
Collaboration Strategies for Drag-and-Drop
Interaction with Multiple Devices

Stephen Hughes(&), Marc Davenport, and Dalton Ott

Coe College, Cedar Rapids, USA
{shughes,mdavenport,ddott}@coe.edu

Abstract. ManyMouse is a software tool that revisits the ability of multiple
users to collaborate by connecting their personal independent mouse hardware
to a shared computer. This tool, implemented at the system level, assigns each
input device to its own simulated mouse cursor, extending the potential for
collaboration to any application. ManyMouse is currently being used as a
platform to explore various coordination strategies and assess their impact on
learning potential. Previous work on this topic has largely focused on inferring a
group’s intention from the relative positioning of the mouse pointers. This work
attempts to extend those ideas to include coordination of direct actions such as
drag-and-drop.

Keywords: Single display groupware � Collaborative input � Collective
interaction � Mice � Drag-and-drop

1 Introduction

Single Display Groupware systems have demonstrated benefits in educational settings
by enriching collaboration opportunities, opening communication channels among
participants, and encouraging peer-teaching [1]. Numerous studies have explored a
range of different approaches for managing collaborative input – from enforced turn
taking while sharing a single mouse [2] to simultaneous control of a single mouse
pointer [3]. The vision for single display groupware calls for each user to have their
own private, independent input channel, but this is at odds with the way that operating
systems behave when multiple devices are attached. Typically, inputs generated by
movements from multiple mice are aggregated to adjust the position of a single
on-screen mouse pointer. Therefore, when users wish to operate their own physical
hardware in a collaborative setting, specialized software, such as described in [4, 5], is
needed to create and manage multiple on-screen pointers. With this software in place, it
is relatively easy to recognize and respond to basic group behaviors such as
“swarming” or “convergence” which are based strictly on the position of multiple
mouse pointers. However, more complex behaviors, such as synchronizing clicks and
drag-and-drop operations have proven more difficult [5]. In order to capitalize on the
benefits of multi-device collaboration with popular drag-and-drop programming
environments such as Scratch, MIT AppInventor and other Blockly-based languages, it
is important to develop strategies and recognize behaviors that can support this level of
interaction.

© Springer International Publishing Switzerland 2016
C. Stephanidis (Ed.): HCII 2016 Posters, Part I, CCIS 617, pp. 329–333, 2016.
DOI: 10.1007/978-3-319-40548-3_55



2 ManyMouse

2.1 Design

Like other software solutions, ManyMouse is a tool that enables multiple users to have
control of their own independent mouse cursor in a shared environment. However, this
tool was explicitly designed to serve as a test bed for various interaction strategies to
support drag and drop operations. As shown in Fig. 1, ManyMouse intercepts raw
input coming from any number of connected mice and filters the input according to the
state of the mouse. This allows the program to not only determine how to display and
position a customized mouse icon, but also affect the behavior of the device by
deciding which system messages to pass through to the operating system.

Problems arise from the fact that “dragging” is not an explicit action in most
systems; rather it is a derived from a temporal series of system messages. The system
understands that it is dragging if it detects a MouseDown message followed by a
sequence of MouseMove events; it exits the dragging state when it receives a MouseUp
message. Without the intervention of a tool like ManyMouse, most systems will not
discriminate the origin of system messages. Therefore one user’s attempt to drag an
icon can be routinely interrupted by another user clicking; the second user’s MouseUp
message forces the first user to drop their icon. However, solving this problem is not as
simple as associating system messages with a specific input device; drag-and-drop
problems arise from both the system level and the user interaction level.

2.2 Strategies

The ManyMouse system provides the flexibility to implement a variety of interaction
strategies by simply altering the state rules. At the most basic level, users might be
allowed to designate a “primary” device which is capable of performing unrestricted
actions, while other devices are allowed to perform only actions that don’t interfere
with the primary device’s actions. This delegates authority to the user of a particular
device to act on behalf of the group. This technically works as a system-level solution,

Fig. 1. ManyMouse schematic

330 S. Hughes et al.



however, it can be problematic if authority is given to a domineering personality who
doesn’t ever want to relinquish control. Participants with limited capabilities are likely
to feel alienated and disengaged and will not find value in this kind of system. Another
strategy might attempt to democratize the role of the primary device by allowing access
to sensitive actions to be granted on a First-Come, First-Serve basis. With respect to
drag-and drop operations, this strategy can be implemented by simply ignoring all
MouseDown and MouseUp events from other devices until an initial MouseDown
event is completed with a corresponding MouseUp event from the same device.
Numerous other strategies (such as turn-taking or timeouts) for ManyMouse can be
imagined and implemented as a set of state transitions. From a user experience per-
spective, strategies that are both transparent and equitable are likely to be more
successful.

3 Collective Interaction

One intriguing variation for managing collaborative drag-and-drop activities is known
as Collective Interaction – a term coined by [6] to describe the natural phenomenon of
individuals deliberately coordinating their input to achieve more complicated tasks. For
example, when moving a heavy piece of furniture; there is an active dialogue about
where to lift, how quickly to move or if a break is needed. In this paradigm, the
operators must focus their attention on the input that is needed to produce a result and
its rationale rather than strictly on the end result. In the context of drag-and-drop
interfaces, elements may be perceived as ‘too heavy’ for one user to manipulate by
themselves; they would need to coordinate with a peer to collectively manipulate the
object. This constant negotiation of user input may prove quite valuable in a collab-
orative setting. As the collaborators attempt to collectively come to agreement on a
course of action, individuals would need to justify their strategies in attempts to per-
suade others to participate in the collective behavior.

To implement collective drag-and-drop in ManyMouse requires the implementation
of six states, as outlined in Fig. 2, with transitions outlined in Table 1.

Fig. 2. Collective drag-and-drop states

Collaboration Strategies for Drag-and-Drop Interaction 331



The intuition for this strategy is as follows. All pointers are considered “Free” until
the first mouse button is pressed. If the button is immediately released, the act is
counted as a “click” and all pointers are Free again. However, if the user holds the
button down, it indicates that they have grabbed an icon, and need to wait in that
location until some collaborators come to help to drag it elsewhere. Whenever another
user comes to help they can agree to the actions of the “dragger” by holding down their
mouse button. However they can withdraw their consent at any time by simply
releasing the mouse button. The position of the consenter’s mouse pointer moves
relative to the dragging pointer; this eliminates the need to synchronize movements.
The implication is that the dragger ultimately decides where to drop, but they must
have the consent of their collaborators to perform any repositioning.

4 Evaluation

A functional prototype of ManyMouse has been developed and tested with the
first-come, first-served and collective interaction strategies. Initial and informal eval-
uations of the system continue to suggest refinements before a formal evaluation can be
performed. However, the design for that evaluation is currently being explored and
expected to be conducted in the near future.

References

1. Stewart, J., Bederson, B., Druin, A.: Single display groupware: a model for co-present col-
laboration. In: CHI 1999 Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, New York, pp. 286–293 (1999)

2. Inkpen, K., Booth, K.S., Klawe, M., McGrenere, J.: The effect of turn-taking protocols on
children’s learning in mouse-driven collaborative environments. In: Graphics Interface,
pp. 138–145 (1997)

3. Hughes, S., Bardell, C., Schafer, J.B.: Human performance with multiple devices influencing
a single cursor. In: Human Factors and Ergonomics Society 57th Annual Meeting, San Diego,
CA, pp. 808–812 (2013)

Table 1. State transitions

State MouseDown MouseUp MouseMove

Free Grabbing;
others to needed

Ignored Passed through

Grabbing N/A Free (all) Ignored
Needed Ignored Ignored Passed through
Near Consented Ignored Passed through
Consented N/A Near Ignored
Dragging N/A Free (Drop) Passed through

332 S. Hughes et al.



4. Moraveji, N., Inkpen, K., Curtrell, E., Balakrishnan, R.: A mischief of mice: examining
children’s performance in single display groupware systems with 1 to 32 mice. In: CHI 2009
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York,
pp. 2157–2166 (2009)

5. Heimerl, K., Vasudev, J., Buchanan, K., Parikh, T., Brewer, E.: MetaMouse: improving
multi-user sharing of existing educational applications. In: ICTD 2010 Proceedings of the 4th
ACM/IEEE International Conference on Information and Communication Technologies and
Development, New York (2010)

6. Krogh, P., Petersen, M.: Collective interaction: let’s join forces. In: COOP 2008 (2008)

Collaboration Strategies for Drag-and-Drop Interaction 333


	Collaboration Strategies for Drag-and-Drop Interaction with Multiple Devices
	Abstract
	1 Introduction
	2 ManyMouse
	2.1 Design
	2.2 Strategies

	3 Collective Interaction
	4 Evaluation
	References


