Hybrid BCI Systems as HCI in Ambient
Assisted Living Scenarios

Niccolo Mora(g), Ilaria De Munari, and Paolo Ciampolini

Information Engineering Department, Universita degli Studi di Parma,
Parco Area delle Scienze 181/A, 43124 Parma, Italy
{niccolo.mora, ilaria. demunari,
paolo. ciampolini}@unipr. it

Abstract. Brain Computer Interface (BCI) technology is an alternative/
augmentative communication channel, based on the interpretation of the user’s
brain activity, who can then interact with the environment without relying on
neuromuscular pathways. Such technologies can act as alternative HCI devices
towards AAL (Ambient Assisted Living) systems, thus opening their services to
people for whom interacting with conventional interfaces could be troublesome,
or even not viable. A complete BCI implementation is presented and discussed,
briefly introducing the customized hardware and focusing more on the signal
processing aspects. The BCI is based on SSVEP signals, featuring self-paced
calibration-less operation, aiming at a “plug&play” approach. The signal pro-
cessing chain is presented, introducing a novel method for improving accuracy
and immunity to false positives. The results achieved, especially in terms of false
positive rate containment (0.16 min™") significantly improve over the literature.
In addition, a possible integration of EMG signals in a hybrid-BCI scheme is
discussed, serving as a binary switch to turn on/off the EEG-based BCI section
(and the flashing stimuli unit). This can have positive impact on both the user’s
comfort as well as on the resilience towards false positives. Preliminary results
for jaw clench recognition show good detectability, proving that such integration
can be implemented.

Keywords: Brain Computer Interface (BCI) - Hybrid Brain Computer Interface
(hBCI) - Steady State Visual Evoked Potential (SSVEP) - ElectroMyoGraphy
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1 Introduction

A Brain Computer Interface (BCI) is an alternative, augmentative communication
channel [1] which aims at providing the user with an interaction path based on the sole
interpretation of her/his brain activity. In this sense, BCI can be viewed as a particular
class of HCI devices, with different interaction requirements with respect to “con-
ventional” HCI approaches. For the ease of discussion, but without loss of generality,
let us focus on a possible use of BCI as a HCI, namely in Ambient Assisted Living
(AAL [2]) system control [3, 4].

In order to be accepted and effective, such BCI-enabled HCI channel needs to be
perceived as natural as possible; in other terms, BCI operation should be continuous
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and self-paced [5, 11], i.e. the device must be able to discern user’s intentional control
periods from nonintentional ones, providing reliable command decoding in the former
case (since the user’s interactions are quite sporadic, a major concern is being able to
minimize false positive classifications). Furthermore, a “Plug&Play” approach is highly
desirable in such application scenario, since complex and time-consuming “ad per-
sonam” calibration procedures, could be perceived as an excessive burden. In addition,
the device’s behavior should be uniform across different users, and fine performance
tuning should be just limited to a few high-level parameters.

Previously, the need of false positive minimization was mentioned as capital for
effective BCI-enabled control. This can be accomplished by exploiting multiple and
different input channels, such as the (possibly minimal) residual motor ability: infor-
mation on muscular activation could be picked up and monitored by means of
ElectrMyoGraphy (EMG). In this case EMG signals could be integrated into a hybrid
BCI (hBCI) framework and be used to switch on and off the SSVEP visual stimulation
unit when not needed. This can improve user’s comfort (less eye fatigue on the long
run), as well as further reduce the BCI false positives (long inactive periods with
SSVEP stimuli are excluded).

In the following the implementation of the BCI algorithms internals are discussed,
focused on enabling effective AAL system control.

2 BCI Operating Paradigm and Infrastructure

Various paradigms are commonly exploited in BCI literature, including:

e Slow Cortical Potentials (SCP), i.e., potential shifts in the EEG waves voluntarily
induced by user, who can learn to control them through biofeedback-like
approaches [6].

e Event Related Desynchronization (ERD) and ER Synchronization (ERS) [7]: this
paradigm exploits the brain response arising when preparing (or just imagining) to
start a movement. In such conditions, neurons tend to de-synchronize from their
idling state, to be allocated to motor processing, this reflecting in a decrease of
spectral energy in the p and B bands (8-12 Hz and around 20 Hz, respectively).
After ERD, a pattern consisting in increase in the energy band after the completion
of the motor task can also be observed (ERS).

e P300 [8, 9]: when a rare target stimulus is presented to the user during a sequence of
repetitive, non-target stimuli, a characteristic pattern can be observed in the EEG
signals, approximately after 300 ms from the target stimulus appearance.

e Steady State Visual Evoked Potential (SSVEP) [10, 13]: it is a periodic brain
response elicited by a visual stimulus, flickering at a constant frequency; a peak in
the brain power spectrum, synchronous with such frequency, can be produced just
by looking at the visual stimulus.

Among the presented paradigms, SSVEP was chosen for core BCI operation.
SSVEP has recently received much attention, especially in communication or control
applications where fast, reliable interaction is needed and multiple simultaneous
choices are presented to the user. SSVEP are regarded as robust features for BCI, given
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their inherently higher SNR (Signal to Noise Ratio) with respect to other paradigms
(e.g., with respect to motor imagery, as discussed in [10]). Moreover, since it exploits
involuntary response, SSVEP do not require, in principle, any specific user skill and
thus involve no user training. In addition, the steady-state, repetitive nature of such
potentials makes it possible to design calibration-free classification methods.

From the hardware point of view, our BCI solution is built on top of a custom,
dedicated EEG module: it features 16 input channels in a small, 100 X 130 mm form
factor, and can be powered by means of 4 AA alkaline batteries. Production costs are
also contained, with respect to current, commercial EEG devices: in medium scale,
device manufacturing amounts to, approximately, 300 €. The module communicates
via a full-speed USB 2.0 link (12 Mbps), and can be controlled and set-up directly by a
host computer.

Finally, the module was validated and compared against a reference, commercial
EEG device (as discussed in [4, 13]), showing good performance and proving its
suitability for EEG studies.

3 BCI Signal Processing

3.1 Classifying SSVEP in a Self-paced Scenario

Many algorithms exist in literature for SSVEP classification; among the most popular
ones are: MEC [14] (Minimum Energy Combination), AMCC [15] (Average Maxi-
mum Contrast Combination) and CCA [16] (Canonical Correlation Analysis). A re-
view of such methods goes beyond the scope of this article; the interested reader could
refer, for example, to [12, 17]. Our implementation choice stems from a CCA-based
approach, and proposes an extension in order to improve the system immunity against
false positives.

CCA is a statistical method, generally used for finding the correlations between two
sets of multi-dimensional variables. It seeks a pair of linear combinations (canonical
variables, characterized by weight vectors wy, wy) for the two sets, such that the
correlation between the two linear combinations xp, = WEX and yp, = w;Y is
maximized:
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Here X, Y are the input and the SSVEP reference matrix, respectively. ¥ is com-
posed by N, (sin, cos) couples representing a steady state sinusoidal response, with N,
representing the number of considered harmonics:
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Given the presence of a SSVEP in the observed EEG window, a classifier could
pick the target frequency f.,,, €{flickering stimuli} which yields the largest correlation
coefficient p;:

fcluss = arg maxp; . (3>

However, in practical scenarios, the assumption of a SSVEP presence within the
observed window does not hold true for any window: in other words, such simple
classifier is not suitable for self-paced operation, where a “no SSVEP” class needs to be
contemplated. A common solution to this problem is to smooth the classifier output,
validating the classifier output only if n previous samples agree with the current one. In
the following we adopt a different methodology, identifying a feature which could be
used to assess the level of confidence in the prediction and that can be exploited to
discern between user control and rest periods.

First, let us consider an offline 4-class SSVEP problem (i.e., each epoch contains a
SSVEP in the {16, 18, 20, 22} Hz set) and introduce the notion of a confidence
indicator for improving baseline CCA accuracy. We define such indicator as the
absolute difference between the largest correlation coefficient and the second largest
one as such indicator, from here on referred to as parameter d.

d= max |of| =  max o], 4)

where pyis the correlation coefficient yielded by CCA as described in Eq. (1), Fstim is
the set of possible stimuli frequencies and finax the frequency associated to the largest p.

Figure 1 allows to assess the usefulness of the introduced confidence indicator by
reporting the distribution of correctly and wrongly classified epochs as a function of
parameter d. Ideal behavior should associate all errors (black bars) to low values of d,
with correct classification (light grey bars) associated to largest values instead. An
optimal threshold, d*, could then be easily determined and a rejection criterion set up to
discard all epochs associated with low d values (d < d*). However, since actual data
show overlaps between the correct and wrong classification distributions, a tradeoff
between prediction accuracy and data yield (i.e. the fraction of non-neutral epochs) is
needed.

Figure 2 better explains such a tradeoff. In order to derive it, a d* is fixed and
classification performed using such value as decision threshold for the aforementioned
rejection mechanism. Epochs not meeting the rejection criterion (d < d*) are discarded,
and accuracy is computed over the remaining ones; such computed accuracy, together
with the corresponding fraction of rejected (neutralized) epochs, identifies a point in a
2D plane, and this procedure is repeated for different values of d*. Figure 2 graphically
summarizes this tradeoff with a scatter plot: in order to appreciate the improvement
introduced by neutralization strategy, the performance achieved with no neutralization
is also reported (grey solid line). Consistent improvement is achieved over the refer-
ence case, even at lower neutralization rates, i.e., without implying too relevant data
loss. It is important to notice that the proposed confidence indicator method was
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evaluated over the whole subject population (four in this offline experiment), instead of
relying on a per-user basis analysis: this is in line with our view of subject-independent
approach.

The quality metric introduced above can also be exploited to effectively adapt the
length of the observed EEG window. In particular, the SSVEP classification algorithm
could start with a very short observation window, in order to maximize the system’s
responsiveness; in case the gathered waveforms do not support a reliable classification
(the aforementioned rejection criterion is not passed), the observed EEG window length
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Fig. 1. Distribution of classifiers’ hits and errors (light grey and black, respectively; each is
normalized to the sample size) as a function of the parameter d. The distributions are also plotted
for different EEG window lengths.
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Fig. 2. Accuracy as a function of neutralization rate, at different values of threshold d*. The
solid grey line represents the original, “raw” accuracy level, without neutralization (i.e., d* = 0).
The graphs are plotted for different EEG window lengths.
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Table 1. Online performance of the self-paced, 4-class experiment (10 subjects)

False Positive Rate [min '] | True Positives [%]
Min 0.037 89.1
Max 0.489 100.0
Median | 0.097 94.6
Mean |0.16 94.4
Std 0.13 4.2

is increased, looking for further evidence. This process continues until either a clas-
sification is attempted or a maximum pre-determined window length is reached. Such
an adaptive mechanism gives more flexibility with respect to a fixed-window approach,
where responsiveness and accuracy are more tightly coupled.

3.2 Real-Time, Self-paced Operation: Results

A self-paced, online BCI, exploiting a 4-class SSVEP paradigm was implemented and
tested. Experimental setup is as follows: 4 visual stimuli (LED, organized in a rect-
angular pattern over a box) are shown simultaneously, with blinking frequencies equal
to {16, 18, 20, 22} Hz; the subject is seated approximately 1 m away from the visual
stimuli. Only 6 passive Ag/AgCl electrodes are used to acquire signals form scalp
locations Pz, P3, P4, POz, Ol, O2. The protocol associates a particular home
automation task (namely on/off switching of a light and opening of a motorized shutter)
to each stimulus, and the user is asked to perform several control actions, at his own
pace and will. Moreover, in order to assess the immunity to false positive events, long
idle periods are introduced on purpose, during which the subject does not make any
intentional choice and is allowed to talk and, partially, move. A total of 10 healthy
volunteers (age 24-61, 4 females) participated in this study, none of them with any
prior BCI-control experience, nor was involved in any calibration/training phase.

The self-paced BCI has an update rate of 5 Hz, i.e. a classification is attempted
every 200 ms. The optimal observed EEG window length is determined according to
the adaptive criterion presented above. In this case, the minimum window length is set
to 2 s, and it is allowed to grow up to 4 s in steps of 500 ms. In addition, in order to
further improve immunity to false positives, a post-smoother is optionally added, which
averages the last 5 classification outputs for each class (the 4 targets plus the neutral
state): if the average for a class exceeds a given threshold, the classification is vali-
dated, otherwise a null output is assumed (i.e. no SSVEP detected).

Table 1 reports the online experiment results (mean and standard deviation), in
terms of true positive, false negative and false positive rates. A very good performance
is achieved, both in terms of true positive and false positive rates. In particular, false
positives are kept to a very small amount (¥ 0.16 min~' on average, i.e. approximately
a false positive every 6°15”’), improving over literature data [18, 19]. It is important to
remark that such results were achieved without any subject-specific parameter tuning:
in other words, all user share the exact same setup, this being in line with our
subject-independent BCI approach.
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Finally, the entire system was put to test in a relatively harsher environment, in the
context of the Handimatica 2014 exhibition. Here, high background luminosity, noise,
electromagnetic interference, are not controlled as lab environments, and may poten-
tially hinder the effectiveness of the solution. Furthermore, the subject was relatively
free to move and speech, in order to interact with people. Overall, 6 live demos were
performed, for the approximate duration of 30 min each. Although non-conclusive
from a statistical point of view, promising results were achieved: the subject was able to
successfully operate the BCI (controlling the on/off switching of a light and the opening
of a mechanical shutter), and the false positive rate was as low as 0.14 min~'. This
encourages the transition of such technology also outside of lab environments.

4 An Auxiliary EMG-Based Input Channel

In the introduction, it was stated that a hybrid approach is sought for, looking to exploit
different input channels other than pure EEG. A solution could be to sense the (possibly
weak) residual motor ability via EMG. In this case, for instance, the EMG channel
could be used as a binary switch for enabling the EEG signal analysis; when not
enables, the visual stimuli unit could be turned off in order to improve user’s comfort
(long exposure to light flashing periods induces eye fatigue). Moreover, turning LED
stimuli off when not needed could mean improving BCI robustness against false
positives, since EEG peaks at the specific target frequencies are less likely to occur.
Nonetheless, it is still important for the EEG-based BCI section to be able to make such
a distinction on its own, since false activations could be triggered by the EMG part.

Two experiments are performed, exploiting different muscular activations: jaw
clench and eye movements (vertical or horizontal). In the former experiment, EMG is
acquired from the masseter muscle via a single, differential channel, whereas in the
latter from the frontalis and orbicularis muscles. Sampling rate, in both cases, is set to
1000 SPS to pick-up relevant signal features.

After collection, the signal undergoes basic pre-processing. For the jaw clench case,
a basic band-pass filtering is performed ([100-350] Hz bandwidth, optimized to extract
the more significant signal features), followed by a squaring. Before extracting the
necessary features, the observed signal window is inspected for potentially interesting
peaks based on a percentile criterion. Based on this, two features are extracted from the
isolated signals: the integral and the mean. Those features are then passed to a linear
kernel SVM, which takes care of the classification between epoch with or without
muscular activation. The ocular-based experiment, follows a similar path, with a basic
low-pass (f.,; = 200 Hz) and notch (50 Hz) filtering, followed by a Savitzky—Golay
smoothing stage (in order to preserve the signal shape). Temporal features are then
extracted, based on mean and standard deviation and fed to a SVM classifier.

The training phase consisted of a series of 100 activations performed by a subject.
Online, real-time performance was then assessed on two subjects, and no further
subject-specific training was performed in both cases. In the first experiment, a
real-time test session consisted of 50 attempts to achieve control by a slight jaw clench,
performed in a self-paced fashion, with at least 6 s between consecutive activations. In
this scenario, a false positive event represents a detected activation while the subject
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was not trying to achieve control, whereas a false negative is a missed activation
attempt. In the second experiment, a subject follows the same protocol, but attempts to
achieve control via marked horizontal/vertical eye movements.

Results are still preliminary but encouraging: in the jaw clench experiment, one
subject (the one which performed the training phase) was able to achieve perfect
control over the whole real-time test session; the other subject did achieve a very good
performance too, with just one false positive (% 0.067 minfl) and two false negatives
(6 %). In the second experiment, false positives are kept within 0.1 min~', whereas
false negatives were, on average less than 10 %. These findings are promising and
encourage in moving towards a hybrid BCI architecture, fusing EMG and EEG
information to achieve a more robust device. It is expected that the fusion of multiple
input sources will further improve the performance in terms of false positives.

5 Conclusions

In this paper, a complete implementation of a SSVEP-based BCI was presented, and a
proof of concept for a possible extension exploiting EMG as auxiliary input signal was
discussed. This aims at a future hybrid BCI implementation, with possible positive
impacts on system performance indicators such a s accuracy or false positives
immunity.

First, the EEG-based BCI section was discussed, based on the SSVEP paradigm.
A methodology for achieving online, self-paced operation was presented in detail, and
the notion of a confidence indicator introduced to improve the BCI performance, both
in terms of accuracy and false positives immunity. It is worth remarking that, given the
specific application target (namely, BCI-enabled AAL system control), false positive
immunity and robustness are primary concerns with respect to, for example, system
responsiveness (data throughput). In fact, user’s interactions are limited to a very small
amount and sparse in time. Also, for this reason, undergoing long or periodical system
calibration phases could be perceived as an excessive burden by the user (this spoiling
acceptance and usability chances). Therefore, a calibration and training-free approach
was pursued. Subject-independent operation was demonstrated, at the same time
achieving remarkably good performance. The results achieved are very good and
improve over literature in terms of false positives rejection (0.16 min~' on average).
Moreover, the entire setup was also replicated outside lab-controlled conditions, with
very promising results, encouraging the adoption of such technology in more realistic
contexts.

Also, a possible hybrid BCI architecture was discussed, exploiting EMG as an
auxiliary input channel. A proof of concept of EMG as a binary switch was presented
with two experiments, aiming at detecting jaw clenches or ocular movements. The use
of EMG as a binary switch, turning off the EEG-based BCI section when not needed,
can have two major implications: the first is an improved user’s comfort (less exposure
to flashing visual stimuli, which could otherwise lead to eye fatigue), the second is a
better false positives rejection (EEG peaks at the specific target frequencies are less
likely to occur with the stimuli unit turned off). Preliminary results show the feasibility
of such an approach, encouraging the development of a hybrid BCI architecture.
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