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Abstract. In this study, we aim to better the user experience of the
visually impaired when navigating in unfamiliar outdoor environments
assisted by mobility technologies. We propose a framework for assessing
their cognitive-emotional experience based on ambulatory monitoring
and multimodal fusion of electroencephalography, electrodermal activ-
ity, and blood volume pulse signals. The proposed model is based on a
random forest classifier which successfully infers in an automatic way the
correct urban environment among eight predefined categories (AUROC
93 %). Geolocating the most predictive multimodal features that relate to
cognitive load and stress, we provide further insights into the relation-
ship of specific biomarkers with the environmental/situational factors
that evoked them.
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1 Introduction

Mobility in urban areas can be a challenging and emotionally stressful task
for visually impaired people (VIP), especially when navigating in unfamiliar
environments. Despite an increasing number of assistive technologies that help
individuals with sight loss to augment their spatial awareness and wayfinding
abilities when in move, very few systems provide a high degree of independence
beyond known environments that would allow VIP to significantly achieve mobil-
ity and integrate in everyday active life [14,17]. Placing the visually impaired in
the center of attention and exploiting recent developments in physiological com-
puting and wearable wireless sensor devices, an extensive study was designed
to better understand how people with sight loss perceive and interact with the
urban space as manifested in their management of cognitive load and stress.

Orientation and mobility (O&M) in humans heavily relies on sight, which
provides instantaneous, effortless access to anticipatory (e.g., stairs, turns, signs)
and proactive (e.g., moving people, poles) information at various distances simul-
taneously [20]. Visually impaired pedestrians learn to obtain critical environmen-
tal information primarily through touch (sensing the ground surface with a white
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cane) and hearing (identifying and localising events and landmarks through
sound). Mobility challenges can be summarized in four main problems: avoiding
objects or obstacles (e.g., pedestrians, tree branches, improperly parked cars);
detecting ground level changes (e.g., stairs, pavement edge or incline); negoti-
ating street crossings (e.g., lack of curbs, traffic lights or sound signalling); and
adapting to light variation (e.g., abrupt changes between different environments)
[13,24]. Although these problems generally diminish with increased experience
of an environment, they still make travelling in unfamiliar settings particularly
challenging, often preventing VIP from going outdoors altogether.

Despite a significant amount of research on understanding the perceptual and
neurocognitive mechanisms by which people with sight loss access and process
wayfinding information [8], there is still little practical knowledge of how the
management of mental load and stress relates to the wayfinding process itself.
This is a critical aspect of designing mobility technologies that has only recently
been considered essential in developing an understanding of how environmental
factors affect the cognitive-emotional states of the VIP [27]. Two studies in
the early 1970s suggested that some form of psychological rather than physical
stress is responsible for increased heart rate in visually impaired versus sighted
pedestrians [21,28]. More recently, examination of electrodermal activity [18] and
electroencephalography [19] signals recorded from VIP during outdoor travel has
shown that they experience psychological stress when walking on busy shopping
streets, passing through large open areas, and crossing junctions.

Electrodermal activity (EDA) and heart rate (HR) are well-known indicators
of physiological arousal and stress activation in affective computing and human-
computer interfaces [5,25]. EDA is more sensitive to emotion related variations
in arousal as opposed to physical stressors, which can be better reflected in
the HR signal. Measurements of blood volume pulse (BVP), originally used to
monitor HR, can also reflect transient processes in arousal and cognitions [22].
Electroencephalography (EEG), on the other hand, can provide neurophysiolog-
ical markers of cognitive-emotional processes induced by stress and indicated by
changes in rhythmic patterns of brain activity [15,16].

Taking advantage of the inherent and complementary properties of the EEG,
EDA and BVP signals, this paper presents a multimodal approach to automatic
inference of environmental conditions affecting VIP when navigating outdoors
using a random forest classifier and features extracted from the three signals.
The goal of the study was to discover biomarkers that can be used to detect shifts
in emotional stress and cognitive load between different urban environments and
situations. Aligning this information with GPS coordinates, we further studied
the relationship of specific biomarkers with the environmental/situational factors
that evoked them.

2 Design and Materials

A route was charted in the city centre of Reykjavik in Iceland (see Fig. 1) with
the assistance of caretakers and O&M instructors to take the VIP through sit-
uations where different levels of stress were likely to occur. Accordingly, the
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Fig. 1. A map of the charted route in the city centre of Reykjavik in Iceland using
the OpenStreetMap (OSM) collaborative project (https://www.openstreetmap.org/).
Letters depict the different urban environments reported in Table 1; black bars indicate
where they start/end; the red-black dot shows the starting point of the walk. (Color
figure online)

route comprised eight distinct urban environments representable of a variety of
mobility challenges, which can be grouped in three higher-level categories (see
Table 1). The route was approximately 1 km long and took on average 13 min
44 s to walk (range = 9–19 min).

Eight VIP with different degrees of sight loss participated in the study (5
female; average age = 39 yrs, range = 22–51 yrs; relevant demographic charac-
teristics are reported in Table 2). To help make them feel comfortable and safe,
they were encouraged to walk as usual using their white canes and were accompa-
nied by their familiar O&M instructor. Participants reported having no general
health issues. They were instructed to avoid smoking normal or e-cigarettes and
consuming caffeine or sugar (e.g., coffee, coke, chocolate) approximately 1 h prior
to the walk. Recruitment was based on volunteering and all VIP were capable
of giving free and informed consent. The study was approved by the National
Bioethics Committee of Iceland. All data was anonymized before analysis.

EEG was recorded using the Emotiv EPOC+, a mobile headset with 16 pas-
sive electrodes registering over the 10–20 system locations AF3, F7, F3, FC5,
T7, P3 (CMS), P7, O1, O2, P8, P4 (DRL), T8, FC6, F4, F8, and FC4 (sampling
rate fs = 128 Hz). Given the practical constraints involved in an outdoor mobil-
ity study, EPOC+ was chosen because it provides a good compromise between
performance (i.e., number of channels and scientific validity of the acquired EEG
signals) and usability (i.e., outdoor portability, preparation time and user com-
fort) with respect to other commercial wireless EEG systems [1,9–11].

Along with the Emotiv headset, participants were asked to wear the
Empatica E4 wristband [12]. E4 measures the EDA signal through 2 ventral
(inner) wrist electrodes (fs = 4 Hz) and the BVP through a dorsal (outer) wrist

https://www.openstreetmap.org/
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Table 1. Descriptions and mobility challenges of the different urban environments
along the charted route.

Environment Objects Ground Surroundings

A Shopping street People, ads, chairs, tables,
poles

ramps

B Small street People, poles, ads ramps Blocked
passageway

C Narrow alley People, chairs, tables,
street ads, trash bins,
flower planters

stairs going down parked cars

D Urban park People, tree branches,
poles, flower planters

blocked
passageway

E Open space People, flower planters stairs going up blocked
passageway

F Crossing main
road with
traffic lights

People

G Crossing small
street without
traffic lights

People uneven
pavement,
detecting
edges

H Construction
alley

People ramps construction

photoplethysmography (PPG) sensor (fs = 64 Hz). The wristband also includes
an infrared thermopile sensor and a 3-axis accelerometer. E4 is currently the only
commercial multi-sensor device developed based on extended scientific research
in the areas of psychophysiology and physiological computing. Additionally, it
has a cable-free, watch-like design, which makes it easier and more aesthetically
pleasant to wear, and thus better fitted to use in outdoor measurements as com-
pared to other wearable devices. Participants were asked to wear the wristband
on the non-dominant hand to minimize motion artifacts related to handling the
white cane [5].

Participants walked the charted route twice for training purposes. Directions
were only provided during the first walk to help the VIP familiarize with the
route. They were instructed to avoid unnecessary head movements and hand ges-
tures as well as talking to their O&M instructor unless there was an emergency.
Video and audio were registered by means of a smartphone camera to facilitate
data annotation (observing behaviours across the different urban environments)
and synchronization (start/end of walk, urban environments and obstacles). In
addition, GPS coordinates were logged via a Garmin GPSMAP-64s unit at a
rate of 1 registration per second. At the end of the second walk, participants
were asked to describe stressful moments along the route.
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Table 2. Demographic characteristics of participants and their every day mobility
patterns.

ID Age Degree (time)
of sight lossa

Travel alone outdoors Travel alone in
unfamiliar
routes

Mobility aid

P1 51 3 (> 3 yrs old) Almost daily Very seldom Cane, dog

P2 36 3 (< 3 yrs old) Almost daily Almost daily Cane

P3 45 4 (at birth) Almost daily Very seldom Cane

P4 28 4 (at birth) Weekly Very seldom Cane

P5 41 4 (at birth) Almost daily Weekly Cane

P6 22 3 (> 3 yrs old) Almost daily Weekly None

P7 44 5 (at birth) Almost daily Very seldom Cane, dog

P8 50 2 (at birth) Almost daily Almost daily Cane
a1: vision is less than 30 % and more than 10 %; 2: vision is less than 10 % and more
than 5 %; 3: vision is less than 5 % and more than being able to count fingers less
than one meter away; 4: not being able to count fingers less than one meter away; 5:
no light perception (WHO ICD-10 version:2016).

3 Data Analysis and Experiments

The goal of the data analysis was to explore features and markers from the
collected brain and body signals which can be used to detect cognitive load
and stress in humans during outdoor physical activity. While the relationship
between unimodal physiological signals and psychological arousal has been stud-
ied extensively, the detection of stress from fusing multimodal biosignal streams
has not been comparatively investigated. Specifically, the analysis focused on
EEG (all 14 channels), EDA, and BVP data.

3.1 Signal Processing and Feature Extraction

The Emotiv EPOC+ system involves a number of internal signal conditioning
steps. Analogue signals are first high-pass filtered with a 0.16 Hz cut-off, pre-
amplified, low-pass filtered with a 83 Hz cut-off, and sampled at 2048 Hz. Digital
signals are then notch-filtered at 50/60 Hz and down-sampled to 128 Hz prior
to transmission. In this study, the EEG data obtained from the headset was
time-domain interpolated using the Fast Fourier Transform (FFT) to account
for missing samples due to connectivity issues. Interpolated signals were then
normalized to decrease inter-individual variance. For each of the 14 channels, the
power spectral intensity (PSI) [23] in each of the δ(0.5–4 Hz), θ(4–7 Hz), α(7–
12 Hz), and β(12–30 Hz) bands was computed using the PyEEG open source
Python module [2]. The PSI of the kth band is defined as

PSIk =
|N(fk+1/fs)|∑

i=|N(fk/fs)|
|Xi|, k = 1, 2, . . . ,K − 1
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where fs is the sampling rate, N is the time series length, |X1,X2, . . . , XN | is
the FFT of the series, and K is the total number of bands. In total, 56 EEG
features were computed.

A measurement of skin conductance (SC) is characterized by two types of
behaviour: short-lasting phasic responses (SCRs; can be thought of as rapidly
changing peaks) and a long-term tonic level (SCL; can be thought of as the
underlying slow-changing level in the absence of phasic activity). Another char-
acteristic is the superposition of subsequent SCRs (i.e., one SCR emerges on
top of the preceding one), typically observed in states of high arousal [5]. Skin
conductance data obtained from the E4 was first low-pass filtered (1st order
Butterworth, fc = 0.6 Hz) to remove steep peaks stemming from artifacts and
subsequently min-max normalized to reduce inter-individual variance [7]. Con-
ditioned SC signals were then decomposed into continuous components of phasic
and tonic EDA using a deconvolution-based method implemented in Ledalab, a
Matlab based toolbox [4]. Six features were extracted: number of SCRs (here-
inafter SCRs), sum of their amplitudes (AS), average phasic EDA (PA), maxi-
mum phasic EDA (PM), time-integrated phasic EDA (ISCR), and mean tonic
EDA (TonicMean).

The BVP signal recorded by the E4 PPG sensor is preprocessed on board
using a proprietary motion artifact removal technique [12]. No further condi-
tioning was implemented and the reported data (i.e., BVP amplitude) was used
directly as a feature of cardiovascular activity.

3.2 Classification Design

In order to identify automatically the affective meaning of an urban space based
on biosignals recorded from VIP walking through it, we postulated the study as
a supervised classification process. A widely-used ensemble learning method for
classification was employed, namely Random Forest (RF) classifier [6], selected
due to its ability to deal with possibly correlated predictor variables as well as
because it provides a straightforward assess of the variable importances. For each
of the distinct environments described in Table 1, each time point of the corre-
sponding biosignal data was annotated based on a binary schema per second,
where “1” signalled the presence of the participant in the given environment at
the given time point and “0” otherwise.

A series of experiments were designed to assess and compare the predictive
power of each modality (EEG, EDA or BVP) as well as of their fusion in a
feature-level basis, in both single-class and multi-class scenarios (see Table 3).
The adjustment of the two most important parameters of RF was performed
by means of grid search parameter estimation with 5 fold cross validation. We
exploited the effect of the number of estimators [150, 300, 600] as well as the effect
of the maximum number of features [.5, 1, 2]∗√

NumberOfFeatures. Overall, the
optimum number of estimators was 300 and the maximum number of features
was set equal to the total number of features for each experiment.

For each experiment we estimated the relative rank (i.e. depth), as emerged
from the “Gini” impurity function, of each feature in order to assess the rela-
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Table 3. Definitions of the classification models assessed for the prediction of each
environment independently (single-class scenario) or all environments at the same time
(multi-class scenario).

Exp. I Single-class classification using as predictors the unimodal features of EEG
power spectral intensity (N = 56)

Exp. II Single-class classification using as predictors the unimodal features
extracted from the EDA (N = 6).

Exp. III Single-class classification using as predictors the unimodal raw EDA and
BVP signals (N = 2).

Exp. IV Single-class classification using feature-level multi-modal fusion of EEG,
EDA, and BVP features (N = 63). The prediction is made on
single-class binary target variables as before.

Exp. V Multi-class classification using feature-level multi-modal fusion of EEG,
EDA, and BVP features (N = 63).

tive importance of that feature to the predictability of the target variable [6]. We
trained one model for each of the single-class cases and one for the multi-class
experiment following a 5 folds cross-validation schema, where the 80 % of the data
points were used for training and the 20 % for testing, with data shuffling in order to
avoid dependencies in consecutive data points. The best model is chosen as the one
that maximised the area under of the receiver operating characteristic (AUROC)
weighted statistic, taking into account the lack of balance between the labels.

3.3 Results

Table 4 summarises the AUROC weighted metric for all the experiments. Both
modalities (Exps. I–III) are predictive of the distinct environments, however, the
fusion of the two modalities gave particularly high results, not only in the one-
versus-all scenario (Exp. IV) but also in the multi-class classification (Exp. V).
Figure 2a depicts the weighted ROC curves of the latter in an one-against-all
binary scenario, assessing the qualitative performance of each class. Interestingly,
we note that the model performs equally well for all classes showing proof of its
stability.

Figure 2b depicts the ten most predictive features of Exp. V. The feature
importances were estimated also for all experiments and the most predictive
ones appear always with the highest ranks. Interestingly, we note that the fea-
tures related to skin conductance are the most predictive, with spectral power
of the β brainwaves further dominating predictions. Although real-time EEG
acquisition may be subject to very noisy signals, this finding is in line with the
neuroscientific literature. A recent study on cognition and cortical activity after
mental stress demonstrated that low amplitude beta waves with multiple and
varying frequencies are often associated with active, busy, or anxious thinking
and active concentration [3]. Another study confirmed that in subjects with high
stress both baseline EEG (low frequency wave) and EEG during a stressful task
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Table 4. Classification AUROC weighted metric for all the environments across the
various experiments. Exp. IV with feature fusion at level base outperforms all other
models almost in all environments closely followed by Exp. II. The reported numbers
refer to the mean AUROC over all folds in percentile and in parenthesis the standard
deviation is reported.

Environment Exp. I Exp. II Exp. III Exp. IV Exp. V

Construction alley (H) 90 (0.9) 96 (1.5) 84 (1.0) 97 (1.1)

Crossing main road (F) 82 (2.0) 93 (0.7) 84 (2.0) 94 (0.7)

Crossing small street (G) 65 (2.9) 83 (1.6) 71 (2.9) 74 (3.0)

Narrow alley (C) 74 (1.2) 87 (0.6) 79 (1.5) 89 (1.1)

Open space (E) 77 (1.4) 88 (1.4) 76 (0.7) 88 (0.7)

Shopping street (A) 83 (1.1) 92 (0.3) 84 (1.1) 95 (0.4)

Small street (B) 80 (0.8) 85 (1.1) 75 (0.6) 89 (1.0)

Urban park (D) 76 (1.0) 89 (0.6) 83 (1.4) 93 (1.3)

All environments 93 (0.5)

(high frequency wave) were beta waves [16]. Theta waves were also observed
during the stressful task and attributed to frustration and disappointment. This
finding is in line with the fourth most important feature in the multi-class clas-
sification, which is a θ wave.

3.4 Visualising Biomarker Density Distributions

To better understand the properties of the most predictive features that emerged
from the classification experiments as well as the intensity of the cognitive-
emotional responses they express, we assigned feature values to pairs of latitude
and longitude coordinates based on recorded timestamps and assessed their geo-
graphical distributions by means of weighted kernel density estimation.

The recorded GPS traces were subject to noise due to our request for high
sampling rate (1 Hz), therefore each trace was corrected by its Euclidean projec-
tion onto a reference route. The high sampling rate allowed us to immediately
observe increased concentrations of GPS points when the VIP had to cross a
main road (environment F, see Table 1), pass along parked cars in a narrow
alley after the urban park (C), walk up and down stairs (E), or pass through
a narrow area between construction works (H). In fact, these are the same sit-
uations reported as stressful by the participants themselves at the end of the
study. Geographic information methods offer great promise in objectively mea-
suring and studying the relationship of biomarkers to human behaviour in terms
of physical and transport-related activity.

Let {x1,x2, . . . ,xn} be an independent random sample drawn from some dis-
tribution with density function f(x) defined on R

d. The (multivariate) weighted
kernel density estimate of f is defined in [26] as:
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(a) (b)

Fig. 2. (a) One against all ROC curves for each one of the classes in Exp. V. The overall
AUROC weighted metric for the multi-class classification of environments is 93(0.5)
and, importantly, the trained model seems able to learn equally well all the different
environments. (b) Feature importances in Exp. V. Mean tonic EDA (TonicMean),
number of SCRs (SCRs) and the sum of their amplitudes (AS) emerged as indicative
features also in Exps. II–IV.

f̂H(x) =
1
n

n∑

i=1

w(xi,w) KH(x − xi)

where K is a kernel function, H > 0 is a symmetric d × d matrix which controls
the bandwidth (or smoothing) of the estimate, KH(x) = |H|−1/2K(H−1/2 x),
and w is a function weighting each data point in the sample with a value from
w ∈ R

m, m ≤ d. A popular choice for K is the Gaussian (or normal) kernel,
which was also applied here.

The three most predictive features were mean tonic EDA (TonicMean), num-
ber of SCRs (SCRs) and the sum of their amplitudes (AS). For each of them,
using the values as weights (w with m = 1) for GPS coordinates (x with d = 2)
and a bandwidth of H(x) = 0.0008, helped estimate the feature-weighted density
of GPS points on a 500×500 grid, and based on this generate a contour plot for
each participant. Figure 3 shows the resulting contours aggregated for all partic-
ipants and plotted on top of an OSM map (the darker the colour, the higher the
density of the distribution). Locations of increased stress-elicited arousal along
the different urban settings of the route are clearly illustrated.

4 Conclusions

This study presents a framework for assessing the emotional experience of peo-
ple with sight loss, while navigating in unfamiliar outdoor environments based
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(a) TonicMean (b) SCRs

(c) AS (d) Obstacle Map

Fig. 3. Contour plot of the kernel density distribution along the charted route in the
city centre of Reykjavik in Iceland. GPS coordinates were weighted according to the
three most predictive features: mean tonic EDA (TonicMean), number of SCRs (SCRs)
and the sum of their amplitudes (AS). The darker the colour is, the higher the density of
the distribution is. The lower right figure describes the types of obstacles and situations
that evoked increased stress.

on ambulatory monitoring and fusion of multimodal biosignal data. Different
urban scenarios were compared, aiming to address the robustness of the model
as well as emerging differences in the perception and interaction of the VIP with
their surroundings. The high prediction rate (93 % AUROC weighted) is highly
encouraging of this approach and, interestingly, the most predictive features of
stress and cognitive load indicate as stressful “hotspots” (Fig. 3) scenes that
coincide perfectly with the self-reported stressful situations experienced by the
participants.

Among the limitations of the study is of course the recording precision of the
mobile EEG headset as well as the limited number of participants which does
not allow for an in depth analysis of specific stressors in each category of sight
loss. Moreover, even if the city of Reykjavik does not present the complexity of
big metropolitan areas, the charted route was designed in order to combine some
of the busiest streets and most challenging settings reported by the VIP.
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Future steps of this research study includes a refinement of the predictive
model, extending the categories according to Table 1, as well as expanding to
indoor navigation scenarios. Such findings hopefully pave the way to mobile
technologies that take the concept of navigation one step further, accounting
not only for the shortest path in an urban route but also for the less stressful
and safer one.
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