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Abstract. We consider two notions of timed bisimulation on states of
continuous-time dynamical systems: global and local timed bisimulation.
By analogy with the notion of a bisimulation relation on states of a
labeled transition system which requires the existence of matching tran-
sitions starting from states in such a relation, local timed bisimulation
requires the existence of sufficiently short (locally defined) matching tra-
jectories. Global timed bisimulation requires the existence of arbitrarily
long matching trajectories. For continuous-time systems the notion of
a global bisimulation is stronger than the notion of a local bisimula-
tion and its definition has a non-local character. In this paper we give
a local characterization of global timed bisimulation. More specifically,
we consider a large class of abstract dynamical systems called Nonde-
terministic Complete Markovian Systems (NCMS) which covers various
concrete continuous and discrete-continuous (hybrid) dynamical models
and introduce the notion of an f+-timed bisimulation, where f+ is a so
called extensibility measure. This notion has a local character. We prove
that it is equivalent to global timed bisimulation on states of a NCMS. In
this way we give a local characterization of the notion of a global timed
bisimulation.

Keywords: Bisimulation · Cyber-physical system · Dynamical system ·
Continuous time · Local characterization

1 Introduction

The focus of this paper is the notion of bisimulation [1–4] in the domain of
continuous-time dynamical systems. A general overview of the history of bisim-
ulation, bisimilarity, coinductive definitions and their relevance to computer sci-
ence, logic and other fields can be found in [4].

Recall that in the simplest case of labeled transition systems (LTS) [4] bisim-
ulation and bisimilarity can be defined as follows:
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A binary relation R on states of an LTS is a bisimulation, if (q1, q2) ∈ R
implies that for each state q′

1 and a label a such that q1 →a q′
1 there exists a

state q′
2 such that q2 →a q′

2 and (q′
1, q

′
2) ∈ R, and, conversely, for each state q′

2

and a label a such that q2 →a q′
2 there exists a state q′

1 such that q1 →a q′
1 and

(q′
1, q

′
2) ∈ R.

Bisimilarity is the union of all bisimulations.
Associated with these notions is the bisimulation proof method [4,5], which,

in particular, can be used to show behavioral equivalence of processes.
As was pointed out in [4], the features of the definition of bisimulation which

make the bisimulation proof method practically interesting are:

– locality of the checks in the sense that only immediate transitions from states
of a pair (q1, q2) ∈ R need to be examined to verify the conditions of the
definition;

– the lack of hierarchy on the pairs of the bisimulation (i.e. checks can be done
in any order).

Many modifications and extensions of the mentioned definitions were pro-
posed in different contexts [4].

In this paper we are interested in the notions of bsimulation for continuous-
time models which are useful for modeling cyber-physical systems [6–9] and
giving semantics to related specification and programming languages [10–14]. In
this context various definitions of bisimulation relations were proposed [15–21].
A survey and comparison of different approaches can be found in [21,22].

Most of such approaches consider dynamical system models with an explicit
notion of a global (continuous) time with respect to which the system’s global
state evolves and define some notion of bisimulation on states of such systems.

Such definitions of bisimulation for continuous-time systems can be classified
in different ways.

Generally, on one hand there are reduction-like approaches which associate
a model which has a pre-existing notion of bisimulation (e.g. LTS) with a
continuous-time model and consider bisimulation relations for the associated
model (in the sense of the pre-existing definition) to be bisimulation relations
for the continuous-time model. Approaches of this kind were used for timed
automata and several classes of hybrid systems [15] for abstracting infinite-state
systems by finite systems and establishing decidability results [15], for abstract-
ing continuous-time linear control systems [16], etc.

On the other hand, there are approaches which define new notions of
bisimulation specifically for the considered classes of continuous-time systems.
Approaches of this kind were proposed in [18] for continuous-time linear con-
trol systems with disturbances and certain kinds of nonlinear systems, in [19]
for dynamical systems in the sense of J.C. Willems behavioral approach [23], in
[24,25] for dynamical systems on manifolds and control and hybrid systems, in
[26] for general flow systems.

The way in which a particular definition of bisimulation for continuous-time
systems takes into account timing information gives another classification of such
definitions.
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On one hand, there were proposed time-abstracting bisimulations [27], bisim-
ulations of time-abstract transition systems [16], reachability bisimulation [26]
for continuous-time systems which do not take into account the times required
by a system to reach a particular state.

On the other hand, timed bisimulation definitions require matching of states
along trajectories (executions) of a system starting from states related by bisim-
ulation at exactly same time moments, e.g. [18,26]. Intermediate approaches
which take into account time information, but do not require exact matching
along trajectories starting from states related by a bisimulation were also pro-
posed, e.g. progress bisimulation [26].

The mentioned approaches to formalization of dynamical systems and the
associated notions of bisimulation and proof methods are quite heterogeneous
and currently lack a uniform treatment (e.g. in terms of coalgebras).

However, comparing various definitions of bisimulation for continuous-time
dynamical/control/hybrid systems to the definition of a bisimulation on the
states of a LTS, an important aspect of these definitions becomes visible:
although these definitions do not impose a hierarchy on the pairs (similarly
to bisimulations for LTS [4]), timed bisimulation definitions are non-local in
the sense that checking that a pair of states is in a bisimulation relation involves
checking some “far future”/global properties of the trajectories of a system start-
ing in these states (relative to the time moment when these trajectories start).

In particular, this is true for the bisimulation definitions proposed for abstract
types of continuous-time systems, e.g. in [26] the following notion of a timed
simulation was introduced for highly abstract general flow systems:

If Φ1, Φ2 are general flow systems over value spaces X1,X2 with the same
time line, a binary relation R between X1,X2 is a timed simulation of Φ1 by Φ2,
if dom(Φ1) ⊆ dom(R) and for all x1, x

′
1 ∈ X1, x2 ∈ X2 such that (x1, x2) ∈ R

and for all times t > 0, if there is a path γ1 ∈ Φ1(x1) such that x′
1 = γ1(t), then

there is x′
2 ∈ X2 and γ2 ∈ Φ2(x2) such that x′

2 = γ2(t), dom(γ2) = dom(γ1),
and (γ1(s), γ2(s)) ∈ R for all s ∈ dom(γ2) ∩ [0, t]. A relation R is a timed
bisimulation between Φ1, Φ2, if both R and R−1 are timed simulations (details
about the notions used in this definition are given in [26]).

In principle, we agree with definitions of this kind (on both abstract and con-
crete levels), but consider their non-local character undesirable for applications
based on the bisimulation proof method.

Our aim in this paper is to give a necessary and sufficient condition (crite-
rion) of a local (in time) character for checking that a given relation satisfies a
timed bisimulation definition of this kind. The novelty of the main result is that
local characterization of global timed bisimulation for continuous-time systems
is possible in the very general case and can be given in a uniform way (using
the notion of a so called f+-bisimulation defined below). Local characterization
also makes the notion of bisimulation for systems with continuous-time evolution
close in spirit to the classical notion of bisimulation for LTS (which are most
often used for representing systems with discrete-time evolution) and allows one
to use a wide variety of well-known methods of local analysis (in local in time or
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in state space) of the behavior of systems defined by differential equations, inclu-
sions, certain hybrid (discrete-continuous) formalisms, etc. (e.g. linearization,
various series expansions, approximations, singularity analysis, etc.) for proving
that a given relation is a bisimulation. Such methods are difficult or impossible to
apply if one tries to prove that a relation is a global timed bisimulation directly
by the definition (since this definition is given in terms of long-term behaviors
of a system instead of short-term behaviors). We also suppose that this result
will be useful for further development of uniform treatment of continuous time
dynamical system models and proof principles related to them using coalgebraic
approach (e.g. definition of bisimulation on continuous-time systems in terms of
coalgebras).

Note that as we have mentioned above, many different definitions of bisim-
ulation for continuous-time systems can be found in the literature. However,
arguably, once a local characterization is obtained for some reasonable formal-
ization X of bisimulation, it may be translated to other formalizations of bisimu-
lation at least when they agree with X (e.g. bisimulation for general flow systems
in the sense of Davoren and Tabuada [26]). In this paper we do not include a
detailed comparison of different approaches to the definition of bisimulation for
continuous-time systems and local characterization and its limits in each of such
cases, but this remains a topic of further investigation.

To obtain the main result we will consider dynamical systems on a high level
of abstraction comparable to the level of the mentioned general flow systems, but
use a particular formalization of such systems called Nondeterministic Complete
Markovian Systems (NCMS).

This formalization was proposed in [28–32] and inspired by the notion of a
solution system from O. Hájek’s Theory of processes [33,34]. In this formalization
the global non-negative real time scale is assumed and continuous-time systems
are modeled as sets of trajectories considered as functions on real time intervals
which take values in an arbitrary fixed set of states. These sets must satisfy
certain weak assumptions (more details are given in Sect. 2) [29]:

– be closed under proper restrictions onto intervals;
– satisfy the Markovian property which means that if two trajectories meet

at one time in one state, their concatenation is a trajectory (note that this
Markovian property is not formally related to the probability theory and sto-
chastic processes);

– satisfy the completeness property in the following sense: a non-empty chain
of trajectories in the sense of a subtrajectory relation has a supremum in the
set of trajectories.

One interpretation of the Markovian property is that at any time moment the
set of possible future evolutions of a system depends only on its current state and
time and does not depend on the path by which the system reached the current
state (which is also true for LTS). The definition of Hájek’s solution system
is rather similar, but lacks an equivalent of the completeness requirement of
NCMS. But for us completeness is necessary to be able to establish reductions
of global-in-time properties of systems to local-in-time properties.
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NCMS are also close to the notion of a TCTL structure in the sense of Alur
et al. [35], but the definition of the latter TCTL structures lack an equivalent of
the completeness assumption. Only with it Markovian property is sufficient for
establishing local characterization of bisimulation (informally, Markovian prop-
erty of NCMS allows joining a finite sequence of trajectories; with completeness
it allows joining an infinite sequence of trajectories).

The main reasons we use NCMS are:

– NCMS do not impose restrictions on the structure of the set of states and
impose weak restrictions on the system behavior, support nondeterminism
and partial trajectories. These features make NCMS promising for computer
science and cyber-physical systems applications like semantics of real-time
and embedded systems specification languages [30]. In contrast, well-known
concrete dynamical system models (classical dynamical systems, switched
systems [36], hybrid automata [37,38]) impose restrictions on the struc-
ture of the state space (e.g. assuming that it is a vector space, a mani-
fold, or a related structure) and stronger restrictions on the behavior of a
system.

– Concrete continuous-time models (e.g. described by differential equations,
switched systems, etc.) can be represented by NCMS [28], similarly to rep-
resenting different kinds of systems by Hájek’s solution systems [33,34]. Some
examples of such representations are given in Subsect. 2.2 below.

– The model of NCMS allows one to reduce some types of global analysis of
system behavior to local analysis of system behavior, e.g. prove global prop-
erties by checking that certain conditions hold in a neighborhood of each time
moment [29]. This is described in more detail in Subsect. 2.3.

In this paper we will define the notion of a labeled NCMS which can be
considered as a continuous-time analog of LTS and the notion of a global timed
bisimulation on the states of a labeled NCMS. We will also define an obvious
local version of this notion of a global timed bisimulation which we will call a local
timed bisimulation. Both notions turn out to be inequivalent in the case of NCMS
(local timed bisimulation is strictly weaker than global timed bisimulation). Then
we will strengthen the local definition of bisimulation using so-called extensibility
measures [29] and call the obtained notion a f+-timed bisimulation. This notion
will have a local character. Then we will show the equivalence of f+-timed
bisimulation and global timed bisimulation, obtaining a local characterization of
global timed bisimulation.

The paper is organized in the following way. To make the paper self-
contained, we give all necessary preliminaries about NCMS in Sect. 2. The reader
may skip this section or most of it, but consult it whenever necessary. In Sect. 3
we introduce the notion of a labeled NCMS. In Sect. 4 we introduce global and
local timed simulations and bisimulations on states of labeled NCMS. In Sect. 5
we formulate and discuss the main result, i.e. the local characterization of global
timed bisimulation on states of a labeled NCMS. In Sect. 6 we give an outline of
the proof of the main result. In Sect. 7 we give conclusions.
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2 Preliminaries

2.1 Notation

We will use the following notation: N = {1, 2, 3, ...} is the set of natural numbers;
R is the set of real numbers; R+ is the set of nonnegative real numbers; f : A → B
is a total function from a set A to a set B; f : A→̃B is a partial function from
a set A to a set B, 2A is the power set of a set A; f |A is the restriction of a
function f to a set A; BA is the set of all total functions from a set A to a set
B; AB is the set of all partial function from a set A to a set B.

For any function f : A→̃B we will use the symbol f(x) ↓ (f(x) ↑) to denote
that f(x) is defined, or, respectively, is undefined on the argument x.

We will not distinguish the notions of a function and a functional binary
relation. When we write that a function f : A→̃B is total or surjective, we
mean that f is total on the set A specifically (f(x) is defined for all x ∈ A), or,
respectively, is onto B (for each y ∈ B there exists x ∈ A such that y = f(x)).

For any f : A→̃B denote dom(f) = {x | f(x) ↓}, i.e. the domain of f (note
that in some fields like the category theory the domain of a partial function is
defined differently).

For any binary relation R denote R−1 = {(y, x) | (x, y) ∈ R} (the inverse
relation).

For any partial functions f, g the notation f(x) ∼= g(x) will mean the strong
equality: f(x) ↓ if and only if g(x) ↓, and f(x) ↓ implies f(x) = g(x).

Denote by f ◦ g the functional composition: (f ◦ g)(x) ∼= f(g(x)).
Denote by T the non-negative real time scale [0,+∞). We will assume that

T is equipped with a topology induced by the standard topology on R.
We will use the symbols ¬, ∨, ∧, ⇒, ⇔ to denote the logical operations of

negation, disjunction, conjunction, implication, and equivalence respectively.

2.2 Nondeterministic Complete Markovian Systems

The notion of a Nondeterminisitc Complete Markovian System (NCMS) was
introduced in [28] for studying the existence of global trajectories of dynamical
systems. It is close to the notion of a solution system by Hájek [33].

Let us denote by T the set of all intervals in T (connected subsets) which
have the cardinality greater than one.

Let Q be a set (a state space) and Tr be some set of functions of the form
s : A → Q, where A ∈ T. We will call the elements of Tr (partial) trajectories.

Definition 1 [28,32]. A set of trajectories Tr is closed under proper restrictions
(CPR), if s|A ∈ Tr for each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Let us introduce the following notation: if f, g are partial functions, f � g
means that the graph of f is a subset of the graph of g, and f � g means that
the graph of f is a proper subset of g.
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Definition 2. Let s1, s2 ∈ Tr be trajectories. Then:

(1) s1 is called a subtrajectory of s2, if s1 � s2;
(2) s1 is called a proper subtrajectory of s2 ∈ Tr, if s1 � s2;
(3) s1, s2 are called incomparable, if neither s1 � s2, nor s2 � s1.

The pair (Tr,�) is a possibly empty partially ordered set.

Definition 3 [28,32]. A CPR set of trajectories Tr is

(1) Markovian (Fig. 2), if for each s1, s2 ∈ Tr and t0 ∈ T such that t0 =
sup dom(s1) = inf dom(s2), s1(t0) ↓, s2(t0) ↓, and s1(t0) = s2(t0), the fol-
lowing function s belongs to Tr: s(t) = s1(t), if t ∈ dom(s1) and s(t) = s2(t),
if t ∈ dom(s2).

(2) complete, if each non-empty chain in (Tr,�) has a supremum.

Fig. 1. Markovian property of NCMS. If one (partial) trajectory ends and another
begins in a state q at time t, then their concatenation is a (partial) trajectory.

Fig. 2. Illustration of the completeness property of NCMS. The limit s of a �-chain
of trajectories (illustrated here as curve fragments bounded by dashed ellipses) of a
NCMS is itself a trajectory of this NCMS. The graph of s is the union of graphs of
elements of the chain.

Definition 4 [28,32]. A nondeterministic complete Markovian system (NCMS)
is a triple (T,Q, Tr), where Q is a set (state space) and Tr (trajectories) is a
set of functions s : T→̃Q such that dom(s) ∈ T, which is CPR, complete, and
Markovian.
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The notion of an LR representation [28,29,32] given below can be used to
obtain an overview of the class of all NCMS.

Definition 5 [28,32]. Let s1, s2 : T→̃Q. Then s1 and s2 coincide:

(1) on a set A ⊆ T , if s1|A = s2|A and A ⊆ dom(s1) ∩ dom(s2) (this is denoted
as s1

.=A s2);
(2) in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t) such that

s1
.=(t′,t] s2 (this is denoted as s1

.=t− s2);
(3) in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1

.=[t,t′) s2
(this is denoted as s1

.=t+ s2).

Let Q be a set and ST (Q) be the set of pairs all (s, t), where s : A → Q for
some A ∈ T and t ∈ A.

Definition 6 [28,32]. A predicate p : ST (Q) → Bool is

(1) left-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and
s1

.=t− s2 hold, and, moreover, p(s, t) holds whenever t is the least element
of dom(s);

(2) right-local, if p(s1, t) ⇔ p(s2, t) whenever {(s1, t), (s2, t)} ⊆ ST (Q) and
s1

.=t+ s2 hold, and, moreover, p(s, t) holds whenever t is the greatest ele-
ment of dom(s).

Let LR(Q) denote the set of all pairs (l, r), where l : ST (Q) → Bool is a
left-local predicate and r : ST (Q) → Bool is a right-local predicate.

Definition 7 [32]. A pair (l, r) ∈ LR(Q) is called a LR representation of a
NCMS Σ = (T,Q, Tr), if

Tr = {s : A → Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

The following theorem shows that a NCMS can be represented using predi-
cate pairs.

Theorem 1 [32].

(1) Each pair (l, r) ∈ LR(Q) is a LR representation of a NCMS with the set of
states Q.

(2) Each NCMS has a LR representation.

Consider some examples of representation of sets of trajectories of well-known
continuous and discrete-continuous dynamical models in the form of NCMS.

1. Ordinary differential equations. Let d ∈ N and f : R × R
d → R

d be a
continuous function. Let Tr be the set of all Rd-valued functions such that
dom(s) ∈ T (i.e. s is defined on a non-degenerate real interval) such that s is
differentiable on the interior of dom(s) and
– d

dts(t) = f(t, s(t)) holds for each t in the interior of dom(s);
– ∂+s(t) = f(t, s(t)), if t is the least element of dom(s);
– ∂−s(t) = f(t, s(t)), if t is the greatest element of dom(s),
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where ∂−s(t) denotes the left derivative at t, and ∂+s(t) denotes the right
derivative at t. Then (T,Rd, T r) is a NCMS.
Indeed, consider predicates l, r : ST (Rd) → Bool defined as follows:
– l(s, t) if and only if either min dom(s) ↓= t, or t > inf dom(s) and

∂−s(t) ↓= f(t, s(t));
– r(s, t) if and only if either max dom(s) ↓= t, or t < sup dom(s) and

∂+s(t) ↓= f(t, s(t)).
Obviously, l(s, t) is left-local and r(s, t) is right-local. Moreover, l(s, t)∧r(s, t)
holds for all t ∈ dom(s) if and only if s ∈ Tr. Then Theorem 1 implies
that (T,Rd, T r) is a NCMS. Note that for this result we do not need any
assumptions about global existence or uniqueness of solutions of differential
equations, because NCMS support partiality and nondeterminism.

2. Differential inclusions. Consider a differential inclusion ẋ(t) = F (t, x(t)),
where F : R×R

d → 2R
d

is a set-valued mapping. Let us introduce an auxiliary

variable y and rewrite the inclusion as

{
ẋ(t) = y(t);
y(t) ∈ F (t, x(t)).

Let Q = R
d × R

d and Tr be the set of all Q-valued functions s such that
dom(s) ∈ T and there exist functions x : dom(s) → R

d and y : dom(s) → R
d

such that s(t) = (x(t), y(t)) and y(t) ∈ F (t, x(t)) for all t ∈ dom(s) and x is
absolutely continuous on each compact segment [a, b] ⊆ dom(s) and satisfies
ẋ(t) = y(t) almost everywhere (a.e.) on dom(s) in the sense of Lebesgue’s
measure. Then (T,Q, Tr) is a NCMS. Indeed, consider l, r : ST (Q) → Bool:
– l(s, t) if and only if either min dom(s) ↓= t, there exists t′ ∈ [0, t), an

absolutely continuous function x : [t′, t] → R
d, and a function y : [t′, t] →

R
d such that [t′, t] ⊆ dom(s), s(τ) = (x(τ), y(τ)) and y(τ) ∈ F (τ, x(τ))

for all τ ∈ [t′, t] and d
dτ x(τ) = y(τ) a.e. on [t′, t].

– r(s, t) if and only if either max dom(s) ↓= t, or there exists t′ > t, an
absolutely continuous function x : [t, t′] → R

d, and a function y : [t, t′] →
R

d such that [t, t′] ⊆ dom(s), s(τ) = (x(τ), y(τ)) and y(τ) ∈ F (τ, x(τ))
for all τ ∈ [t, t′] and d

dτ x(τ) = y(τ) a.e. on [t, t′].
Obviously, l(s, t) is left-local and r(s, t) is right-local. Moreover, it is easy to
check that l(s, t) ∧ r(s, t) holds for all t ∈ dom(s) if and only if s ∈ Tr. Then
(T,Q, Tr) is a NCMS by Theorem 1.

3. Switched dynamical systems. Let d ≥ 1 be a natural number, I be a
finite non-empty set (modes of a switched system), and fi : T × R

d → R
d,

i ∈ I be an indexed family of vector fields (behaviors in each mode). Let I
be the set of all functions σ : T → I (switching signals) which are piecewise-
constant on each compact segment [a, b] ⊂ T . Assume that for each i ∈ I, fi

is continuous and bounded on T × R
d and there exists a number L > 0 such

that ||fi(t, x1) − fi(t, x2)|| ≤ L||x1 − x2|| for all x1, x2 ∈ R
d, t ∈ T , and i ∈ I

(Lipschitz-continuity). Consider a (nonlinear) switched system

ẋ(t) = fσ(t)(t, x(t)), t ≥ 0, σ ∈ I.

Note that by Caratheodory existence theorem, for each x0 ∈ R
d, t0 ∈ T ,

σ ∈ I the initial value problem d
dtx(t) = fσ(t)(t, x(t)), x(t0) = x0 has a unique
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Caratheodory solution t �→ x(t; t0;x0;σ) defined for all t ∈ [t0,+∞) such that
x(t0; t0;x0;σ) = x0 (i.e. a function that is absolutely continuous on each com-
pact segment in [t0,+∞) and satisfies d

dtx(t; t0;x0;σ) = fσ(t)(t, x(t; t0;x0;σ))
a.e. on [t0,+∞)).
Let Q = R

d × I and Tr be the set of all Q-valued functions s such that
dom(s) ∈ T (i.e. dom(s) is a non-degenerate real interval) and there exist
t0 ∈ T , x0 ∈ R

d, σ : dom(s) → I that is piecewise constant on each compact
segment in dom(s), and x : dom(s) → R

d that is absolutely continuous on
each compact segment in dom(s) such that d

dtx(t) = fσ(t)(t, x(t)) almost
everywhere (a.e.) on dom(s) in the sense of Lebesgue’s measure and s(t) =
(x(t), σ(t)) for t ∈ dom(s). Then (T,Q, Tr) is a NCMS.
Indeed, consider predicates l, r : ST (Rd) → Bool defined as follows:
– l(s, t) if and only if either min dom(s) ↓= t, there exists t′ ∈ [0, t), an

absolutely continuous function x : [t′, t] → R
d, and a piecewise-constant

function σ : [t′, t] → I such that [t′, t] ⊆ dom(s), s(τ) = (x(τ), σ(τ)) for
all τ ∈ [t′, t] and d

dτ x(τ) = fσ(τ)(τ, x(τ)) a.e. on [t′, t].
– r(s, t) if and only if either max dom(s) ↓= t, or there exists t′ > t, an

absolutely continuous function x : [t, t′] → R
d, and a piecewise-constant

function σ : [t, t′] → I such that [t, t′] ⊆ dom(s), s(τ) = (x(τ), σ(τ)) for
all τ ∈ [t, t′], and d

dτ x(τ) = fσ(τ)(τ, x(τ)) a.e. on [t, t′].
Obviously, l(s, t) is left-local and r(s, t) is right-local. Moreover, it is easy to
check that l(s, t) ∧ r(s, t) holds for all t ∈ dom(s) if and only if s ∈ Tr. Then
(T,Q, Tr) is a NCMS by Theorem 1.

Sets of trajectories of some more general switched/hybrid systems (possibly
with state-dependent switching) can be represented as NCMS analogously.

2.3 Global Trajectories of NCMS

The problem of the existence of trajectories of NCMS defined on the whole time
domain (global trajectories) was considered in [28,29,32]. In [28,32] a method
for proving the existence of a global trajectory in a NCMS was proposed. This
method reduces the problem of proving the existence of a global trajectory to the
problem of proving the existence of certain locally defined trajectories and can
be informally described as follows: (1) guess a “region” (a subset of trajectories)
which presumably contains a global trajectory and has a convenient representa-
tion in the form of (another) NCMS; (2) prove that this region indeed contains
a global trajectory by finding certain locally defined trajectories independently
in a neighborhood of each time moment.

Below we briefly state the results which form the basis of this method (Lemma
1 and Theorem 2 given below) which we will use in this paper.

Let Σ = (T,Q, Tr) be a fixed NCMS.

Definition 8 [29]. Σ satisfies

(1) local forward extensibility (LFE) property, if for each s ∈ Tr of the form
s : [a, b] → Q (a < b) there exists a trajectory s′ : [a, b′] → Q such that
s′ ∈ Tr, s � s′ and b′ > b.
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(2) global forward extensibility (GFE) property, if for each trajectory s of the
form s : [a, b] → Q there is a trajectory s′ : [a,+∞) → Q such that s � s′.

Definition 9 [29]. A right dead-end path (in Σ) is a trajectory s : [a, b) → Q
(a, b ∈ T , a < b) such that there is no s′ : [a, b] → Q, s′ ∈ Tr such that s � s′.

Definition 10 [29]. An escape from a right dead-end path s : [a, b) → Q (in Σ)
is a trajectory s′ : [c, d) → Q (d ∈ T ∪ {+∞}) or s′ : [c, d] → Q (d ∈ T ) such
that c ∈ (a, b), d > b, and s(c) = s′(c). An escape s′ is infinite, if d = +∞.

Definition 11 [29]. A right dead-end path s : [a, b) → Q in Σ is called strongly
escapable, if there exists an infinite escape from s.

Definition 12 [29].

(1) A right extensibility measure is a function f+ : R × R→̃R such that A =
{(x, y) ∈ T × T | x ≤ y} ⊆ dom(f+), f(x, y) ≥ 0 for all (x, y) ∈ A, f+|A is
strictly decreasing in the first argument and strictly increasing in the second
argument, and for each x ≥ 0, f+(x, x) = x and limy→+∞ f+(x, y) = +∞.

(2) A right extensibility measure f+ is called normal, if f+ is continuous on
{(x, y) ∈ T × T | x ≤ y} and there exists a function α of class K∞ (i.e.
the function α : [0,+∞) → [0,+∞) is continuous, strictly increasing, and
α(0) = 0, limx→+∞ α(x) = +∞) such that α(y) < y for all y > 0 and the
function y �→ f+(α(y), y) is of class K∞.

An example of a right extensibility measure is f+
n (x, y) = y + (y − x)n for

any n ∈ N. Let f+ be a right extensibility measure.

Definition 13 [29]. A right dead-end path s : [a, b) → Q is called f+-escapable
(Fig. 3), if there exists an escape s′ : [c, d] → Q from s such that d ≥ f+(c, b).

Lemma 1 [29]. Σ satisfies GFE if and only if Σ satisfies LFE and each right
dead-end path is strongly escapable.

Theorem 2 ([29], About right dead-end path). Assume that f+ is a normal
right extensibility measure and Σ satisfies LFE. Then each right dead-end path
is strongly escapable if and only if each right dead-end path is f+-escapable.

3 Traces on Sets of Trajectories and Labeled NCMS

In the case of labeled transition systems (LTS), labels are some data associated
with transitions and traces are sequences of labels along executions of an LTS.
We would like to define an analogous notion of a trace for NCMS. The informal
idea behind the definition of a trace proposed below is that for continuous-time
systems the role of “transitions” play “infinitesimally short trajectories” and
“labels” are certain values associated with such trajectories. Thus a trace defines
some quantity that evolves in time along a trajectory. This idea of co-evolution
of trace and trajectory is formalized in Definition 14 below. Theorem 3 given
below shows that this definition implies that at each time moment the value
of a trace depends only on the values of the trajectory in vicinity of this time
moment supporting the informal ideas of “transitions” and “labels” for NCMS.
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Fig. 3. An f+-escapable right dead-end path s : [a, b) → Q (curve) and a corresponding
escape s′ : [c, d] → Q (a horizonal segment) such that d ≥ f+(c, b).

Definition 14 (Trace). Let Tr be a CPR set of trajectories. A function λ on
Tr is called a trace on Tr, if the following conditions hold:

(1) (Preservation of domain) For each s ∈ Tr, λ(s) is a function defined on
dom(s).

(2) (Monotonicity) If s1, s2 ∈ Tr and s1 � s2, then λ(s1) � λ(s2).

We will define a labeled NCMS as a NCMS with a trace on its trajectories.

Definition 15 (Labeled NCMS). A labeled NCMS is a pair (Σ,λ), where
Σ = (T,Q, Tr) is a NCMS and λ is trace on Tr.

The most important properties of traces are formulated below.

Lemma 2 (Image of trace). The image of a trace on a CPR set of trajectories
is a CPR set of trajectories.

Lemma 3 (Chain-continuity of a trace). Let Tr be a CPR set of trajectories
and λ be a trace on Tr. Then λ is chain-continuous in the following sense: for
any non-empty chain C in the poset (Tr,�) which has the least upper bound
s∗ ∈ Tr the set {λ(s) | s ∈ C} has the least upper bound λ(s∗) in the poset
({λ(s) | s ∈ Tr},�).

The following theorem gives a convenient criterion for checking if a function
is a trace.

Theorem 3 (Criterion of a trace). Let Tr be a CPR set of trajectories, Y
be a set, λ : Tr → (T→̃Y ) be a total function. Then λ is a trace on Tr if and
only if the following conditions hold:

(1) dom(λ(s)) = dom(s) for all s ∈ Tr;
(2) if s1, s2 ∈ Tr, t0 ∈ T , s1

.=t0+ s2, then λ(s1)(t0) = λ(s2)(t0);
(3) if s1, s2 ∈ Tr, t0 ∈ T , s1

.=t0− s2, then λ(s1)(t0) = λ(s2)(t0).

The following lemma gives an obvious example of a trace: pointwise applica-
tion of a total function on the set of states to a trajectory (projection).
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Lemma 4. Assume that Tr is a CPR set of trajectories from T to a set Q, Y
is a set, f : Q → Y is a total function, and λ : Tr → (T→̃Y ) is such that
λ(s) = f ◦ s for all s ∈ Tr. Then λ is a trace on Tr.

Proof. Follows immediately from Theorem 3. ��
However, generally, the value of a trace at time t may depend not only on

the value of a trajectory at t, but on the values of a trajectory in an arbi-
trarily small neighborhood of t. An example of this kind based on differenti-
ation is given below (informally, this trace measures the speed of change of a
trajectory).

Example 1. Assume that n ∈ N, Tr ⊂ T→̃R
n is a CPR set of trajectories and

each s ∈ Tr is differentiable on dom(s) ∈ T, i.e. s is differentiable at each point of
the interior of dom(s), s has the right derivative at the least element of dom(s),
if this element exists, and s has the left derivative at the greatest element of
dom(s), if this element exists.

Let λ : Tr → (T→̃R
n) be a function such that for each s ∈ Tr:

– λ(s)(t) = d
dts(t), if t is in the interior of dom(s);

– λ(s)(t) is the right derivative of s at t, if t is the least element of dom(s);
– λ(s)(t) is the left derivative of s at t, if t is the greatest element of dom(s).

Using Theorem 3 it is easy to check that λ is a trace on Tr. ��

4 Timed Simulation and Bisimulation on NCMS

For any partial function s on T such that dom(s) ∈ T, any t0 ∈ T , and any
element q we will write

q
s�, if dom(s) has the least element a such that s(a) = q;

q
s�t0 , if t0 is the least element of dom(s) and s(t0) = q.

Let (Σ,λ) be a fixed labeled NCMS, where Σ = (T,Q, Tr).

Definition 16. Let s1, s2 : T→̃Q and R ⊆ Q × Q be a binary relation.
Then the functions s1 and s2 are:

(1) pointwise in R, if dom(s1) = dom(s2) and (s1(t), s2(t)) ∈ R for t ∈ dom(s1);
(2) pointwise in R on a set A ⊆ T , if A ⊆ dom(s1)∩dom(s2) and (s1(t), s2(t)) ∈

R for all t ∈ A;
(3) pointwise in R in a right neighborhood of t ∈ T , if there exists t′ > t, such

that s1, s2 are pointwise in R on [t, t′);
(4) pointwise in R in a deleted left neighborhood of t ∈ T , if t > 0 and there is

t′ ∈ [0, t) such that s1, s2 are pointwise in R on (t′, t).

Definition 17 (Global timed simulation). A relation R ⊆ Q×Q is a global
timed simulation on (Σ,λ), if for each (q1, q2) ∈ R and s1 ∈ Tr such that
q1

s1� there is s2 ∈ Tr such that q2
s2�, λ(s1) = λ(s2), and s1, s2 are pointwise

in R.
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Definition 18 (Local timed simulation). A relation R ⊆ Q × Q is a local
timed simulation on (Σ,λ), if for each (q1, q2) ∈ R, s1 ∈ Tr, and t0 ∈ T such
that q1

s1�t0 there exists s2 ∈ Tr such that q2
s2�t0 , λ(s1)

.=t0+ λ(s2), and s1, s2
are pointwise in R in a right neighborhood of t0.

Definition 19 (Timed bisimulation). A relation R ⊆ Q × Q is a

(1) local timed bisimulation on (Σ,λ), if both R and R−1 are local timed simu-
lations on (Σ,λ);

(2) global timed bisimulation on (Σ,λ), if both R and R−1 are global timed sim-
ulations on (Σ,λ).

Lemma 5. If R is a global timed simulation on (Σ,λ), then R is a local timed
simulation on (Σ,λ).

Lemma 6. There exists a labeled NCMS (Σ′, λ′) and a local timed bisimulation
R0 on (Σ′, λ′) such that R0 is not a global timed simulation on (Σ′, λ′).

Theorem 4 (About global and local timed bisimulation)

(1) If R is a global timed bisimulation on (Σ,λ), then R is a local timed bisim-
ulation on (Σ,λ).

(2) There is a labeled NCMS (Σ′, λ′) and a local timed bisimulation R0 on
(Σ′, λ′) such that R0 is not a global timed bisimulation on (Σ′, λ′).

Proof. Follows immediately from Lemmas 5, 6, and Definition 19. ��

5 Main Result

As before, let (Σ,λ) be a fixed labeled NCMS, where Σ = (T,Q, Tr). Let f+ be
a fixed right extensibility measure.

Definition 20 (f+-timed simulation). A relation R ⊆ Q × Q is a f+-timed
simulation on (Σ,λ), if R is a local timed simulation on (Σ,λ) and for each
s1, s2 ∈ Tr and t0 ∈ dom(s1) which satisfy the following conditions:

– s1, s2 are pointwise in R in a deleted left neighborhood of t0,
– λ(s1)=̇[t′

0,t0)λ(s2) for some t′0 < t0,
there exist s′

2 ∈ Tr, t1 ∈ dom(s2) ∩ dom(s′
2), and t2 ∈ T such that

(1) t1 < t0 and s2(t1) = s′
2(t1);

(2) either t2 ≥ f+(t1, t0), or t2 is the maximal element of dom(s1);
(3) λ(s1)

.=[t1,t2] λ(s′
2);

(4) s1 and s′
2 are pointwise in R on [t1, t2].

Definition 21 (f+-timed bisimulation). A relation R ⊆ Q×Q is a f+-timed
bisimulation on (Σ,λ), if both R and R−1 are f+-timed simulations on (Σ,λ).

The main result of this paper is the following theorem:
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Theorem 5 (Local characterization of global timed bisimulation). Let
f+ be a normal right extensibility measure. A relation R ⊆ Q × Q is a global
timed bisimulation on (Σ,λ) if and only if R is a f+-timed bisimulation on
(Σ,λ).

This theorem holds for any normal right extensibility measure, for example,
f+
1 (x, y) = y + (y − x) = 2y − x. The difference between the definition of the

f+-timed simulation and global timed simulation is that the latter definition
is non-local, i.e. it requires proving the existence of arbitrarily long trajectories
(s2) for proving that R is a simulation which may be hard, if the dynamics of a
system is defined by nonlinear differential equations or in other implicit way. The
former definition is local in that for proving that R is a simulation one can show
the existence of s′

2 that satisfies (1)–(4) on an arbitrarily short interval [t1, t2]
(the condition (2) imposes a lower bound on its length, but e.g. for f+ = f+

1

this lower bound can be made arbitrarily small by choosing t1 close to t0).
Arguably, the characterization of global timed bisimulation provided by The-

orem 5 is non-constructive, because it does not tell how to check the existence of
s′
2 ∈ Tr, t1 ∈ dom(s2)∩dom(s′

2), and t2 ∈ T in Definition 20 (their existence for
any s1, s2, t0 that satisfy assumptions of this definition is required for proving
that a relation is a global timed bisimulation). But this lack of constructivity is,
arguably, a consequence of generality of our model of a system (NCMS). So the
role of the local characterization provided by Theorem 5 is logical (to give an
alternative view of bisimulation in the general case useful e.g. for proving new
theorems about bisimulations) instead of being an executable algorithm.

The question of whether Theorem 5 can be a basis of algorithms for checking
properties related to bisimulations and bisimilarity for special types dynamical
systems (e.g. described by linear systems, etc.) requires separate investigation.

An informal description of how Theorem 5 can be applied is given below.
Let S be a system that travels through the state space Q = R

n in accordance
with a known law of motion L – an ordinary differential equation with input
control. The trace of a trajectory is a pointwise application of some output
function to the trajectory (in accordance with Lemma 4). Q contains a (possibly
infinite) subset O of isolated point obstacles. If S hits an obstacle, its trajectory
ends without possibility of continuation. Trajectories which neither hit nor tend
to obstacles can be continued indefinitely.

Suppose that we want to prove that under certain assumptions R = (Q\O)×
(Q\O) is a global timed bisimulation.

Proof using Definition 17 involves reasoning about the whole set O. Under
assumptions that are close to functional output-controllability of the system one
can prove that R is a local bisimulation without reasoning about obstacles at all
(see Definition 18). However, this approach is not directly applicable to the case
of global timed bisimulation.

For proving that R is a global timed bisimulation one can use f+-timed
bisimulation which is equivalent to it. In this case one needs to inspect system
behavior near each obstacle individually, forgetting about others: take f+(x, y) =
2y − x and consider Definition 20. The main case is when s2 tends to a some
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obstacle X as t → t0 and s1 avoids all obstacles. Definition 20 requires the
existence of a control maneuver s′

2 that preserves the trace of s2, but not for
long after t0 (t2 − t0 ≥ t0 − t1 is sufficient). By choosing t1 such that t0 − t1 is
sufficiently small (informally, “last minute collision avoidance”) and taking into
account continuity of trajectories of S, proving its existence using L does not
require reasoning about obstacles from O other than X.

6 Outline of the Proof of the Main Result

The idea of the proof is to define a family of auxiliary NCMS {Σs0,R(Σ,λ) |
s0 ∈ Tr} depending on R such that all its members satisfy GFE whenever R is a
f+-timed simulation and show that if they satisfy GFE, then R is a global timed
simulation on (Σ,λ). The converse part of the theorem can be proved directly.

We formulate the main steps (milestones) of the proof as a series of lemmas
given below (Lemmas 7–13). We assume that their statements are self-describing.

Lemma 7. Let f+ be a normal right extensibility measure and R ⊆ Q × Q be a
global timed simulation on (Σ,λ). Then R is a f+-timed simulation on (Σ,λ).

For each s0 ∈ Tr and a relation R ⊆ Q × Q let us denote:

– Tr0s0,R(Σ,λ) is the set of all functions s : T→̃Q such that dom(s) ∈ T and the
following conditions hold:

• s|dom(s0) ∈ Tr,
• λ(s|dom(s0)) � λ(s0),
• s0, s are pointwise in R on dom(s0) ∩ dom(s).

– Trs0,R(Σ,λ) = {s : T→̃Q | dom(s) ∈ T ∧ ∃ŝ ∈ Tr0s0,R(Σ,λ) s � ŝ}.
– Σs0,R(Σ,λ) = (T,Q, Trs0,R(Σ,λ)).

Lemma 8. If s0 ∈ Tr and R ⊆ Q × Q, then Σs0,R(Σ,λ) is a NCMS.

Lemma 9. Let s0 ∈ Tr and R be a local timed simulation on (Σ,λ). Then
Σs0,R(Σ,λ) is a NCMS which satisfies LFE.

Lemma 10. Let f+ be a normal right extensibility measure, s0 ∈ Tr, and R be
a f+-timed simulation on (Σ,λ). Assume that s∗ is a right dead-end path in the
NCMS Σs0,R(Σ,λ). Then s∗ is f+-escapable.

Lemma 11. Let f+ be a normal right extensibility measure, s0 ∈ Tr, and R be
a f+-timed simulation on (Σ,λ). Then Σs0,R(Σ,λ) satisfies GFE.

Proof. R is a f+-timed simulation on (Σ,λ), so R is a local timed simulation
on (Σ,λ). Then Σs0,R(Σ,λ) is a NCMS which satisfies LFE by Lemma 9. By
Lemma 10 each right dead-end path in Σs0,R(Σ,λ) is f+-escapable. By Theo-
rem 2 each right dead-end path in Σs0,R(Σ,λ) is strongly escapable. Then by
Lemma 1 Σs0,R(Σ,λ) satisfies GFE. ��
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Lemma 12. Let R ⊆ Q×Q be a local timed simulation on (Σ,λ). Assume that
for each s0 ∈ Tr, Σs0,R(Σ,λ) is a NCMS which satisfies GFE. Then R is a
global timed simulation on (Σ,λ).

Lemma 13. Let f+ be a normal right extensibility measure and R ⊆ Q × Q be
a f+-timed simulation on (Σ,λ). Then R is a global timed simulation on (Σ,λ).

Proof. By Lemma 11, for each s0 ∈ Tr, Σs0,R(Σ,λ) is a NCMS which satisfies
GFE. Because R is a f+-timed simulation on (Σ,λ), R is a local timed simulation
on (Σ,λ). Then by Lemma 12, R is a global timed simulation on (Σ,λ). ��
Proof. (Proof of Theorem 5). The “If” part follows from Lemma 13 and the “Only
if” part follows from Lemma 7. ��

7 Conclusions and Future Work

We have obtained a necessary and sufficient condition (criterion) of a local char-
acter for checking that a given relation satisfies the definition of a global timed
bisimulation for NCMS.

The obtained results can be useful for applying bisimulation proof method
to various continuous-time models for establishing equivalence and constructing
abstractions of such systems and for further development of uniform treatment of
continuous time dynamical system models and proof principles related to them
using coalgebraic approach. We plan to develop bisimulation proof method on
the basis of the results obtained in this paper and apply it to cyber-physical
system verification problems in the forthcoming papers.
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