to
be creative. However, creative people are most easily identified through their rep-
utation for genius. Consequently, this discourse is often dominated by the analyses
of the habits of geniuses as is seen in the work of Ghiselin (1952), Koestler (1964),
and Kneller (1965) who draw on historical personalities such as Albert Einstein,
Henri Poincaré, Vincent Van Gogh, D.H. Lawrence, Samuel Taylor Coleridge, Igor
Stravinsky, and Wolfgang Amadeus Mozart to name a few. The result of this sort of
treatment is that creative acts are viewed as rare mental feats, which are produced
by extraordinary individuals who use extraordinary thought processes.

These different discourses on creativity can be summed up in a tension between
absolutist and relativist perspectives on creativity (Liljedahl and Sriraman 2006).
An absolutist perspective assumes that creative processes are the domain of genius
and are present only as precursors to the creation of remarkably useful and uni-
versally novel products. The relativist perspective, on the other hand, allows for
every individual to have moments of creativity that may, or may not, result in the
creation of a product that may, or may not, be either useful or novel.

Between the work of a student who tries to solve a problem in geometry or algebra and a
work of invention, one can say there is only a difference of degree. (Hadamard 1945,
p. 104).
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Regardless of discourse, however, creativity is not “part of the theories of logical
forms” (Dewey 1938). That is, creativity is not representative of the lock-step logic
and deductive reasoning that mathematical problem solving is often presumed to
embody (Bibby 2002; Burton 1999). Couple this with the aforementioned
demanding constraints as to what constitutes a problem, where then does that leave
problem solving heuristics? More specifically, are there creative problem solving
heuristics that will allow us to resolve problems that require illumination to solve?
The short answer to this question is yes—there does exist such problem solving
heuristics. To understand these, however, we must first understand the routine
problem solving heuristics they are built upon. In what follows, I walk through the
work of key authors and researchers whose work offers us insights into progres-
sively more creative problem solving heuristics for solving true problems.

1.2.4 Problem Solving by Design

In a general sense, design is defined as the algorithmic and deductive approach to
solving a problem (Rusbult 2000). This process begins with a clearly defined goal
or objective after which there is a great reliance on relevant past experience,
referred to as repertoire (Bruner 1964; Schön 1987), to produce possible options
that will lead towards a solution of the problem (Poincaré 1952). These options are
then examined through a process of conscious evaluations (Dewey 1933) to
determine their suitability for advancing the problem towards the final goal. In very
simple terms, problem solving by design is the process of deducing the solution
from that which is already known.

Mayer (1982), Schoenfeld (1982), and Silver (1982) state that prior knowledge
is a key element in the problem solving process. Prior knowledge influences the
problem solver’s understanding of the problem as well as the choice of strategies
that will be called upon in trying to solve the problem. In fact, prior knowledge and
prior experiences is all that a solver has to draw on when first attacking a problem.
As a result, all problem solving heuristics incorporate this resource of past expe-
riences and prior knowledge into their initial attack on a problem. Some heuristics
refine these ideas, and some heuristics extend them (c.f. Kilpatrick 1985; Bruder
2000). Of the heuristics that refine, none is more influential than the one created by
George Pólya (1887–1985).

1.2.5 George Pólya: How to Solve It

In his book How to Solve It (1949) Pólya lays out a problem solving heuristic that
relies heavily on a repertoire of past experience. He summarizes the four-step
process of his heuristic as follows:
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1. Understanding the Problem

• First. You have to understand the problem.
• What is the unknown? What are the data? What is the condition?
• Is it possible to satisfy the condition? Is the condition sufficient to determine

the unknown? Or is it insufficient? Or redundant? Or contradictory?
• Draw a figure. Introduce suitable notation.
• Separate the various parts of the condition. Can you write them down?

2. Devising a Plan

• Second. Find the connection between the data and the unknown. You may be
obliged to consider auxiliary problems if an immediate connection cannot be
found. You should obtain eventually a plan of the solution.

• Have you seen it before? Or have you seen the same problem in a slightly
different form?

• Do you know a related problem? Do you know a theorem that could be
useful?

• Look at the unknown! And try to think of a familiar problem having the
same or a similar unknown.

• Here is a problem related to yours and solved before. Could you use it?
Could you use its result? Could you use its method? Should you introduce
some auxiliary element in order to make its use possible?

• Could you restate the problem? Could you restate it still differently? Go back
to definitions.

• If you cannot solve the proposed problem try to solve first some related
problem. Could you imagine a more accessible related problem? A more
general problem? A more special problem? An analogous problem? Could
you solve a part of the problem? Keep only a part of the condition, drop the
other part; how far is the unknown then determined, how can it vary? Could
you derive something useful from the data? Could you think of other data
appropriate to determine the unknown? Could you change the unknown or
data, or both if necessary, so that the new unknown and the new data are
nearer to each other?

• Did you use all the data? Did you use the whole condition? Have you taken
into account all essential notions involved in the problem?

3. Carrying Out the Plan

• Third. Carry out your plan.
• Carrying out your plan of the solution, check each step. Can you see clearly

that the step is correct? Can you prove that it is correct?

4. Looking Back

• Fourth. Examine the solution obtained.
• Can you check the result? Can you check the argument?
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• Can you derive the solution differently? Can you see it at a glance?
• Can you use the result, or the method, for some other problem?

The emphasis on auxiliary problems, related problems, and analogous problems
that are, in themselves, also familiar problems is an explicit manifestation of relying
on a repertoire of past experience. This use of familiar problems also requires an
ability to deduce from these related problems a recognizable and relevant attribute
that will transfer to the problem at hand. The mechanism that allows for this transfer
of knowledge between analogous problems is known as analogical reasoning
(English 1997, 1998; Novick 1988, 1990, 1995; Novick and Holyoak 1991) and
has been shown to be an effective, but not always accessible, thinking strategy.

Step four in Pólya’s heuristic, looking back, is also a manifestation of utilizing
prior knowledge to solve problems, albeit an implicit one. Looking back makes
connections “in memory to previously acquired knowledge [..] and further estab-
lishes knowledge in long-term memory that may be elaborated in later
problem-solving encounters” (Silver 1982, p. 20). That is, looking back is a
forward-looking investment into future problem solving encounters, it sets up
connections that may later be needed.

Pólya’s heuristic is a refinement on the principles of problem solving by design.
It not only makes explicit the focus on past experiences and prior knowledge, but
also presents these ideas in a very succinct, digestible, and teachable manner. This
heuristic has become a popular, if not the most popular, mechanism by which
problem solving is taught and learned.

1.2.6 Alan Schoenfeld: Mathematical Problem Solving

The work of Alan Schoenfeld is also a refinement on the principles of problem
solving by design. However, unlike Pólya (1949) who refined these principles at a
theoretical level, Schoenfeld has refined them at a practical and empirical level. In
addition to studying taught problem solving strategies he has also managed to
identify and classify a variety of strategies, mostly ineffectual, that students invoke
naturally (Schoenfeld 1985, 1992). In so doing, he has created a better under-
standing of how students solve problems, as well as a better understanding of how
problems should be solved and how problem solving should be taught.

For Schoenfeld, the problem solving process is ultimately a dialogue between
the problem solver’s prior knowledge, his attempts, and his thoughts along the way
(Schoenfeld 1982). As such, the solution path of a problem is an emerging and
contextually dependent process. This is a departure from the predefined and con-
textually independent processes of Pólya’s (1949) heuristics. This can be seen in
Schoenfeld’s (1982) description of a good problem solver.

To examine what accounts for expertise in problem solving, you would have to give the
expert a problem for which he does not have access to a solution schema. His behavior in
such circumstances is radically different from what you would see when he works on
routine or familiar “non-routine” problems. On the surface his performance is no longer
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proficient; it may even seem clumsy. Without access to a solution schema, he has no clear
indication of how to start. He may not fully understand the problem, and may simply
“explore it for a while until he feels comfortable with it. He will probably try to “match” it
to familiar problems, in the hope it can be transformed into a (nearly) schema-driven
solution. He will bring up a variety of plausible things: related facts, related problems,
tentative approaches, etc. All of these will have to be juggled and balanced. He may make
an attempt solving it in a particular way, and then back off. He may try two or three things
for a couple of minutes and then decide which to pursue. In the midst of pursuing one
direction he may go back and say “that’s harder than it should be” and try something else.
Or, after the comment, he may continue in the same direction. With luck, after some
aborted attempts, he will solve the problem. (p. 32-33)

Aside from demonstrating the emergent nature of the problem solving process,
this passage also brings forth two consequences of Schoenfeld’s work. The first of
these is the existence of problems for which the solver does not have “access to a
solution schema”. Unlike Pólya (1949), who’s heuristic is a ‘one size fits all
(problems)’ heuristic, Schoenfeld acknowledges that problem solving heuristics are,
in fact, personal entities that are dependent on the solver’s prior knowledge as well
as their understanding of the problem at hand. Hence, the problems that a person
can solve through his or her personal heuristic are finite and limited.

The second consequence that emerges from the above passage is that if a person
lacks the solution schema to solve a given problem s/he may still solve the problem
with the help of luck. This is an acknowledgement, if only indirectly so, of the
difference between problem solving in an intentional and mechanical fashion verses
problem solving in a more creative fashion, which is neither intentional nor
mechanical (Pehkonen 1997).

1.2.7 David Perkins: Breakthrough Thinking

As mentioned, many consider a problem that can be solved by intentional and
mechanical means to not be worthy of the title ‘problem’. As such, a repertoire of
past experiences sufficient for dealing with such a ‘problem’ would disqualify it
from the ranks of ‘problems’ and relegate it to that of ‘exercises’. For a problem to
be classified as a ‘problem’, then, it must be ‘problematic’. Although such an
argument is circular it is also effective in expressing the ontology of mathematical
‘problems’.

Perkins (2000) also requires problems to be problematic. His book Archimedes’
Bathtub: The Art and Logic of Breakthrough Thinking (2000) deals with situations
in which the solver has gotten stuck and no amount of intentional or mechanical
adherence to the principles of past experience and prior knowledge is going to get
them unstuck. That is, he deals with problems that, by definition, cannot be solved
through a process of design [or through the heuristics proposed by Pólya (1949) and
Schoenfeld (1985)]. Instead, the solver must rely on the extra-logical process of
what Perkins (2000) calls breakthrough thinking.

Perkins (2000) begins by distinguishing between reasonable and unreasonable
problems. Although both are solvable, only reasonable problems are solvable
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through reasoning. Unreasonable problems require a breakthrough in order to solve
them. The problem, however, is itself inert. It is neither reasonable nor unreason-
able. That quality is brought to the problem by the solver. That is, if a student
cannot solve a problem by direct effort then that problem is deemed to be unrea-
sonable for that student. Perkins (2000) also acknowledges that what is an unrea-
sonable problem for one person is a perfectly reasonable problem for another
person; reasonableness is dependent on the person.

This is not to say that, once found, the solution cannot be seen as accessible
through reason. During the actual process of solving, however, direct and deductive
reasoning does not work. Perkins (2000) uses several classic examples to demon-
strate this, the most famous being the problem of connecting nine dots in a 3 � 3
array with four straight lines without removing pencil from paper, the solution to
which is presented in Fig. 1.

To solve this problem, Perkins (2000) claims that the solver must recognize that
the constraint of staying within the square created by the 3 � 3 array is a
self-imposed constraint. He further claims that until this is recognized no amount of
reasoning is going to solve the problem. That is, at this point in the problem solving
process the problem is unreasonable. However, once this self-imposed constraint is
recognized the problem, and the solution, are perfectly reasonable. Thus, the
solution of an, initially, unreasonable problem is reasonable.

The problem solving heuristic that Perkins (2000) has constructed to deal with
solvable, but unreasonable, problems revolves around the idea of breakthrough
thinking and what he calls breakthrough problems. A breakthrough problem is a
solvable problem in which the solver has gotten stuck and will require an AHA! to
get unstuck and solve the problem. Perkins (2000) poses that there are only four
types of solvable unreasonable problems, which he has named wilderness of pos-
sibilities, the clueless plateau, narrow canyon of exploration, and oasis of false
promise. The names for the first three of these types of problems are related to the
Klondike gold rush in Alaska, a time and place in which gold was found more by
luck than by direct and systematic searching.

The wilderness of possibilities is a term given to a problem that has many
tempting directions but few actual solutions. This is akin to a prospector searching

Fig. 1 Nine dots—four lines problem and solution
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for gold in the Klondike. There is a great wilderness in which to search, but very
little gold to be found. The clueless plateau is given to problems that present the
solver with few, if any, clues as to how to solve it. The narrow canyon of explo-
ration is used to describe a problem that has become constrained in such a way that
no solution now exists. The nine-dot problem presented above is such a problem.
The imposed constraint that the lines must lie within the square created by the array
makes a solution impossible. This is identical to the metaphor of a prospector
searching for gold within a canyon where no gold exists. The final type of problem
gets its name from the desert. An oasis of false promise is a problem that allows the
solver to quickly get a solution that is close to the desired outcome; thereby
tempting them to remain fixed on the strategy that they used to get this
almost-answer. The problem is, that like the canyon, the solution does not exist at
the oasis; the solution strategy that produced an almost-answer is incapable of
producing a complete answer. Likewise, a desert oasis is a false promise in that it is
only a reprieve from the desolation of the dessert and not a final destination.

Believing that there are only four ways to get stuck, Perkins (2000) has designed
a problem solving heuristic that will “up the chances” of getting unstuck. This
heuristic is based on what he refers to as “the logic of lucking out” (p. 44) and is
built on the idea of introspection. By first recognizing that they are stuck, and then
recognizing that the reason they are stuck can only be attributed to one of four
reasons, the solver can access four strategies for getting unstuck, one each for the
type of problem they are dealing with. If the reason they are stuck is because they
are faced with a wilderness of possibilities they are to begin roaming far, wide, and
systematically in the hope of reducing the possible solution space to one that is
more manageable. If they find themselves on a clueless plateau they are to begin
looking for clues, often in the wording of the problem. When stuck in a narrow
canyon of possibilities they need to re-examine the problem and see if they have
imposed any constraints. Finally, when in an oasis of false promise they need to
re-attack the problem in such a way that they stay away from the oasis.

Of course, there are nuances and details associated with each of these types of
problems and the strategies for dealing with them. However, nowhere within these
details is there mention of the main difficulty inherent in introspection; that it is
much easier for the solver to get stuck than it is for them to recognize that they are
stuck. Once recognized, however, the details of Perkins’ (2000) heuristic offer the
solver some ways for recognizing why they are stuck.

1.2.8 John Mason, Leone Burton, and Kaye Stacey: Thinking
Mathematically

The work of Mason et al. in their book Thinking Mathematically (1982) also
recognizes the fact that for each individual there exists problems that will not yield
to their intentional and mechanical attack. The heuristic that they present for dealing
with this has two main processes with a number of smaller phases, rubrics, and
states. The main processes are what they refer to as specializing and generalizing.
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Specializing is the process of getting to know the problem and how it behaves
through the examination of special instances of the problem. This process is syn-
onymous with problem solving by design and involves the repeated oscillation
between the entry and attack phases of Mason et al. (1982) heuristic. The entry
phase is comprised of ‘getting started’ and ‘getting involved’ with the problem by
using what is immediately known about it. Attacking the problem involves con-
jecturing and testing a number of hypotheses in an attempt to gain greater under-
standing of the problem and to move towards a solution.

At some point within this process of oscillating between entry and attack the
solver will get stuck, which Mason et al. (1982) refer to as “an honourable and
positive state, from which much can be learned” (p. 55). The authors dedicate an
entire chapter to this state in which they acknowledge that getting stuck occurs long
before an awareness of being stuck develops. They proposes that the first step to
dealing with being stuck is the simple act of writing STUCK!

The act of expressing my feelings helps to distance me from my state of being stuck. It frees
me from incapacitating emotions and reminds me of actions that I can take. (p. 56)

The next step is to reengage the problem by examining the details of what is
known, what is wanted, what can be introduced into the problem, and what has
been introduced into the problem (imposed assumptions). This process is engaged
in until an AHA!, which advances the problem towards a solution, is encountered.
If, at this point, the problem is not completely solved the oscillation is then
resumed.

At some point in this process an attack on the problem will yield a solution and
generalizing can begin. Generalizing is the process by which the specifics of a
solution are examined and questions as to why it worked are investigated. This
process is synonymous with the verification and elaboration stages of invention and
creativity. Generalization may also include a phase of review that is similar to
Pólya’s (1949) looking back.

1.2.9 Gestalt: The Psychology of Problem Solving

The Gestalt psychology of learning believes that all learning is based on insights
(Koestler 1964). This psychology emerged as a response to behaviourism, which
claimed that all learning was a response to external stimuli. Gestalt psychologists,
on the other hand, believed that there was a cognitive process involved in learning
as well. With regards to problem solving, the Gestalt school stands firm on the
belief that problem solving, like learning, is a product of insight and as such, cannot
be taught. In fact, the theory is that not only can problem solving not be taught, but
also that attempting to adhere to any sort of heuristic will impede the working out of
a correct solution (Krutestkii 1976). Thus, there exists no Gestalt problem solving
heuristic. Instead, the practice is to focus on the problem and the solution rather
than on the process of coming up with a solution. Problems are solved by turning
them over and over in the mind until an insight, a viable avenue of attack, presents
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itself. At the same time, however, there is a great reliance on prior knowledge and
past experiences. The Gestalt method of problem solving, then, is at the same time
very different and very similar to the process of design.

Gestalt psychology has not fared well during the evolution of cognitive psy-
chology. Although it honours the work of the unconscious mind it does so at the
expense of practicality. If learning is, indeed, entirely based on insight then there is
little point in continuing to study learning. “When one begins by assuming that the
most important cognitive phenomena are inaccessible, there really is not much left
to talk about” (Schoenfeld 1985, p. 273). However, of interest here is the Gestalt
psychologists’ claim that focus on problem solving methods creates functional
fixedness (Ashcraft 1989). Mason et al. (1982), as well as Perkins (2000) deal with
this in their work on getting unstuck.

1.2.10 Final Comments

Mathematics has often been characterized as the most precise of all sciences. Lost
in such a misconception is the fact that mathematics often has its roots in the fires of
creativity, being born of the extra-logical processes of illumination and intuition.
Problem solving heuristics that are based solely on the processes of logical and
deductive reasoning distort the true nature of problem solving. Certainly, there are
problems in which logical deductive reasoning is sufficient for finding a solution.
But these are not true problems. True problems need the extra-logical processes of
creativity, insight, and illumination, in order to produce solutions.

Fortunately, as elusive as such processes are, there does exist problem solving
heuristics that incorporate them into their strategies. Heuristics such as those by
Perkins (2000) and Mason et al. (1982) have found a way of combining the
intentional and mechanical processes of problem solving by design with the
extra-logical processes of creativity, illumination, and the AHA!. Furthermore, they
have managed to do so without having to fully comprehend the inner workings of
this mysterious process.

1.3 Digital Technologies and Mathematical Problem
Solving—Luz Manuel Santos-Trigo

Mathematical problem solving is a field of research that focuses on analysing the
extent to which problem solving activities play a crucial role in learners’ under-
standing and use of mathematical knowledge. Mathematical problems are central in
mathematical practice to develop the discipline and to foster students learning
(Pólya 1945; Halmos 1994). Mason and Johnston-Wilder (2006) pointed out that
“The purpose of a task is to initiate mathematically fruitful activity that leads to a
transformation in what learners are sensitized to notice and competent to carry out”
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(p. 25). Tasks are essential for learners to elicit their ideas and to engage them in
mathematical thinking. In a problem solving approach, what matters is the learners’
goals and ways to interact with the tasks. That is, even routine tasks can be a
departure point for learners to extend initial conditions and transform them into
some challenging activities.

Thus, analysing and characterizing ways in which mathematical problems are
formulated (Singer et al. 2015) and the process involved in pursuing and solving
those problems generate important information to frame and structure learning
environments to guide and foster learners’ construction of mathematical concepts
and problem solving competences (Santos-Trigo 2014). Furthermore, mathemati-
cians or discipline practitioners have often been interested in unveiling and sharing
their own experience while developing the discipline. As a results, they have
provided valuable information to characterize mathematical practices and their
relations to what learning processes of the discipline entails. It is recognized that the
work of Pólya (1945) offered not only bases to launch several research programs in
problem solving (Schoenfeld 1992; Mason et al. 1982); but also it became an
essential resource for teachers to orient and structure their mathematical lessons
(Krulik and Reys 1980).

1.3.1 Research Agenda

A salient feature of a problem solving approach to learn mathematics is that
teachers and students develop and apply an enquiry or inquisitive method to delve
into mathematical concepts and tasks. How are mathematical problems or concepts
formulated? What types of problems are important for teachers/learners to discuss
and engage in mathematical reasoning? What mathematical processes and ways of
reasoning are involved in understanding mathematical concepts and solving prob-
lems? What are the features that distinguish an instructional environment that
fosters problem-solving activities? How can learners’ problem solving competen-
cies be assessed? How can learners’ problem solving competencies be characterized
and explained? How can learners use digital technologies to understand mathe-
matics and to develop problem-solving competencies? What ways of reasoning do
learners construct when they use digital technologies in problem solving approa-
ches? These types of questions have been important in the problem solving research
agenda and delving into them has led researchers to generate information and
results to support and frame curriculum proposals and learning scenarios. The
purpose of this section is to present and discuss important themes that emerged in
problem solving approaches that rely on the systematic use of several digital
technologies.

In the last 40 years, the accumulated knowledge in the problem solving field has
shed lights on both a characterization of what mathematical thinking involves and
how learners can construct a robust knowledge in problem solving environments
(Schoenfeld 1992). In this process, the field has contributed to identify what types
of transformations traditional learning scenarios might consider when teachers and
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students incorporate the use of digital technologies in mathematical classrooms. In
this context, it is important to briefly review what main themes and developments
the field has addressed and achieved during the last 40 years.

1.3.2 Problem Solving Developments

There are traces of mathematical problems and solutions throughout the history of
civilization that explain the humankind interest for identifying and exploring
mathematical relations (Kline 1972). Pólya (1945) reflects on his own practice as a
mathematician to characterize the process of solving mathematical problems
through four main phases: Understanding the problem, devising a plan, carrying out
the plan, and looking back. Likewise, Pólya (1945) presents and discusses the role
played by heuristic methods throughout all problem solving phases. Schoenfeld
(1985) presents a problem solving research program based on Pólya’s (1945) ideas
to investigate the extent to which problem solving heuristics help university stu-
dents to solve mathematical problems and to develop a way of thinking that shows
consistently features of mathematical practices. As a result, he explains the learners’
success or failure in problem solving activities can be characterized in terms their
mathematical resources and ways to access them, cognitive and metacognitive
strategies used to represent and explore mathematical tasks, and systems of beliefs
about mathematics and solving problems. In addition, Schoenfeld (1992) docu-
mented that heuristics methods as illustrated in Pólya’s (1945) book are ample and
general and do not include clear information and directions about how learners
could assimilate, learn, and use them in their problem solving experiences. He
suggested that students need to discuss what it means, for example, to think of and
examining special cases (one important heuristic) in finding a closed formula for
series or sequences, analysing relationships of roots of polynomials, or focusing on
regular polygons or equilateral/right triangles to find general relations about these
figures. That is, learners need to work on examples that lead them to recognize that
the use of a particular heuristic often involves thinking of different type of cases
depending on the domain or content involved. Lester and Kehle (2003) summarize
themes and methodological shifts in problem solving research up to 1995. Themes
include what makes a problem difficult for students and what it means to be suc-
cessful problem solvers; studying and contrasting experts and novices’ problem
solving approaches; learners’ metacognitive, beliefs systems and the influence of
affective behaviours; and the role of context; and social interactions in problem
solving environments. Research methods in problem solving studies have gone
from emphasizing quantitative or statistical design to the use of cases studies and
ethnographic methods (Krutestkii (1976). Teaching strategies also evolved from
being centred on teachers to the active students’ engagement and collaboration
approaches (NCTM 2000). Lesh and Zawojewski (2007) propose to extend prob-
lem solving approaches beyond class setting and they introduce the construct
“model eliciting activities” to delve into the learners’ ideas and thinking as a way to
engage them in the development of problem solving experiences. To this end,

1 Survey on the State-of-the-Art 21



learners develop and constantly refine problem-solving competencies as a part of a
learning community that promotes and values modelling construction activities.
Recently, English and Gainsburg (2016) have discussed the importance of mod-
eling eliciting activities to prepare and develop students’ problem solving experi-
ences for 21st Century challenges and demands.

Törner et al. (2007) invited mathematics educators worldwide to elaborate on the
influence and developments of problem solving in their countries. Their contribu-
tions show a close relationship between countries mathematical education traditions
and ways to frame and implement problem solving approaches. In Chinese class-
rooms, for example, three instructional strategies are used to structure problem
solving lessons: one problem multiple solutions, multiple problems one solution,
and one problem multiple changes. In the Netherlands, the realistic mathematical
approach permeates the students’ development of problem solving competencies;
while in France, problem solving activities are structured in terms of two influential
frameworks: The theory of didactical situations and anthropological theory of
didactics.

In general, problem solving frameworks and instructional approaches came from
analysing students’ problem solving experiences that involve or rely mainly on the
use of paper and pencil work. Thus, there is a need to re-examined principles and
frameworks to explain what learners develop in learning environments that incor-
porate systematically the coordinated use of digital technologies (Hoyles and
Lagrange 2010). In this perspective, it becomes important to briefly describe and
identify what both multiple purpose and ad hoc technologies can offer to the stu-
dents in terms of extending learning environments and representing and exploring
mathematical tasks. Specifically, a task is used to identify features of mathematical
reasoning that emerge through the use digital technologies that include both
mathematical action and multiple purpose types of technologies.

1.3.3 Background

Digital technologies are omnipresent and their use permeates and shapes several
social and academic events. Mobile devices such as tablets or smart phones are
transforming the way people communicate, interact and carry out daily activities.
Churchill et al. (2016) pointed out that mobile technologies provide a set of tools
and affordances to structure and support learning environments in which learners
continuously interact to construct knowledge and solve problems. The tools include
resources or online materials, efficient connectivity to collaborate and discuss
problems, ways to represent, explore and store information, and analytical and
administration tools to management learning activities. Schmidt and Cohen (2013)
stated that nowadays it is difficult to imagine a life without mobile devices, and
communication technologies are playing a crucial role in generating both cultural
and technical breakthroughs. In education, the use of mobile artefacts and com-
puters offers learners the possibility of continuing and extending peers and groups’
mathematical discussions beyond formal settings. In this process, learners can also
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consult online materials and interact with experts, peers or more experienced stu-
dents while working on mathematical tasks. In addition, dynamic geometry systems
(GeoGebra) provide learners a set of affordances to represent and explore
dynamically mathematical problems. Leung and Bolite-Frant (2015) pointed out
that tools help activate an interactive environment in which teachers and students’
mathematical experiences get enriched. Thus, the digital age brings new challenges
to the mathematics education community related to the changes that technologies
produce to curriculum, learning scenarios, and ways to represent, explore mathe-
matical situations. In particular, it is important to characterize the type of reasoning
that learners can develop as a result of using digital technologies in their process of
learning concepts and solving mathematical problems.

1.3.4 A Focus on Mathematical Tasks

Mathematical tasks are essential elements for engaging learners in mathematical
reasoning which involves representing objects, identifying and exploring their
properties in order to detect invariants or relationships and ways to support them.
Watson and Ohtani (2015) stated that task design involves discussions about
mathematical content and students’ learning (cognitive perspective), about the
students’ experiences to understand the nature of mathematical activities; and about
the role that tasks played in teaching practices. In this context, tasks are the vehicle
to present and discuss theoretical frameworks for supporting the use of digital
technology, to analyse the importance of using digital technologies in extending
learners’ mathematical discussions beyond formal settings, and to design ways to
foster and assess the use of technologies in learners’ problem solving environments.
In addition, it is important to discuss contents, concepts, representations and
strategies involved in the process of using digital technologies in approaching the
tasks. Similarly, it becomes essential to discuss what types of activities students will
do to learn and solve the problems in an environment where the use of technologies
fosters and values the participation and collaboration of all students. What digital
technologies are important to incorporate in problem solving approaches? Dynamic
Geometry Systems can be considered as a milestone in the development of digital
technologies. Objects or mathematical situations can be represented dynamically
through the use of a Dynamic Geometry System and learners or problem solvers
can identify and examine mathematical relations that emerge from moving objects
within the dynamic model (Moreno-Armella and Santos-Trigo 2016).

Leung and Bolite-Frant (2015) stated that “dynamic geometry software can be
used in task design to cover a large epistemic spectrum from drawing precise robust
geometrical figures to exploration of new geometric theorems and development of
argumentation discourse” (p. 195). As a result, learners not only need to develop
skills and strategies to construct dynamic configuration of problems; but also ways
of relying on the tool’s affordances (quantifying parameters or objects attributes,
generating loci, graphing objects behaviours, using sliders, or dragging particular
elements within the configuration) in order to identify and support mathematical
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relations. What does it mean to represent and explore an object or mathematical
situation dynamically?

A simple task that involves a rhombus and its inscribed circle is used to illustrate
how a dynamic representation of these objects and embedded elements can lead
learners to identify and examine mathematical properties of those objects in the
construction of the configuration. To this end, learners are encouraged to pose and
pursue questions to explain the behaviours of parameters or attributes of the family
of objects that is generated as a result of moving a particular element within the
configuration.

1.3.5 A Task: A Dynamic Rhombus

Figure 2 represents a rhombus APDB and its inscribed circle (O is intersection of
diagonals AD and BP and the radius of the inscribed circle is the perpendicular
segment from any side of the rhombus to point O), vertex P lies on a circle c centred
at point A. Circle c is only a heuristic to generate a family of rhombuses. Thus,
point P can be moved along circle c to generate a family of rhombuses. Indeed,
based on the symmetry of the circle it is sufficient to move P on the semicircle
B’CA to draw such a family of rhombuses.

Fig. 2 A dynamic construction of a rhombus
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1.3.6 Posing Questions

A goal in constructing a dynamic model or configuration of problems is always to
identify and explore mathematical properties and relations that might result from
moving objects within the model. How do the areas of both the rhombus and the
inscribed circle behave when point P is moved along the arc B’CB? At what
position of point P does the area of the rhombus or inscribed circle reach the
maximum value? The coordinates of points S and Q (Fig. 3) are the x-value of point

Fig. 3 Graphic representation of the area variation of the family of rhombuses and inscribed
circles generated when P is moved through arc B’CB
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P and as y-value the corresponding area values of rhombus ABDP and the inscribed
circle respectively. Figure 2 shows the loci of points S and Q when point P is
moved along arc B’CB. Here, finding the locus via the use of GeoGebra is another
heuristic to graph the area behaviour without making explicit the algebraic model of
the area.

The area graphs provide information to visualize that in that family of generated
rhombuses the maximum area value of the inscribed circle and rhombus is reached
when the rhombus becomes a square (Fig. 4). That is, the controlled movement of

Fig. 4 Visualizing the rhombus and the inscribed circle with maximum area
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particular objects is an important strategy to analyse the area variation of the family
of rhombuses and their inscribed circles.

It is important to observe the identification of points P and Q in terms of the
position of point P and the corresponding areas and the movement of point P was
sufficient to generate both area loci. That is, the graph representation of the areas is
achieved without having an explicit algebraic expression of the area variation.
Clearly, the graphic representations provide information regarding the increasing or
decreasing interval of both areas; it is also important to explore what properties both
graphic representations hold. The goal is to argue that the area variation of the
rhombus represents an ellipse and the area of the inscribed circle represents a
parabola. An initial argument might involve selecting five points on each locus and
using the tool to draw the corresponding conic section (Fig. 5). In this case, the tool
affordances play an important role in generating the graphic representation of the
areas’ behaviours and in identifying properties of those representations. In this
context, the use of the tool can offer learners the opportunity to problematize
(Santos-Trigo 2007) a simple mathematical object (rhombus) as a means to search
for mathematical relations and ways to support them.

1.3.7 Looking for Different Solutions Methods

Another line of exploration might involve asking for ways to construct a rhombus
and its inscribed circle: Suppose that the side of the rhombus and the circle are
given, how can you construct the rhombus that has that circle inscribed? Figure 6
shows the given data, segment A1B1 and circle centred at O and radius OD. The
initial goal is to draw the circle tangent to the given segment. To this end, segment
AB is congruent to segment A1B1 and on this segment a point P is chosen and a
perpendicular to segment AB that passes through point P is drawn. Point C is on
this perpendicular and the centre of a circle with radius OD and h is the perpen-
dicular to line PC that passes through point C. Angle ACB changes when point P is
moved along segment AB and point E and F are the intersection of line h and the
circle with centre M the midpoint of AB and radius MA (Fig. 6).

Figure 7a shows the right triangle AFB as the base to construct the rhombus and
the inscribed circle and Fig. 7b shows the second solution based on triangle AEB.

Another approach might involve drawing the given circle centred at the origin
and the segment as EF with point E on the y-axis. Line OC is perpendicular to
segment EF and the locus of point C when point E moves along the y-axis intersects
the given circle (Fig. 8a, b). Both figures show two solutions to draw the rhombus
that circumscribe the given circle.

In this example, the GeoGebra affordances not only are important to construct a
dynamic model of the task; but also offer learners and opportunity to explore
relations that emerge from moving objects within the model. As a result, learners
can rely on different concepts and strategies to solve the tasks. The idea in pre-
senting this rhombus task is to illustrate that the use of a Dynamic Geometry
System provides affordances for learners to construct dynamic representation of
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Fig. 5 Drawing the conic section that passes through five points
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Fig. 6 Drawing segment AB tangent to the given circle

Fig. 7 a Drawing the rhombus and the inscribed circle. b Drawing the second solution

1 Survey on the State-of-the-Art 29



mathematical objects or problems, to move elements within the representation to
pose questions or conjectures to explain invariants or patterns among involved
parameters; to search for arguments to support emerging conjectures, and to
develop a proper language to communicate results.

1.3.8 Looking Back

Conceptual frameworks used to explain learners’ construction of mathematical
knowledge need to capture or take into account the different ways of reasoning that
students might develop as a result of using a set of tools during the learning
experiences. Figure 9 show some digital technologies that learners can use for
specific purpose at the different stages of problem solving activities.

The use of a dynamic system (GeoGebra) provides a set of affordances for
learners to conceptualize and represent mathematical objects and tasks dynamically.
In this process, affordances such as moving objects orderly (dragging), finding loci
of objects, quantifying objects attributes (lengths, areas, angles, etc.), using sliders
to vary parameters, and examining family of objects became important to look for
invariance or objects relationships. Likewise, analysing the parameters or objects
behaviours within the configuration might lead learners to identify properties to
support emerging mathematical relations. Thus, with the use of the tool, learners
might conceptualize mathematical tasks as an opportunity for them to engage in
mathematical activities that include constructing dynamic models of tasks, formu-
lating conjectures, and always looking for different arguments to support them.
Similarly, learners can use an online platform to share their ideas, problem solutions

Fig. 8 a and b Another solution that involves finding a locus of point C
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or questions in a digital wall and others students can also share ideas or solution
methods and engaged in mathematical discussions that extend mathematical
classroom activities.

1.4 Problem Posing: An Overview for Further
Progress—Uldarico Malaspina Jurado

Problem posing and problem solving are two essential aspects of the mathematical
activity; however, researchers in mathematics education have not emphasized their
attention on problem posing as much as problem solving. In that sense, due to its
importance in the development of mathematical thinking in students since the first
grades, we agree with Ellerton’s statement (2013): “for too long, successful prob-
lem solving has been lauded as the goal; the time has come for problem posing to
be given a prominent but natural place in mathematics curricula and classrooms”
(pp. 100–101); and due to its importance in teacher training, with Abu-Elwan’s
statement (1999):

Fig. 9 The coordinated use of digital tools to engage learners in problem solving experiences
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While teacher educators generally recognize that prospective teachers require guidance in
mastering the ability to confront and solve problems, what is often overlooked is the critical
fact that, as teachers, they must be able to go beyond the role as problem solvers. That is, in
order to promote a classroom situation where creative problem solving is the central focus,
the practitioner must become skillful in discovering and correctly posing problems that
need solutions. (p. 1)

Scientists like Einstein and Infeld (1938), recognized not only for their notable
contributions in the fields they worked, but also for their reflections on the scientific
activity, pointed out the importance of problem posing; thus it is worthwhile to
highlight their statement once again:

The formulation of a problem is often more essential than its solution, which may be merely
a matter of mathematical or experimental skills. To raise new questions, new possibilities,
to regard old questions from a new angle, requires creative imagination and marks real
advance in science. (p. 92)

Certainly, it is also relevant to remember mathematician Halmos’s statement
(1980): “I do believe that problems are the heart of mathematics, and I hope that as
teachers (…) we will train our students to be better problem posers and problem
solvers than we are” (p. 524).

An important number of researchers in mathematics education has focused on
the importance of problem posing, and we currently have numerous, very important
publications that deal with different aspects of problem posing related to the
mathematics education of students in all educational levels and to teacher training.

1.4.1 A Retrospective Look

Kilpatrick (1987) marked a historical milestone in research related to problem
posing and points out that “problem formulating should be viewed not only as a
goal of instruction but also as a means of instruction” (Kilpatrick 1987, p. 123); and
he also emphasizes that, as part of students’ education, all of them should be given
opportunities to live the experience of discovering and posing their own problems.
Drawing attention to the few systematic studies on problem posing performed until
then, Kilpatrick contributes defining some aspects that required studying and
investigating as steps prior to a theoretical building, though he warns, “attempts to
teach problem-formulating skills, of course, need not await a theory” (p. 124).

Kilpatrick refers to the “Source of problems” and points out how virtually all
problems students solve have been posed by another person; however, in real life
“many problems, if not most, must be created or discovered by the solver, who
gives the problem an initial formulation” (p. 124). He also points out that problems
are reformulated as they are being solved, and he relates this to investigation,
reminding us what Davis (1985) states that, “what typically happens in a prolonged
investigation is that problem formulation and problem solution go hand in hand,
each eliciting the other as the investigation progresses” (p. 23). He also relates it to
the experiences of software designers, who formulate an appropriate sequence of
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sub-problems to solve a problem. He poses that a subject to be examined by
teachers and researchers “is whether, by drawing students’ attention to the refor-
mulating process and given them practice in it, we can improve their problem
solving performance” (p. 130). He also points out that problems may be a math-
ematical formulation as a result of exploring a situation and, in that sense, “school
exercises in constructing mathematical models of a situation presented by the
teacher are intended to provide students with experiences in formulating problems.”
(p. 131).

Another important section of Kilpatrick’s work (1987) is Processes of Problem
Formulating, in which he considers association, analogy, generalization and con-
tradiction. He believes the use of concept maps to represent concept organization,
as cognitive scientists Novak and Gowin suggest, might help to comprehend such
concepts, stimulate creative thinking about them, and complement the ideas Brown
and Walter (1983) give for problem posing by association. Further, in the section
“Understanding and developing problem formulating abilities”, he poses several
questions, which have not been completely answered yet, like “Perhaps the central
issue from the point of view of cognitive science is what happens when someone
formulates the problem? (…) What is the relation between problem formulating,
problem solving and structured knowledge base? How rich a knowledge base is
needed for problem formulating? (…) How does experience in problem formulating
add to knowledge base? (…) What metacognitive processes are needed for problem
formulating?”

It is interesting to realize that some of these questions are among the unanswered
questions proposed and analyzed by Cai et al. (2015) in Chap. 1 of the book
Mathematical Problem Posing (Singer et al. 2015). It is worth stressing the
emphasis on the need to know the cognitive processes in problem posing, an aspect
that Kilpatrick had already posed in 1987, as we just saw.

1.4.2 Researches and Didactic Experiences

Currently, there are a great number of publications related to problem posing, many
of which are research and didactic experiences that gather the questions posed by
Kilpatrick, which we just commented. Others came up naturally as reflections raised
in the framework of problem solving, facing the natural requirement of having
appropriate problems to use results and suggestions of researches on problem
solving, or as a response to a thoughtful attitude not to resign to solving and asking
students to solve problems that are always created by others. Why not learn and
teach mathematics posing one’s own problems?

1.4.3 New Directions of Research

Singer et al. (2013) provides a broad view about problem posing that links problem
posing experiences to general mathematics education; to the development of

1 Survey on the State-of-the-Art 33



abilities, attitudes and creativity; and also to its interrelation with problem solving,
and studies on when and how problem-solving sessions should take place.
Likewise, it provides information about research done regarding ways to pose new
problems and about the need for teachers to develop abilities to handle complex
situations in problem posing contexts.

Singer et al. (2013) identify new directions in problem posing research that go
from problem-posing task design to the development of problem-posing frameworks
to structure and guide teachers and students’ problem posing experiences. In a
chapter of this book, Leikin refers to three different types of problem posing activ-
ities, associated with school mathematics research: (a) problem posing through
proving; (b) problem posing for investigation; and (c) problem posing through
investigation. This classification becomes evident in the problems posed in a course
for prospective secondary school mathematics teachers by using a dynamic geometry
environment. Prospective teachers posed over 25 new problems, several of which are
discussed in the article. The author considers that, by developing this type of problem
posing activities, prospective mathematics teachers may pose different problems
related to a geometric object, prepare more interesting lessons for their students, and
thus gradually develop their mathematical competence and their creativity.

1.4.4 Final Comments

This overview, though incomplete, allows us to see a part of what problem posing
experiences involve and the importance of this area in students mathematical
learning. An important task is to continue reflecting on the questions posed by
Kilpatrick (1987), as well as on the ones that come up in the different researches
aforementioned. To continue progressing in research on problem posing and con-
tribute to a greater consolidation of this research line, it will be really important that
all mathematics educators pay more attention to problem posing, seek to integrate
approaches and results, and promote joint and interdisciplinary works. As Singer
et al. (2013) say, going back to Kilpatrick’s proposal (1987),

Problem posing is an old issue. What is new is the awareness that problem posing needs to
pervade the education systems around the world, both as a means of instruction (…) and as
an object of instruction (…) with important targets in real-life situations. (p. 5)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 4.0
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Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

34 Problem Solving in Mathematics Education

http://creativecommons.org/licenses/by/4.0/


References

Abu-Elwan, R. (1999). The development of mathematical problem posing skills for prospective
middle school teachers. In A. Rogerson (Ed.), Proceedings of the International Conference on
Mathematical Education into the 21st century: Social Challenges, Issues and Approaches,
(Vol. 2, pp. 1–8), Cairo, Egypt.

Ashcraft, M. (1989). Human memory and cognition. Glenview, Illinois: Scott, Foresman and
Company.

Bailin, S. (1994). Achieving extraordinary ends: An essay on creativity. Norwood, NJ: Ablex
Publishing Corporation.

Bibby, T. (2002). Creativity and logic in primary-school mathematics: A view from the classroom.
For the Learning of Mathematics, 22(3), 10–13.

Brown, S., & Walter, M. (1983). The art of problem posing. Philadelphia: Franklin Institute Press.
Bruder, R. (2000). Akzentuierte Aufgaben und heuristische Erfahrungen. In W. Herget & L. Flade

(Eds.), Mathematik lehren und lernen nach TIMSS. Anregungen für die Sekundarstufen
(pp. 69–78). Berlin: Volk und Wissen.

Bruder, R. (2005). Ein aufgabenbasiertes anwendungsorientiertes Konzept für einen nachhaltigen
Mathematikunterricht—am Beispiel des Themas “Mittelwerte”. In G. Kaiser & H. W. Henn
(Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation (pp. 241–250).
Hildesheim, Berlin: Franzbecker.

Bruder, R., & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht. Berlin:
CornelsenVerlag Scriptor.

Bruner, J. (1964). Bruner on knowing. Cambridge, MA: Harvard University Press.
Burton, L. (1999). Why is intuition so important to mathematicians but missing from mathematics

education? For the Learning of Mathematics, 19(3), 27–32.
Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem posing research in mathematics: Some

answered and unanswered questions. In F.M. Singer, N. Ellerton, & J. Cai (Eds.),
Mathematical problem posing: From research to effective practice (pp. 3–34). Springer.

Churchill, D., Fox, B., & King, M. (2016). Framework for designing mobile learning
environments. In D. Churchill, J. Lu, T. K. F. Chiu, & B. Fox (Eds.), Mobile learning
design (pp. 20–36)., lecture notes in educational technology NY: Springer.

Collet, C. (2009). Problemlösekompetenzen in Verbindung mit Selbstregulation fördern.
Wirkungsanalysen von Lehrerfortbildungen. In G. Krummheuer, & A. Heinze (Eds.),
Empirische Studien zur Didaktik der Mathematik, Band 2, Münster: Waxmann.

Collet, C., & Bruder, R. (2008). Longterm-study of an intervention in the learning of
problem-solving in connection with self-regulation. In O. Figueras, J. L. Cortina, S.
Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32
and PME-NA XXX, (Vol. 2, pp. 353–360).

Csíkszentmihályi, M. (1996). Creativity: Flow and the psychology of discovery and invention.
New York: Harper Perennial.

Davis, P. J. (1985). What do I know? A study of mathematical self-awareness. College
Mathematics Journal, 16(1), 22–41.

Dewey, J. (1933). How we think. Boston, MA: D.C. Heath and Company.
Dewey, J. (1938). Logic: The theory of inquiry. New York, NY: Henry Holt and Company.
Einstein, A., & Infeld, L. (1938). The evolution of physics. New York: Simon and Schuster.
Ellerton, N. (2013). Engaging pre-service middle-school teacher-education students in mathemat-

ical problem posing: Development of an active learning framework. Educational Studies in
Math, 83(1), 87–101.

Engel, A. (1998). Problem-solving strategies. New York, Berlin und Heidelberg: Springer.
English, L. (1997). Children’s reasoning processes in classifying and solving comparison word

problems. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images
(pp. 191–220). Mahwah, NJ: Lawrence Erlbaum Associates Inc.

References 35



English, L. (1998). Reasoning by analogy in solving comparison problems. Mathematical
Cognition, 4(2), 125–146.

English, L. D. & Gainsburg, J. (2016). Problem solving in a 21st- Century mathematics education.
In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics
education (pp. 313–335). NY: Routledge.

Ghiselin, B. (1952). The creative process: Reflections on invention in the arts and sciences.
Berkeley, CA: University of California Press.

Hadamard, J. (1945). The psychology of invention in the mathematical field. New York, NY:
Dover Publications.

Halmos, P. (1980). The heart of mathematics. American Mathematical Monthly, 87, 519–524.
Halmos, P. R. (1994). What is teaching? The American Mathematical Monthly, 101(9), 848–854.
Hoyles, C., & Lagrange, J.-B. (Eds.). (2010). Mathematics education and technology–Rethinking

the terrain. The 17th ICMI Study. NY: Springer.
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching

mathematical problem solving. In E. Silver (Ed.), Teaching and learning mathematical
problem solving: Multiple research perspectives (pp. 1–15). Hillsdale, New Jersey: Lawrence
Erlbaum.

Kilpatrick, J. (1987). Problem formulating: Where do good problem come from? In A.
H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147). Hillsdale,
NJ: Erlbaum.

Kline, M. (1972). Mathematical thought from ancient to modern times. NY: Oxford University
Press.

Kneller, G. (1965). The art and science of creativity. New York, NY: Holt, Reinhart, and Winstone
Inc.

Koestler, A. (1964). The act of creation. New York, NY: The Macmillan Company.
König, H. (1984). Heuristik beim Lösen problemhafter Aufgaben aus dem außerunterrichtlichen

Bereich. Technische Hochschule Chemnitz, Sektion Mathematik.
Kretschmer, I. F. (1983). Problemlösendes Denken im Unterricht. Lehrmethoden und Lernerfolge.

Dissertation. Frankfurt a. M.: Peter Lang.
Krulik, S. A., & Reys, R. E. (Eds.). (1980). Problem solving in school mathematics. Yearbook of

the national council of teachers of mathematics. Reston VA: NCTM.
Krutestkii, V. A. (1976). The psychology of mathematical abilities in school children. University

of Chicago Press.
Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. K. Lester, Jr. (Ed.),

The second handbook of research on mathematics teaching and learning (pp. 763–804).
National Council of Teachers of Mathematics, Charlotte, NC: Information Age Publishing.

Lester, F., & Kehle, P. E. (2003). From problem solving to modeling: The evolution of thinking
about research on complex mathematical activity. In R. Lesh & H. Doerr (Eds.), Beyond
constructivism: Models and modeling perspectives on mathematics problem solving, learning
and teaching (pp. 501–518). Mahwah, NJ: Lawrence Erlbaum.

Lester, F. K., Garofalo, J., & Kroll, D. (1989). The role of metacognition in mathematical problem
solving: A study of two grade seven classes. Final report to the National Science Foundation,
NSF Project No. MDR 85-50346. Bloomington: Indiana University, Mathematics Education
Development Center.

Leung, A., & Bolite-Frant, J. (2015). Designing mathematical tasks: The role of tools. In A.
Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 191–225). New York:
Springer.

Liljedahl, P. (2008). The AHA! experience: Mathematical contexts, pedagogical implications.
Saarbrücken, Germany: VDM Verlag.

Liljedahl, P., & Allan, D. (2014). Mathematical discovery. In E. Carayannis (Ed.), Encyclopedia of
creativity, invention, innovation, and entrepreneurship. New York, NY: Springer.

Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of
Mathematics, 26(1), 20–23.

36 Problem Solving in Mathematics Education



Lompscher, J. (1975). Theoretische und experimentelle Untersuchungen zur Entwicklung geistiger
Fähigkeiten. Berlin: Volk und Wissen. 2. Auflage.

Lompscher, J. (1985). Die Lerntätigkeit als dominierende Tätigkeit des jüngeren Schulkindes.
In L. Irrlitz, W. Jantos, E. Köster, H. Kühn, J. Lompscher, G. Matthes, & G. Witzlack (Eds.),
Persönlichkeitsentwicklung in der Lerntätigkeit. Berlin: Volk und Wissen.

Mason, J., & Johnston-Wilder, S. (2006). Designing and using mathematical tasks. St. Albans:
Tarquin Publications.

Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. Harlow: Pearson Prentice Hall.
Mayer, R. (1982). The psychology of mathematical problem solving. In F. K. Lester & J. Garofalo

(Eds.), Mathematical problem solving: Issues in research (pp. 1–13). Philadelphia, PA:
Franklin Institute Press.

Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching
mathematics in heterogeneous classrooms. American Educational Research Journal, 34(2),
365–394.

Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out
examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73,
449–471.

Moreno-Armella, L., & Santos-Trigo, M. (2016). The use of digital technologies in mathematical
practices: Reconciling traditional and emerging approaches. In L. English & D. Kirshner
(Eds.), Handbook of international research in mathematics education (3rd ed., pp. 595–616).
New York: Taylor and Francis.

National Council of Teachers of Mathematics (NCTM). (1980). An agenda for action. Reston,
VA: NCTM.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for
school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Newman, J. (2000). The world of mathematics (Vol. 4). New York, NY: Dover Publishing.
Novick, L. (1988). Analogical transfer, problem similarity, and expertise. Journal of Educational

Psychology: Learning, Memory, and Cognition, 14(3), 510–520.
Novick, L. (1990). Representational transfer in problem solving. Psychological Science, 1(2),

128–132.
Novick, L. (1995). Some determinants of successful analogical transfer in the solution of algebra

word problems. Thinking & Reasoning, 1(1), 5–30.
Novick, L., & Holyoak, K. (1991). Mathematical problem solving by analogy. Journal of

Experimental Psychology, 17(3), 398–415.
Pehkonen, E. K. (1991). Developments in the understanding of problem solving. ZDM—The

International Journal on Mathematics Education, 23(2), 46–50.
Pehkonen, E. (1997). The state-of-art in mathematical creativity. Analysis, 97(3), 63–67.
Perels, F., Schmitz, B., & Bruder, R. (2005). Lernstrategien zur Förderung von mathematischer

Problemlösekompetenz. In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition.
Implikationen für Forschung und Praxis (pp. 153–174). Waxmann education.

Perkins, D. (2000). Archimedes’ bathtub: The art of breakthrough thinking. New York, NY: W.W.
Norton and Company.

Poincaré, H. (1952). Science and method. New York, NY: Dover Publications Inc.
Pólya, G. (1945). How to solve It. Princeton NJ: Princeton University.
Pólya, G. (1949). How to solve It. Princeton NJ: Princeton University.
Pólya, G. (1954). Mathematics and plausible reasoning. Princeton: Princeton University Press.
Pólya, G. (1964). Die Heuristik. Versuch einer vernünftigen Zielsetzung. Der

Mathematikunterricht, X(1), 5–15.
Pólya, G. (1965). Mathematical discovery: On understanding, learning and teaching problem

solving (Vol. 2). New York, NY: Wiley.
Resnick, L., & Glaser, R. (1976). Problem solving and intelligence. In L. B. Resnick (Ed.), The

nature of intelligence (pp. 230–295). Hillsdale, NJ: Lawrence Erlbaum Associates.
Rusbult, C. (2000). An introduction to design. http://www.asa3.org/ASA/education/think/intro.

htm#process. Accessed January 10, 2016.

References 37

http://www.asa3.org/ASA/education/think/intro.htm%23process
http://www.asa3.org/ASA/education/think/intro.htm%23process


Santos-Trigo, M. (2007). Mathematical problem solving: An evolving research and practice
domain. ZDM—The International Journal on Mathematics Education, 39(5, 6): 523–536.

Santos-Trigo, M. (2014). Problem solving in mathematics education. In S. Lerman (Ed.),
Encyclopedia of mathematics education (pp. 496–501). New York: Springer.

Schmidt, E., & Cohen, J. (2013). The new digital age. Reshaping the future of people nations and
business. NY: Alfred A. Knopf.

Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem-solving performance.
Journal for Research in Mathematics Education, 10, 173–187.

Schoenfeld, A. H. (1982). Some thoughts on problem-solving research and mathematics
education. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving: Issues in
research (pp. 27–37). Philadelphia: Franklin Institute Press.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, Florida: Academic Press Inc.
Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.),

Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and
sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics
teaching and learning (pp. 334–370). New York, NY: Simon and Schuster.

Schön, D. (1987). Educating the reflective practitioner. San Fransisco, CA: Jossey-Bass
Publishers.

Sewerin, H. (1979): Mathematische Schülerwettbewerbe: Beschreibungen, Analysen, Aufgaben,
Trainingsmethoden mit Ergebnissen. Umfrage zum Bundeswettbewerb Mathematik. München:
Manz.

Silver, E. (1982). Knowledge organization and mathematical problem solving. In F. K. Lester &
J. Garofalo (Eds.), Mathematical problem solving: Issues in research (pp. 15–25).
Philadelphia: Franklin Institute Press.

Singer, F., Ellerton, N., & Cai, J. (2013). Problem posing research in mathematics education: New
questions and directions. Educational Studies in Mathematics, 83(1), 9–26.

Singer, F. M., Ellerton, N. F., & Cai, J. (Eds.). (2015). Mathematical problem posing. From
research to practice. NY: Springer.

Törner, G., Schoenfeld, A. H., & Reiss, K. M. (2007). Problem solving around the world:
Summing up the state of the art. ZDM—The International Journal on Mathematics Education,
39(1), 5–6.

Verschaffel, L., de Corte, E., Lasure, S., van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E.
(1999). Learning to solve mathematical application problems: A design experiment with fifth
graders. Mathematical Thinking and Learning, 1(3), 195–229.

Wallas, G. (1926). The art of thought. New York: Harcourt Brace.
Watson, A., & Ohtani, M. (2015). Themes and issues in mathematics education concerning task

design: Editorial introduction. In A. Watson & M. Ohtani (Eds.), Task design in mathematics
education, an ICMI Study 22 (pp. 3–15). NY: Springer.

Zimmermann, B. (1983). Problemlösen als eine Leitidee für den Mathematikunterricht. Ein
Bericht über neuere amerikanische Beiträge. Der Mathematikunterricht, 3(1), 5–45.

Further Reading

Boaler, J. (1997). Experiencing school mathematics: Teaching styles, sex, and setting.
Buckingham, PA: Open University Press.

Borwein, P., Liljedahl, P., & Zhai, H. (2014). Mathematicians on creativity. Mathematical
Association of America.

Burton, L. (1984). Thinking things through. London, UK: Simon & Schuster Education.
Feynman, R. (1999). The pleasure of finding things out. Cambridge, MA: Perseus Publishing.
Gardner, M. (1978). Aha! insight. New York, NY: W. H. Freeman and Company.

38 Problem Solving in Mathematics Education



Gardner, M. (1982). Aha! gotcha: Paradoxes to puzzle and delight. New York, NY: W.
H. Freeman and Company.

Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud,
Einstein, Picasso, Stravinsky, Eliot, Graham, and Ghandi. New York, NY: Basic Books.

Glas, E. (2002). Klein’s model of mathematical creativity. Science & Education, 11(1), 95–104.
Hersh, D. (1997). What is mathematics, really?. New York, NY: Oxford University Press.
Root-Bernstein, R., & Root-Bernstein, M. (1999). Sparks of genius: The thirteen thinking tools of

the world’s most creative people. Boston, MA: Houghton Mifflin Company.
Zeitz, P. (2006). The art and craft of problem solving. New York, NY: Willey.

Further Reading 39


	1 Problem Solving in Mathematics Education
	1 Survey on the State-of-the-Art
	1.1 Role of Heuristics for Problem Solving—Regina Bruder
	1.1.1 Research Review on the Promotion of Problem Solving
	1.1.2 Heurisms as an Expression of Mental Agility

	1.2 Creative Problem Solving—Peter Liljedahl
	1.2.1 A History of Creativity in Mathematics Education
	1.2.2 Defining Mathematical Creativity
	1.2.3 Discourses on Creativity
	1.2.4 Problem Solving by Design
	1.2.5 George Pólya: How to Solve It
	1.2.6 Alan Schoenfeld: Mathematical Problem Solving
	1.2.7 David Perkins: Breakthrough Thinking
	1.2.8 John Mason, Leone Burton, and Kaye Stacey: Thinking Mathematically
	1.2.9 Gestalt: The Psychology of Problem Solving
	1.2.10 Final Comments

	1.3 Digital Technologies and Mathematical Problem Solving—Luz Manuel Santos-Trigo
	1.3.1 Research Agenda
	1.3.2 Problem Solving Developments
	1.3.3 Background
	1.3.4 A Focus on Mathematical Tasks
	1.3.5 A Task: A Dynamic Rhombus
	1.3.6 Posing Questions
	1.3.7 Looking for Different Solutions Methods
	1.3.8 Looking Back

	1.4 Problem Posing: An Overview for Further Progress—Uldarico Malaspina Jurado
	1.4.1 A Retrospective Look
	1.4.2 Researches and Didactic Experiences
	1.4.3 New Directions of Research
	1.4.4 Final Comments


	References
	Further Reading


