
A Novel Visualization Environment to Support
Modelers in Analyzing Data Generated

by Cellular Automata

Philippe J. Giabbanelli(B), Guru Jagadeesh Babu, and Magda Baniukiewicz

Department of Computer Science, Northern Illinois University, Dekalb, IL, USA
giabba@cs.niu.edu, {z1784615,z1791304}@students.niu.edu

Abstract. In the ‘big data’ era the attention is often on deriving mod-
els from vast amounts of routinely collected data, for example to lear
about human behaviors. However, models themselves can produce a large
amount of data which has to be analyzed. In this paper, we focus on
visually exploring data produced by a type of discrete simulation models
known as ‘cellular automaton’ (CA). In particular, we visualize two-
dimensional CA with square cells, which can intuitively be thought of
as a grid of colored cells. This type of CA is usually visualized using
a slider to display the whole grid at each time of the simulation, but
this can make it challenging to see patterns over the whole simulations
because of change blindness. Consequently, our new visualization frame-
work uses a temporal clock glyph to show the successive states of each
cell on the same display. This approach is illustrated for three classi-
cal models using CA: an epidemic (a human health model), sandpiles
(a self-organized dynamical system), and fire spread (a geographical
model). Several improvements to the framework are discussed, in part
based on feedback collected from trained modelers.

1 Introduction

In the ‘big data’ era, a lot of attention is devoted to processing massive datasets
about humans (e.g., Medicare data, hospital discharge data, police calls), by
using machine learning or by calibrating and validating digital human mod-
els. These models also produce massive datasets to analyze. In particular, they
typically produce time series capturing changes from baseline to the end of a
hypothetical intervention. While only the last point is seen as the “final result”,
both modelers and field experts often need to pay close attention to trends in the
series. This can inform modelers of potential bugs in the implementation (e.g.,
identical consecutive pairs may indicate that results are mistakenly registered
twice), while informing experts about the human dynamics (e.g., by observing
cycles).
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Consequently, many interactive visualizations have been developed for time
series generated by simulations (Fig. 1). In this setting, time tends to be either
linear (i.e., an ordered collection of time points) or branching (e.g., a simulation
splits into ‘branches’ when there are several possible outcomes or competing
hypotheses) [1]. While sliders can straightforwardly navigate through time, they
lead to issues such as change blindness (i.e., some differences from one time
point to another may be missed). Pixel visualizations [2] or glyphs [3] allow to
visualize multiple time series on the same space. Several temporal glyphs have
been designed (Fig. 2) and experimentally evaluated for tasks such as detecting
peaks of trends [4]. While such innovative visualizations have adopted for simu-
lations in engineering [5] (e.g., automotive, flows), there is a relative paucity of
visualization environments for data generated by digital human models.

Fig. 1. The EXP V2 environment [6] allows to explore a simulation by hand gestures.
Reproduced with permission from Defense Research and Development Canada, who
holds all intellectual rights.

In this paper, we focus on digital human models implemented as cellular
automata (CA). Intuitively, a cellular automaton is a collection of coloured cells
on a grid that updates over a period of discrete, fixed time steps based on
certain rules defined around neighbouring cells [7]. CA grids and cells can be of
different types and shapes. Square and hexagonal cells are most common. CA
models are generally one-dimensional (1D), two-dimensional (2D), and three-
dimensional (3D), but can have more dimensions as well. There is a vast quantity
of research using CA, as it can be applied to study any situation where individual
units or cells affect others surrounding them [8]. In this paper, we focus on two-
dimensional cellular automata with square cells, while noting that the same
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Fig. 2. Fuchs and colleagues compared different temporal glyphs for a dataset with
continuous values [4].

principles would apply to other shapes of cells. Such CA are typically visualized
by using a slider to move through the grid of states at different time steps (Fig. 3).

Our main contribution is the design and prototype implementation of tem-
poral glyphs for cellular automata. This allows to see multiple time steps rather
than going through each one via a slider. Our hypothesis is that this new visu-
alization environment can contribute to providing better analytical capabilities,
particularly when designed for the specific needs of modelers.

This paper is organized as follows. In Sect. 2, we introduce our visualization
environment and explain how the data is rendered. In Sect. 3, the environment
is illustrated for three well-known simulations (i.e., epidemics, sandpile, burning
forest). Our hypothesis regarding the usefulness of this framework for modelers
is discussed in Sect. 4 based on the feedback obtained from trained modelers.
Finally, concluding remarks are provided in Sect. 5 together with a brief overview
of future work.

2 Designing the Visualization Environment

Since CA have categorical values, line or star glyphs (Fig. 2; top) are not suitable.
Either the stripe or clock glyphs could be used. They encode data values through
colours (Fig. 2; bottom), and differ only in their encoding of time as either posi-
tion (stripe glyph) or angle (clock glyph). Recent experiments found that the
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Fig. 3. Cells within the body were modeled via a two-dimensional cellular automaton
to study the spread of HIV [9]. Each figure corresponds to CA at a specific time step.
To visually explore disease progression, the modeler would use a slider and go through
the weeks, displaying the CA of each week one after the other.

‘clock metaphor’ helps with chronological orientation, thus proving better than
linear layouts to detect temporal locations, and triangular shapes performed
better than rectangular ones to encode colours [4]. This suggests that temporal
glyphs with a ‘clock’ ordering and triangular shapes have potential to support
visualizing CA. Since users of CA are particularly familiar with square cells, we
used square cells as clock glyphs (Fig. 3).

To understand the design challenges in using clock glyphs, we can think of
the well-known pie chart. Having too many slices in a pie chart turns it from a
meaningful visualization into an abstract pattern. The number of slices is thus
best kept small, for example by collecting small slices within an ‘other’ category.
A clock glyphs with too many data points would thus be like a pie chart with
too many categories. This problem is particularly salient in our situation, since
each glyph would have to represent the successive states taken by a cell over
all time steps of the simulation, and there may be more time steps than could
even fit within a circle (i.e., 360 slices). To address this problem, we limited the
clock glyph to have either 4, 8 or 16 equal-sized partitions and each partition
attempts at displaying the most relevant state within the corresponding segment
of the data. This is illustrated in Fig. 4. In Fig. 4(a) we use 8 partitions and there
happen to be exactly 8 time steps in the simulation, so each value is mapped to
one partition. In Fig. 4(b) there are more values than partitions, so each partition
represents the most frequent1 state among multiple data points. Consequently,
the visualization depends on the number of partitions (4, 8, or 16) and on the
aggregation method (e.g., most frequent value). Both are set by the user in the
current prototype.

Research suggests that “multiple views are particularly helpful in analyz-
ing time-oriented data” [1]. Consequently, another design consideration was to
allow working across multiple data representation. Given that the glyphs need a
significant amount of space to display each cell, our goal was to have a comple-
mentary representation that takes limited space and provides a higher level of

1 If the top frequency is found in multiple states, then ties are solved by picking the
first one. For example, if there are 1 ‘dead’, 2 ‘susceptible’, and 2 ‘infected’ then
‘susceptible’ would be picked.
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Fig. 4. Data produced by a disease model (top-right: states and transitions) may be
entirely visualized if the model is ran for a few time steps (a). As the number of time
steps grows, they are aggregated into each of the 8 (b), 4 (c) or 16 possible segments.

abstraction. This was fulfilled by using a flow diagram as secondary view. Flow
diagrams are the most common depiction of cellular automata models; that is,
a modeler using CA would immediately recognize and know how to interpret a
flow diagram. In short, a flow diagram shows each state, and possible transitions
between states. Formally, a flow diagram is a directed graph where each state
corresponds to a node, and an edge exists from node a to node b if a cell can
transition from state a at time t to state b at time t + 1. Our prototype auto-
matically generates the flow diagram from the trace file (i.e. dump of simulation
data).

3 Application to Classical Cellular Automata Models

3.1 Epidemics

In compartmental modeling, the population is divided into several groups or
‘compartments’, and then transitions or ‘rules’ specify the flows. The underlying
mathematics are described in details by Hethcote [10]. Compartmental models of
epidemics are typically named after the transitions between compartments: for
example, in the SIS model an individual starts susceptible, can become infected,
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and eventually becomes susceptible again; similarly, in the SEIR model, an indi-
vidual starts susceptible, can be exposed to a disease, then becomes infectious,
and eventually recovers.

While a compartmental model represents a population, it can be ran on a
cellular automaton where each cell stands for an individual. In this case, the
rules reflect how infections can be passed on between neighbouring cells. This
approach has been widely used. For example, there are cellular automata models
of the classical SIR model [11] or SIS model [12]. In this example, we used the
SIR model where an infected cell has a probability pi = 0.4 of transmitting
the disease to a healthy cell, and an infected cell has a probability pr = 0.5 of
recovering.

Visualizations of simulation traces from this model are shown in Fig. 5, with
different grid size (10 by 10 or 25 by 25) and different number of segments per cell
(4, 8, or 18). The flow diagram is automatically generated by the visualization
environment, and names or colours can be changed by the user. A consequence
of displaying the most frequent state within each segment is that, as the number
of segment decreases, some transitions are not visible. For example, we can see
that cells get infected multiple times with 18 segments (Fig. 5-c), less so with
8 segments (Fig. 5-b), and not at all with 4 segments (Fig. 5-a). Similarly, some
states may not be visible: using 4 segments (Fig. 5-d) instead of 8 (Fig. 5-e) would
tend to under-estimate the spread of the disease as peripheral cells that were
recently infected do not yet display this infection.

3.2 Sandpile

The sandpile model is a vehicle to illustrate the theory of Self-Organized Criti-
cality (SOC), that is, the idea that large interactive systems self-organize into a
critical state and that small perturbations in this state trigger chain reactions.
Informally, one can build a pile of sand by adding one grain at a time, until
reaching a critical point where adding a single more grain causes an avalanche.
This model was introduced by Bak and colleagues in 1987 [13]. We implemented
the Sandpile model as described by Athanassopoulos and colleagues [14]. There
is only one parameter p which applies when two grains are above two empty cells:
the configuration either remains as such (with probability p), or both grains fall
in the cells below (with probability 1 − p). In our example, we used p = 0.5.

Visualizations of simulation traces from this model are shown in Fig. 6, with
different grid size (10 by 10 or 25 by 25) and different number of segments per cell
(4, 8, or 18). All visualizations display that grains gradually fall and a stack of
filled cell increases from the bottom. This would appear to be too simplified with
4 segments, and perhaps excessively detailed with 18 segments. The visualization
with 8 segments could thus offer an interesting trade-off.

3.3 Fire Spread

The mathematical principles of fire spread were summarized by Rothermel in
1972 [15]. Cellular automata have since been abundantly used to model fire
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Fig. 5. Visualization of an epidemic over a 10× 10 CA where each cell has 4 segments
(a), 8 segments (b) or 18 segments (c). The same model is visualized over a 25× 25
CA with 4 (a) or 8 (b) segments. The same flow diagram applies to all simulations and
is automatically generated (f).

Fig. 6. Visualization of an sandpile over a 10× 10 CA where each cell has 4 (a) or 8
(b) segments. The same model is visualized over a 25× 25 CA with 8 (c) segments.
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spread within a spatial context, captured using either square [16,17] or hexagonal
cells [18,19]. In its simplest version, each cell has three possible states: empty,
tree, or burning. Initially, each cell is empty with probability p = 0.3 or a tree
with probability 1 − p = 0.7; the fire is started by picking one cell as burning.
At each time step, a tree burns if at least one neighbour is burning, or has a
probability 0.001 of spontaneously burning. A burning tree turns into an empty
cell after 1 time step, and an empty cell can turn into a tree with probability
0.1. Visualizations of simulation traces from this model are shown in Fig. 7, with
a grid of 25 by 25 and different number of segments per cell (4, 8, or 18). In this
simulation, no large component formed, thus there were random sporadic and
isolated fires. Since the fire lasts only time step and only the most frequent state
is displayed, the fire is never visible. Thus, it is implicit that a cell transitioned
from light green (tree) to dark green (empty) because fire occurred. Having the
most segments (i.e. 18) shows that almost all cells have been occupied by a tree
at some point, which is gradually lost as the number of segments decreases.

Fig. 7. Visualization of an forest fire over a 25× 25 CA where each cell has 4 (a), 8 (b)
or 18 (c) segments.

4 Feedback from Modelers

Two trained modelers were contacted to provide feedback on the prototype.
On the positive side, the overall idea of avoiding a slider was well-liked. One
modeler stated: “I like it a lot because it simplifies visualization of states across
timesteps”. On the negative side, a modeler reported that it became quite hard
to read with a large number of cells or segments per cell. Having 8 segments
was considered the most readable version. Several improvements were suggested,
falling into three categories. First, even if the motivation for this visualization
was to avoid sliding through time, a slider was deemed useful to allow modelers
to narrow the range of time steps that are displayed. In other words, modelers
agreed that a slider to move through a single time step was not as effective as
our visualization, but they recommended being able to move through a range of
time steps. This is in line with the visual information-seeking mantra of starting
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with an overview, and then having details on demand: narrowing the time range
would increase the detail of the cells since their segments would represent a
narrower set of values. Using range sliders to narrow the data of interest was
also done in the 2-d matrix-based interactive visualization by Song et al. [20].

Second, modelers appreciated the flow diagram and offered several way to
better link it with the main visualization. For example, hovering over a state or
transition in the diagram should highlight all the cells that include that state
of transition. Conversely, selecting a cell or group of cells should update the
diagram to show only the transitions relevant to the selected cell(s). The idea
that selections in one view would affect another view is known as ‘brushing’,
and is essential to work across multiple data representations. Other (interactive)
data representations were suggested, such as a stacked bar chart showing the
number of cells in each state, which would also update when selecting specific
cells.

Finally, the visualization currently displays a summary of the successive val-
ues within each cell but leaves it to the user to find relationships between these
values. One modeler suggested going further by displaying trends among the val-
ues as additional features: “the simulation will generate a temporal data streams
(each cell will end up generating a stream of data points), so change analysis
(shape, direction and velocity of changes) can be performed to understand how
the whole system has impacted the individual cells”. Since the colour of the seg-
ment already encodes information (i.e. the most frequent state) and all segments
must have equal width (as they represent the same amount of time steps), the
main possibility to encode additional information is to use the segment’s length.
This is illustrated in Fig. 8.

Fig. 8. Segments could have a different length to represent another feature of the data.
In this simple example, the length encodes the number of different states present within
each segment. All segments are low (since they only have one state) but segments (1)
and (2), which encode 2 and 3 states respectively. This encoding helps finding where
changes happen in the data.

5 Discussion

There is a growing interest in using visualizations at different stages of the mod-
eling process, ranging from the early conceptual stage [21] to experimentation [6]
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and the analysis of results. There has been a particular interest for visualiza-
tions for cellular automata [22], as it is a widely used modeling approach. In
this paper, we focused on the analysis of data generated by a two-dimensional
cellular automaton. We presented a visualization in which the successive time
steps of the simulation are aggregated and displayed all at once. The resulting
visualization allows to see key properties of the models, such as grains of sand
falling in a sandpile, or an epidemic spreading. Nonetheless, the visualizations
had a number of shortcomings, mostly stemming from the aggregation method
and/or the number of segments used within each cell. Two approaches should
be explored in future work.

First, we could introduce a customizable weighting, allowing to under- or
over-weight certain states for display. For example, consider an epidemic in which
individuals start as healthy, get infected, and either recover by being healthy
again or die. This scenario has three states (healthy, infected, dead) but they
may not be equally important. Indeed, if we are concerned with the spread of
the disease, we may want to underweight healthy individuals, give a neutral
weight to infected individuals, and over-weight dead individuals. Similarly, in
a forest fire, we may be less interested in seeing empty spaces than we are in
seeing burning trees. In addition to allowing users to customize the weighting, an
interesting research avenue would be to automatically set the weights based on
the dynamics of the data. The simplest way would be to perform the equivalent
of a histogram normalization, where very frequent states are under-weighted
while rare states are over-weighted. However, finding a weighting scheme that
best helps modelers understand the dynamics would require performing change
analysis on the data as well as structural analysis on the flow diagram.

Second, we could create a large databank of visualizations in which each
dataset is visualized using different aggregation methods and number of seg-
ments. Then, modelers would assign a score to each visualization based on how
informative they find it for a given task. Tasks would be chosen by their rele-
vance to modeling, and by their heterogeneity in terms of the perceptual notions
involved. Example of tasks could include identifying cells whose final state is the
initial one, localizing a spread, finding clusters of cells in the same state, etc.
For example, consider the epidemics described in Sect. 3.1: that same dataset
may be rendered with 2 different aggregation methods and 3 different number of
segments. For each of the 3×2 = 6 visualizations, modelers would assign a score
from 0 (least useful) to 5 (most useful) expressing the usefulness of the visualiza-
tion for localizing disease spread. This would generate a relational database con-
sisting of properties of the dataset (e.g. number of states), aggregation method,
number of segments, and mean score per specific task. To understand how visu-
alization parameters (i.e. aggregation method and number of segments) affect
task performance for a given dataset, we could then mine the relational database
by building classifiers [23–25]. We acknowledge that assembling a dataset where
modelers judge a large number of visualizations is labour intensive. Nonethe-
less, having the target audience evaluate the visualizations for a set of task is a
routinely performed procedure.
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