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Abstract. With interactive displays, such as touchscreens, becoming an inte-
grated part of the modern vehicle environment, predictive displays have
emerged as a solution to minimize the effort as well as cognitive, visual and
physical workload associated with using in-vehicle displays. It utilises gesture
tracking in 3D as the basis of an input modality enabling interface component
acquisition (pointing and selections). Nevertheless, the predictive display tech-
nology has the potential to facilitate and assist human computer interaction for
motion impaired users, for example, those with cerebral palsy, tremors and
spasms, in various scenarios. It also has a wider application in inclusive design
addressing general ranges of impairments, such as those arising from ageing.
This paper explores the potential of this promising technology and proposes that
a predictive display, which was developed to aid drivers in a situationally
induced impairment due to using non-driving interfaces in a moving car, can be
applicable to the health induced impairment arising from perturbations due to
physical movement disorders. It is concluded that 3D predictive gesture tracking
can simplify and expedite target acquisition during perturbed pointing move-
ments due to a health/physical-capability impairment.

Keywords: Interactive displays � Bayesian inference � Target assistance �
Motor impairment � Endpoint prediction � Inclusive design

1 Introduction and Background

Interactive displays, such as touchscreens, are becoming increasingly prevalent in the
modern vehicle environment, progressively replacing traditional in-vehicle mechanical
controls such as switches, knobs and buttons [1, 2]. This is due to their ability to
present large quantities of information related to in-vehicle infotainment systems,
facilitate intuitive interactions via free hand pointing gestures (particularly for novice
users) and offer additional design flexibilities (for example, the display can be adapted
to the context of use via a reconfigurable Graphical User Interface GUI) [1–4].
However, undertaking a free hand pointing gesture to acquire (pointing and select) a
target on the display, e.g. a GUI icon, requires dedicating a considerable amount of
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attention (visual, cognitive and physical) that would be otherwise available for driving
[4], with potential safety implications [5]. Due to road and driving conditions, the user
pointing gesture can be subject to high levels of perturbations leading to erroneous
on-screen selections [6]; attempts to rectify an incorrect selection or adapting to the
noisy environment can lead to even more distractions, i.e. Situationally Induced
Impairment and Disability (SIID). Therefore, intent-aware displays [7], which can
infer, notably early in the free hand pointing gesture, the intended on-screen item can
simplify and expedite the selection task (even under perturbations). They can signifi-
cantly improve the usability of in-car touchscreens by reducing distractions and
workload associated with interacting with them.

Additionally, with the proliferation of the increasingly ubiquitous touchscreen
technology in everyday use, target acquisition (pointing and selection) on a graphical
user interface has become part of modern life and a frequent Human-Computer
Interaction (HCI) task. Pointing reliability and accuracy is of a key importance for the
design of effective GUI. This has triggered an immense interest in approaches that
model pointing movements and assist the pointing task by reducing the cursor pointing
time and improving its accuracy [8–22]. This can be achieved via pointing facilitation
techniques, such as increasing the size of the target icon, altering its activation area,
dragging the cursor closer to the target, etc. However, such strategies can be effectively
applied only if the intended GUI item is known a priori [11–17]. Such studies focus on
pointing via a mouse or mechanical-device in a 2D set-up to select a GUI icon(s) and
often focus on able-bodied computer users in a stationary input situation. However, the
pointing-selection task can be particularly challenging or even overwhelming at times
for users with a motion-visual impairment [17–22], i.e. due to Health Induced
Impairment and Disability (HIID). For example, in [18] a method that is based on an
advanced state-space particle filter technique is used to smooth the 2D pointing mouse
cursor trajectory such that it compensates for HIID-related-perturbation leaving the
cursor to move only in the intended direction.

On the other hand, inclusive design is a user-centered approach that examines
designed product features with particular attention to the functional demands they make
on the perceptual, thinking and physical capabilities of diverse users, including those
with impairments and ageing. Inclusion refers to the quantitative relationship between
the demand made by design features and the capability ranges of users who may be
excluded from the use of the product because of those features [25]. Therefore, for-
mulating solutions that facilitate HCI for people with a wide range of HIID, including
those that arise from age and not only severe forms of physical disability, is crucial.
Most importantly, an inclusive design approach extends beyond the scope of con-
ventional usability methods as it must accommodate extremes of capability range or
situational contexts of task or stress, that are not normally accommodated by product
design. A predictive display presents itself in this context as a means to extend the
usability of the interactive displays to a diverse population of users, for example motion
impaired or able-bodied users, elderly or young users, expert or non-expert users as
well as situationally impaired users.

The transferability of HCI solutions for HIID to SIID scenarios (and vice versa),
was proposed in [22, 23]. It assumes that any human user can be impaired (disabled) in
their effectiveness by characteristics of their environment, the task and the design of the
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GUI. Such impairment may take the form of perceptual, cognitive and physical
movement functional limitations, which translate into inability [18, 25]. For instance,
attempting to enter text on an in-car touchscreen (e.g. for navigation) whilst driving in
an off-road environment presents difficulties in perceiving the interface for multiple
tasks (seeing on-screen icons, outside driving environment and vehicle controls),
performing the attentional tasks necessary for safe driving (track/correct vehicle
movement, maintaining car controls as well as monitor/correct semantic an texting
task), and carrying out the required physical movements (pointing, pressing, steering,
braking, etc.).

Figures 1 and 2 depict 2D and 3D pointing trajectories for several on-screen
selection tasks, respectively. In the former, several mouse cursor trajectories pertaining
to two users (one suffers from severe motor impairment) carrying out a number of
target acquisitions on a computer screen using a mechanical mouse. Figure 2 displays
the 3D pointing gesture track recorded by a gesture-tracker (namely Leap Motion
Controller) whilst a user interacts with a touchscreen in a car under different
road/driving conditions. This clearly demonstrates the similarities between perturba-
tions in the pointing movement due to situational (especially when a car is driven on a
harsh terrain) and health induced impairments. Thus, solutions devised for predictive
in-vehicle displays can be applied to tackle HIID perturbations in the pointing
movement.

The developed predictive display for automotive applications utilises a gesture
tracker, which captures, in real-time, the pointing hand/finger location(s), in conjunc-
tion with probabilistic inference algorithms to determine the intended destination on the
interactive surface (e.g. touchscreen). The prediction results for each of the GUI
selectable icons are subsequently used to decide on the intended endpoint and
accordingly alter the GUI to assist the selection process. Several such pointing gesture
trackers, which can accurately track, in real-time, a pointing gesture in 3D, have

                    (a) Able-bodied user.            (b) Severely motor-impaired user (cerebral palsy).  

Fig. 1. 2D mouse cursor tracks to acquire on-screen GUI icons (classical Fitt’s law task, ISO
9241) for an able-bodied user and a user suffering from cerebral palsy [18].

Predictive Pointing from Automotive to Inclusive Design 529



emerged lately, e.g. Microsoft Kinect, leap motion controller, and Nimble UX. They
are motivated by a desire to extend HCI beyond traditional keyboard input and mouse
pointing. The Bayesian destination predictor applied here relies on defining a Hidden
Markov Model (HMM) of the pointing motion in 3D, effectively capturing the influ-
ence of the intended endpoint on the finger/hand movement [7]. This is distinct from
previous HCI research on endpoint prediction in 2D scenarios, e.g. [11–15], which
often follow from Fitt’s law type analysis and uses a static setting/model. The
Bayesian HMM approach permits capturing the variability among users as well as the
noise of the movement tracking sensor via Stochastic Differential Equations (SDE) that
represent the destination-motivated pointing motion in 3D.

The remainder of this paper is organised as follows. In the next section, we describe
the adopted Bayesian intent inference framework used in the predictive displays and
outline the flexibility of this formulation. Pilot results from the automotive domain are
shown in Sect. 3. Finally, the applicability of predictive displays in inclusive design is
discussed in Sect. 4 and conclusions are drawn.

2 Bayesian Intent Inference with Hidden Markov Models

Bayesian inference with HMM allows the flexible modelling of the pointing motion with
either HIID or SIID via a stochastic differential equation. The variability in the pointing
movement, e.g. due to the user behavior and/or impairment, can be introduced through
the noise element of the state (position, velocity, acceleration, etc.) evolution equation.

Fig. 2. Full pointing finger-tip trajectory during several pointing gestures aimed at selecting a
GUI item (circles) on the touchscreen interface surface (blue plane), under various road
conditions [7]. Arrows indicate the direction of travel over time, starting at t1\tk . (Color figure
online)
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Additionally, the noise generated from the employed sensor, e.g. a particular gesture
tracker, can be incorporated via the measurement noise in the observation equation.
Most importantly, the statistical filter utilised to infer the state or intent/final destination
of the tracked object (e.g. mouse cursor in 2D or pointing finger for free hand pointing
gestures) can be applied to the same class of motion models (e.g. Kalman filtering for
linear models) despite changing the adopted pointing movement process/model. The
effectiveness of the state-space-modelling for removing unintentional impairment-
related pointing movement were demonstrated in [17, 18, 26]. Nevertheless, the main
objective of employing HMM in predictive displays is to determine the icon the user
intends to select on the display as early as possible; removing unintentional
HIID/SIID-related pointing movement, although desirable, is not essential.

2.1 Destination Motion Models

Since the pointing motion is intrinsically driven by the endpoint (i.e., the intended
on-screen icon), destination-reverting models such as the linear Mean Reverting Dif-
fusion (MRD) and Equilibrium Reverting Velocity (ERV) models can be suitable for
predictive displays under health or situationally induced impairments. Following the
integration of their respective SDEs and assuming that the intended destination is Di,
linear destination reverting models can be expressed by

si;k ¼ Fi;ksi;k�1 þ ji;k þwk; i ¼ 1; 2; . . .;N ð1Þ

where si;k�1 and si;k are the hidden model state vectors at two consecutive time instants
tk�1 and tk. For example, the state si;k can include the true pointing-finger location in
3D and other higher order motion dynamics such as velocity as in the ERV case.
Matrix Fi;k is the state transition and ji;k is a time varying constant (both are with
respect to the ith destination Di), and the motion model dynamic noise is wk . Therefore,
for N possible endpoints on the display (i.e. selectable GUI icons), N such models can
be constructed. The (also linear) observation model is given by

mk ¼ Hksi;k þ nk ð2Þ

where nk represents the noise introduced by the sensor. For more details on the des-
tination reverting models and their characteristics, the reader is referred to [7, 27].

To demonstrate the ability of the destination reverting models to capture a wide
range of possible pointing behaviors in 3D, Fig. 3 depicts several possible velocity
profiles of the pointing finger (during target acquisition tasks via free hand pointing
gestures) as per the ERV motion model. Each of these plots is obtained by setting a
different value for the damping parameter of the ERV model along the x, y and z axes
via Fk in (1). The figure clearly illustrates that by using ERV, a range of possible
pointing velocity profiles can be modelled, for example, reflecting the motor-ability
and/or reach of a user interacting with a touchscreen positioned at a considerable
distance from the seating positions such as with an in-vehicle interactive display for
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controlling the infotainment system. It is noted that the bottom plot in Fig. 3 resembles
the expected velocity profile of the point gestures of an in-car touchscreen user without
any impeding HIID or SIID.

2.2 Intent Inference

Predictive displays aim to establish, in real-time, the likelihood of each of the selectable
icons of the displayed GUI being the intended destination of the undertaken pointing
task (e.g. of a pointing gesture). For example, at time instant tk where the available
pointing object (finger/cursor) observations (positions) are m1:k ¼ m1;m2; . . .;mkf g,
the system calculates

P tkð Þ ¼ P Di ¼ DI jm1:kð Þ; i ¼ 1; 2; . . .;Nf g: ð3Þ

The intended destination, which is unknown a priori, is notated by DI such that
DI 2 D ¼ D1;D2; . . .;DNf g. It is noted that the location of the items in D are known,
however, no assumptions are made on their distribution-layout. After evaluating P tkð Þ
in (1), a simple intuitive approach to establish the intended destination at tk is to select
the most probable endpoint via

Î tkð Þ ¼ arg max
Di2D

P Di ¼ DI jm1:kð Þ ð4Þ

Fig. 3. Velocity profile of the pointing-finger during a free hand pointing gesture as per the ERV
motion model, various damping terms are applied [7].
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Decision criterion other than (4) can be applied. For the linear destination reverting
models, Kalman filters can be used (one per nominal destination) to calculate
P Di ¼ DI jm1:kð Þ in (3) as per [7, 27]. Adopting nonlinear motion or observation
models can lead to advanced statistical inference methods such as sequential Monte
Carlo or other related methods [28] being required for online filtering.

2.3 Smoothing Noisy Trajectories

The results of the N statistical filters applied to determine (3) can be utilised to remove
the unintentional perturbations-impairment-related movements as shown in [7]. How-
ever, in certain scenarios (e.g. infrequent severe perturbations) where it is desirable to
maintain a simple linear motion model for the intent inference functionality, a
pre-processing step/stage can be added such that the raw pointing data is filtered,
e.g. using a particle filter [18, 26]. The filtered track is subsequently used by the
destination inference module.

3 Pilot Results

Figure 4 depicts selected pilot results of using a predictive display in an automotive
context. The benefits are assessed in terms of the technology ability to reduce the
effort/workload associated with interacting with an in-vehicle display. In this scenario,
a gesture tracker is employed to produce, in real-time, the locations of the pointing
hand/finger in 3D, which are then utilised by the intent predictor. Here, the predictive
display auto-selects the intended on-screen icon once a particular level of inference
certainty is achieved (the user need not touch the touchscreen surface to make a
selection). This figure shows the measured subjective workload using NASA TLX
forms when the prediction and auto-selection capability is on and off. In the latter case,
the experiment becomes a conventional task of interacting with a touchscreen where
completing a selection operation entails physically touching the intended on-screen
icon. Figure 4 illustrates that the predictive display system can reduce the workload of
interacting with an in-vehicle display by nearly 50 %, therefore, significantly simpli-
fying and facilitating the on-screen target acquisition task via free hand pointing
gestures.

Figures 5 and 6 demonstrate the ability of a sequential Monte Carlo method, namely
the variable rate particle filter, to remove highly non-linear perturbation-related pointing
movements when interacting with a touchscreen via free hand pointing gestures or
selecting icons of a GUI displayed on a computer screen using a mechanical mouse,
respectively. The raw cursor movement data in Fig. 6 is for a user that suffers from
cerebral palsy. The figure exhibits the confidence ellipses obtained from the sequential
Monte Carlo filter, which has visibly removed the health-induced-impairment-related
jumping behavior of the mouse cursor position and can assist identifying the user’s
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intended destination (despite the ambiguity of the raw pointing data). On the other hand,
unintentional situational-induced-impairment-related pointing finger movements are
successfully removed in Fig. 6.

Fig. 4. Workload scores (NASA TLX) for interacting with touchscreen in a vehicle with and
without the predictive functionality (with auto-selection) for 18 participants. (Color figure online)

Fig. 5. 3D pointing gesture trajectory before (black) and after (red) applying a variable rate
particle filter [26]. (Color figure online)
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4 Conclusions and Future Work

Consideration of the effectiveness of measures intended for situational impairment,
such as when using a touchscreen in a moving vehicle over a badly maintained road (a
perturbed environment) have shown that probabilistic predictors can bring significant
gains in SIID. This strongly suggests that similar gains can be achieved in a health
induced impairment scenario. That is to say that spasm, weakness, tremor and athetosis
may be mitigated or eliminated by the predictive approach based on automotive
algorithms/applications we describe. In particular, motion impaired users, who may
have difficulty pointing and selecting on touchscreens will benefit not only from pre-
diction and automated selection (i.e. auto-selection as in Fig. 4), but also from the
reduction of workload reported by the automotive trial participants, reliably measured
using NASA TLX scores.

Additionally, from an inclusive design perspective [29] the predictive display
technology may greatly benefit those with age related or mild physical or perceptual
impairments by enhancing performance in pointing-selection and reducing the asso-
ciated workload. Mild functional impairments such as physical, visual, hearing reach
and stretch and cognitive may be accommodated. The adopted predictive techniques
are also applicable to special purpose designs for more extreme impairment and dis-
ability. Experimental studies will initially require the same tasks, modified for floor
effects from physically impaired participants. However, these will be superseded by
trials of the same algorithms and detection technologies with interfaces in mobile
displays, walking scenarios, wheelchair use and on public transportation. Finally, it is
noted that predictive displays are particularly flexible in terms of incorporating addi-
tional sensory data or input modalities when available, e.g. eye-gaze or voice-based
commands, via the Bayesian framework described in Sect. 2.

(a) Raw noisy 2D cursor trace data. (b) Filtered traces.

Fig. 6. Filtering noisy mouse cursor trajectories due to HIID using a particle filter and showing
the confidence ellipses [18]; units on the axes are pixels.
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