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Abstract. Understanding naturalistic human use of technology requires
accounting for people, processes, and technologies. Modern decision support
system strive to facilitate decision making in such ecosystems. However,
modeling interaction between people and technology as constrained by explicit
or implicit processes quickly becomes a complex spiral of relationships. In order
to determine cause and effect in these complex ecosystems we need a form of
causal inference that can overcome the limitations of linear cause-effect analysis.
Complex systems are the result of feedback that takes place inside a dynamic

systems. In dynamic systems the future values for outcome variables are due to
the interactions of causal variables as modified by a shared, often hidden,
function. Taken’s theorem states that time series variables are causally linked if
they are from the same dynamic system. This paper presents the development
and application of an approach that examines time-offset relations between
variables in order to determine their causal relations. This research examines the
effectiveness of this technique through its application to a microwave heating
problem.
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1 Introduction

1.1 Linear Causality

A common form of causal inference examines the effects of changing an independent
variable (A) upon the variability in a dependent variable (B). This linear causal
inferences requires the change in A to precede the change in B. Statistically significant
differences in the distribution of variances signifies to the researcher that the variables
are causally related. However, this approach has several drawbacks. First, it is not
always practical or ethical to change one variable. Second, this framework only allows
the researcher to examine direct, antecedent causal relations. Third, the scientific
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community has recently challenged the use of null hypothesis significance testing
(NHST) as a tool for determining causal relations [1].

1.2 Complex Systems

Complex systems are the result of feedback that takes place inside dynamic systems. In
dynamic systems the future values for outcome variables are due to the interactions of
causal variables as modified by a shared, often hidden, function. Granger causality
empowers causal inference by examining if historic information in a variable strongly
relates to the present information in another. Taken’s theorem extends this type of
inference to complex systems through examining the time embedded offsets of
variables.

Attractors refer to regions within a hyperspace defined by a set of variables from a
complex system. The future values of the variables are drawn towards these regions.
The force of the attractor depends upon the proximity of the nearby points. Phase shifts
are stable states within a complex system where the force of the attractor is similar to
the force of the noise within the surrounding system.

1.3 Decision Support Systems

Modern decision-making support systems often makes use of semi or fully automated
algorithms [2]. These algorithms outsource some or all of the mental processing
required to create an informed decision. As these systems become increasingly
advanced and as the underlying systems they strive to model continue to increase in
complexity, it will become increasingly difficult to assess causality in coupled systems.

2 Method

2.1 Microwave Heating

Microwave ovens are a popular technology for preparing food. Microwave heating
represents an applied environment that includes people, technology, and processes. It is
difficult for practitioners to design proper protocols for people to follow when using a
microwave to heat a new product that will result in a uniformly heated product. Every
product reacts slightly differently to microwave ovens due to factors such as water or
fat content, salinity, starting temperature, etc. Microwave ovens add to this complexity
by contributing a set of factors such as shape, size, power, turntable rotation rate, etc.
For these reasons it is challenging for practitioners to design products or ovens which
consistently yield uniform heating results.

Microwave researchers also find it challenging to create a laboratory environment
that yields controlled, granular data. For this reason this research makes use of the
QWED QuickWave-3D software to simulate electromagnetic wave propagation within
the microwave oven and product, the resulting heating of a product, and for data within
simulation output files. This study simulated thawing of a 100 × 75 × 13.5 mm block

Decision Making for Complex Ecosystems 111



of frozen beef in a microwave oven operating at 2.45 GHz. The output data set contains
values of the electromagnetic fields in and near the waveguide that feeds microwave
power to the oven cavity, the fields within the cavity, and the product, and the tem-
perature. The sample interval was 0.5 s time steps within a 3D grid of either 15 or 20
cells per wavelength in and around the product. The initial position of the product was
either centered on the turntable (X0Y0), moved 5 mm to the right and 5 mm to the rear
of the oven (X5Y5), or moved 10 mm (X10Y10). The turntable rotated at 3 rpm.

2.2 Convergent Cross Mapping

Convergent cross-mapping refers to approaches that utilize time embedded relation-
ships between variables to determine their causal influence [3, 4]. CCM tests for
causation through examining the extent to which the historic record for one variable
can reliably estimate the sates of another. It does this by examining the correlation
between predicted and observed variables across time-embedded delayed versions of
the original variables. All of these offset dimensions for a variable collectively forms a
manifold. CCM uses the points from the manifold for one variable to predict the points
on another. It repeats this process several times. Each iteration considers slightly more
historic data. The correlation between these predictions and the actual values across
sets of various length yields the final CCM result.

This research extends CCM to handle larger data sets. The size of the datasets
yielded via QWED were far too large to for direct use within the CCM process due to
runtimes exponential to the number of input values. To combat this we modified the
approach to use the percentile ranks of individual metrics. Percentile-percentile plots
are a common, non-parametric technique for analyzing the similarity in the rate of
change between two variables. We used CCM to cross map the independent variables
across various percentile cohorts within this 3D space.

2.3 CCM Applied to Microwave Heating Uniformity

A common goal in microwave heating is to improve heating uniformity within the
product. Poor heating uniformity can result from a multitude of factors [5–8]. Effects
such as multiple field reflections and standing waves within the product and preferential
heating at edges and corners often contribute to poor heating uniformity. The
temperature-dependent complex permittivity of the food influences reflections at
interfaces, microwave wavelength within the food, and the dissipative conversion of
electromagnetic energy into heat. When the food undergoes phase change (e.g.,
thawing of ice), the permittivity can change dramatically over a range of 2–3 °C. When
increasing temperature leads to increased absorption of microwave power by any of
several mechanisms, runaway heating can result. Runaway heating can lead to rapid,
local heating, potentially causing burns, charring, and in extreme cases eruptive boiling
or fire. In this work we used thermophysical properties (including permittivity) spec-
ified for beef in the food.pmo file distributed with QuickWave-3D. We investigate
whether the CCM inference approach can assess the causal effect of initial product
position (X0Y0, X5Y5, X10Y10) on heating uniformity.
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3 Results

To establish the causality of two variables A and B using CCM, examine their resultant
cross mapped (xmap) correlation values (ρ). For A xmap to B, if ρ increases as library
length (l) increases then it implies that B drives A and vice versa. This seems
counter-intuitive but it takes place because the information from the driving variable is
passing through the passive variable. If both lines increase then both variable drive
each other. If neither line increase then neither variable drives the other.

3.1 Cross Map Outputs

Load at X0Y0. Because the median of the temperature (T50) xmap with the median of
the electromagnetic field (E50) increases as l increases, this implies that the E50 drives
T50 (see Fig. 1). This is consistent with expectations. However, because E xmap T also
increases with l this is evidence of weak bidirectional causality. E50 xamps T50 with
ρ = 0.96 and E50 xmaps T50 with ρ = 0.50.

Load at X5Y5. Electromagnetic effect strongly drives temperature. T50 xmaps E50
nearly perfectly with ρ = 1.0 (See Fig. 2). Bidirectional causality is more evident at this
location. Here E50 xmaps T50 with ρ = 0.70. Compare this to 0.50 at X0Y0.

Fig. 1. Load position effects analyzed at X0Y0 using CCM on E50 v. T50

Fig. 2. Load position effects analyzed at X5Y5 using CCM on E50 v. T50
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Load at X10Y10. Electromagnetic effect strongly drives temperature. T50 xmaps E50
nearly perfectly with ρ = 1.0 (see Fig. 3). Here bidirectional causality is strongly
evident; E50 xmaps T50 with ρ = 0.90. Compare ρ = 0.70 at X5Y5 and to ρ = 0.50 at
X0Y0.

3.2 Analysis

We suspect the bidirectional coupling reflects interactions between the microwave
electromagnetic field and product load. Power absorbed from an electromagnetic field
is converted to heat (thus, a temperature increase). If the product load is capable of
absorbing more power with increasing temperature—as occurs when ice in food thaws
—the electromagnetic field in the oven cavity may decrease. Controlling for oven and
load type for the range of displacements studied here, moving the product further away
from the oven center appears to increase the degree of bidirectional causality.

This method appears to provide a technique to rank the relative strength of two
causal relationships within a complex system. Location of a load is a simple but
significant variable capable of influencing microwave heating effects and causality
relationships across load locations.

4 Discussion

4.1 Implications for Causal Inference in Complex Systems

While [1] has illustrated the usefulness of CCM for establishing causality in complex
system, the extended CCM method mentioned in this paper will allow the use of CCM
on larger data sets.

4.2 Implications for Microwave Heating Processes

Practitioners creating microwave heating processes will benefit from understanding
how differences in product or oven characteristics effect heating uniformity. The results

Fig. 3. Load position effects analyzed at X10Y10 using CCM on E50 v. T50
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so far suggest that incorporating this technique within microwave simulations would be
a step towards transforming such simulations into decision support systems.

4.3 Implications for Decision Support Systems

The need to understand causal relationships between different variables will increase.
Decision support systems are increasingly adopting machine-assisted decision-making
approaches. These approaches continue to encompass an increasing share of the
decision-making responsibilities. Techniques such as those mentioned in this paper will
allow researchers to build systems capable of automatically discovering the direction of
relationships between variables.

5 Future Work

As mentioned, this is currently a work in progress. We plan to further improve the
efficiency of the CCM method. This will allow future work to examine additional
design variables such as load geometry, dielectric properties, oven design, rotation or
translation rate, packaging design, and packaging materials. Further understanding of
the use of these methods to guide system input variables will inform the incorporation
of this technique into decision support systems.

Acknowledgements. Our thanks to QWED for use of their QuickWave-3D software.
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