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Abstract. In this paper, we describe the development of an autonomous
tracking system to be used in the home of the elderly population living
with neurodegenerative disorders including dementia. The technology
advancement has potential to produce low-cost solutions for elder-care
in a residential setting. Our approach is based on the concept that body
tracking interventional systems can be developed by utilizing low-cost
technological solutions affordable to the aged population and can be
deployed in the residential settings. We are exploring the usefulness of
such systems in providing information that can assist with assessment of
performance of activities of daily living in the periods between hospital
clinic visits. Management of neurodegenerative disorders such as demen-
tia and multiple sclerosis involve periodic review of patients at a specialist
clinic. At these reviews the clinician solicits information about activities
of daily living over the preceding period. This period can be a long inter-
val of 6 to 12 months. When self-reports of activity are compared with
independent objective measures, discrepancies are found in many areas
of healthcare. This can cause difficulties in management of treatment.
The autonomous sensor tracking systems developed here could improve
care by giving clinicians objective assessments of relapses in the intervals
between clinic visits. This could reduce the time spent on in- clinic exam-
ination as clinicians can use objective measures instead of semistructured
interviews aimed at eliciting an accurate history. This will allow more
time to spend on well-being and treatment options.

Keywords: Human body tracking · Human-computer-interaction ·
Kinect based interventional tracking · Activities of daily living · Medical
history taking

c© Springer International Publishing Switzerland 2016
P.-L.P. Rau (Ed.): CCD 2016, LNCS 9741, pp. 649–658, 2016.
DOI: 10.1007/978-3-319-40093-8 64



650 T. Gulrez et al.

1 Introduction

Clinicians often rely on self-reporting of patients for the interval between the
last hospital-visit to the present hospital-visit, for the assessment of performance
of the patient to track the neurological disease progression. The self-reporting
assessment system has been criticized by many clinicians and is prone to discrep-
ancies in many areas of healthcare system. In neurological disorders such as Mul-
tiple Sclerosis (MS) and fronto-temporal dementia (FTD) personality changes
occur e.g. dramatic increase in social submissiveness and introversion. There are
no studies which can quantify the physical activity changes at home for such
FTD or MS population. It is of paramount importance to clinicians to objec-
tively quantify the behavioural features (over an extended period of activity in
a home situation) for the accurate diagnosis of the disease. Moreover, the move-
ment assessment of patients living with neurodegenerative disorders such as MS
is an important factor for clinicians to monitor disease progression and respond
for timely intervention. A low-cost, unobtrusive sensorized system capable of
autonomously detecting patients behavioral state at home could help signifi-
cantly improve accuracy of assessments and hence improve quality of care for
these patients. In order to achieve this goal we need to develop a system which
can relate the in-home physical activity to activity within the clinical test.

Wearable devices unarguably can detect the patient’s living state at home,
these include pedometers, specialized accelerometers, etc. [7]. However, the
biggest disadvantage of wearable devices is compliance with the need to wear or
carry them. There are also issues with collecting continuous sets of data as well
as battery life. Environmentally mounted sensors that make passive observations
of patients while at home overcome many of these deficits. Several studies have
discussed the non-wearable preference of older adults [4]. Numerous researchers
have looked at the use of environmentally mounted sensors, such as vibration
sensors mounted on the floor [16], infrared passive sensors [15], acoustic sen-
sors [10], and video streaming (an intrusion into privacy), including traditional
cameras [9] and thermal imaging sensors [12]. Studies have found that privacy
concerns of older adults to vision-based monitoring systems may be addressed
by the use of appropriate privacy preserving processing techniques, such as sil-
houettes [3].

Early reports suggest the Kinect can identify pose [1,6,11], simple step-
ping movements [5] and postural control [2] in healthy adults, although some
have raised concerns about the accuracy of the skeleton model estimation dur-
ing unconventional body postures or when using wheelchairs or walkers [8,13].
There is also growing evidence for the use of exercise-based computer games
(exergames) to retrain motor function in people with Parkinson’s disease
(PD) [14], although evidence of their safety and efficacy are yet to be estab-
lished [11]. Exergaming as a therapeutic tool that incorporates functional,
purposeful and engaging exercise in a quantifiable and reliable way that also
encourages high volumes of practice and potentially improved motivation and
adherence [12]. A player’s movement can be recorded whilst playing a game using
the Kinect, allowing clinicians to ensure the patient perform exercises correctly.
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In this research paper, we demonstrate proof of concept of obtaining early
stage experimental results of physical activity obtained in a domestic setting.
We demonstrate an unobtrusive continuous gait monitoring system based on
the Microsoft Kinect sensor that could measure the gait of older adults, in their
homes, during normal daily activity. However, the output of the system, mea-
sures of in-home gait speed, stride time, stride length, etc., is not easily inter-
pretable, as such parameters have never before been available. Thus, either a
large scale study to directly relate these in-home gait parameters to health sta-
tus is needed, or a methodology to relate the parameters to existing well studied
and understood domains needs to be developed. For this work, the Kinect-based
in-home gait system was deployed in a residential setting. While the systems were
installed, the participants also completed preliminary walking assessment con-
sisting of standard mobility test, such as a short maximum speed walk (SMSW).
The SMSW test has been widely studied and shown to be a good measure of
functional ability as well as an indicator of falls risk in the elderly [7,15]. As
such, mapping of the residential gait data to this well understood domain would
facilitate interpretation of the data by a clinician.

This paper presents a methodology for and results from estimating walk time
from in-home gait data, specifically walking speed, collected by the Kinect-based
systems. The purpose is not to measure SMSW time directly, but to map the
in-home gait data to a domain that clinicians understand; and to assess the
accuracy of the mapping with regards to what could theoretically be expected.
Although this paper focuses on mapping in-home gait speed to SMSW time,
the approach could be used with any data source, and any well studied domain.
Section 2 of this paper discusses the materials and methodology used in the
area of in-home gait and functional ability assessment. Section 3 contains the
results of estimating SMSW time from in-home gait speed and compares it to
estimates made using SMSW measured by a clinician at the same time. Finally,
a discussion of the results and their implications is given in Sect. 4.

2 Materials and Methods

2.1 Ethics Statement

No video recordings during any task were made in this study. The Kinect sensor’s
numerical data was recorded that directly related to walking movements. The
numerical data was de-identified, representing joint positions, were stored in the
database for further analysis. Volunteers were researchers at the University of
Salford, Manchester and Salford Royal NHS Foundation Trust.

2.2 Second Generation Microsoft Kinect V2 Based Sensing

The Microsoft Kinect is a camera-based sensor primarily used to directly control
computer games through body movement. The Kinect tracks the position of the
limbs and body without the need for handheld controllers or force platforms.
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Use of a depth sensor also allows the Kinect to capture three-dimensional move-
ment patterns. We propose that this system has the potential for remote assess-
ment of movement symptoms in people with neurological disorders, exemplified
by MS and FTD symptoms.

2.3 Data Collection

The data acquired during subject monitoring included 3-D body joint informa-
tion provided by Microsoft Kinect V2 at a rate of 30 frames per second. The
data acquisition was supported by an in-house developed application written in
MS Visual studio 2015 C++ using the Kinect SDK v2.0. Microsoft Kinect sensor
with the use of its software development kit (SDK) provides three-dimensional
skeletal data on 26 joint positions over time. We chose to record the positions
of four skeletal joints namely, spine-base, hip, knee and ankle center of gravity
or leg movements, which are potential walking velocity indicators. With 7 joints
(spine-base, left and right joints for hip, knee and ankle) and 3 floating point
values (real numbers) representing the x, y, and z positions for each joint, each
motion frame was expressed as a 21-element position vector. The 3D position
(x, y, z) of a joint is expressed in the position coordinate system of the Kinect
sensor and the units are in meters (as shown in Fig. 1). The walking speed rely
on motion dynamics so our system is view-independent, i.e., there is no need to
express the recorded positions in the coordinate system of the subject’s body.
The dynamic of each joint is computed using the variation of position of the
joint over time. In the first step, each joint motion, defined by the sequence of
3D positions, is replaced by the distance between each frame particular joint
that varies from 0 . . . k, where k is the number of frames in a performed motion.

Fig. 1. Planar view of Microsoft Kinect - (a) The 3D planar view associated with
Microsoft Kinect. (b) Skeletal tracking and joints in x,y - plane.
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The instantaneous velocity of motion for a particular joint is calculated as the
resultant of x, y, and z positions over all frames that represent a motion. The
instantaneous velocity Vinst for a given 3D motion is computed as follows:

Vinst =
d(x, y, z)

dt
(1)

Vinst =
1
T

√
(x(k) − x(k − 1))2 + (y(k) − y(k − 1))2 + (z(k) − z(k − 1))2 (2)

where T is the sampling interval and equals the reciprocal of the sampling fre-
quency (1/30 = 0.0333) s and k is the number of joint data points. The subject’s
kinematic properties can be extracted using the value of the joint positions, and
if required joint angles, angular velocities and accelerations can be calculated
based on the time history of the joint positions. Moreover, to remove possi-
ble artefacts in the joint position data, a 2D moving average filter was used to
smooth the data (as shown in Fig. 2).

Fig. 2. Plot of correlation spine-base position data during walk; used to identify when
steps occur. A moving average smoothed filter output is also shown in black. (Color
figure online)

2.4 Kinect Based Short Maximum Speed Walk (SMSW)
Assessment

The short maximum speed walk (SMSW) assessment at Salford Royal NHS
Foundation Trust (hospital), is usually carried out in a narrow corridor. The
Kinect sensor was mounted on 2.5 m height tripod at the end of the same corridor
of the hospital, thereby covering a rectangular area of roughly 3.5 × 2.5 m (see
Fig. 3(a)). Each subject was tested in an evenly lit environment in a single session
of sequential tests as shown in the Fig. 3(a) and (b). All subjects were given the
same instruction as specified in a standardized test procedure: “Walk as fast as
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you can towards the sensor”. The starting point for walking was approximately
three meters outside the detection range of the sensor. We postulated that this
would allow the subject to reach maximum walking speed before reaching the
measurement zone. The start was given as a voice command. An automatic
computer-generated sound signalled the subject to end the experiment after
leaving the opposite edge of the sensor measurement zone. Similarly, the same
software was used to calculate the time taken from the initial point of start to
the end point 25-foot mark. The time taken to complete a timed 25-feet walk
(T25-FW) gives a quantitative mobility and leg function measure, based on a
25 feet walking distance.

Fig. 3. Schematic system setup (in xy-plane). (a) The Kinect sensor was positioned
2.5 m above ground. Subjects walked with maximum speed towards the Kinect camera.
(b) Sample screenshot of a healthy subject during the test with skeleton projection
(green lines). The spine-base joint was used as the data source for analysis. (Color
figure online)

2.5 Residential Autonomous Sensing System

A Microsoft Kinect sensor and computer were deployed in a residential apart-
ment as part of a volunteer study at researchers’ house. The Kinect was installed
on a 2.5 m height tripod, which can easily be placed on any shelf a few inches
below the ceiling (height 2.5 m), above the front door. This arrangement has
proven to be unobtrusive to the residents, with most indicating that they do not
notice the equipment after a short period of time. The output of the Kinect based
residential autonomous systems was a dataset in which each entry corresponds to
a joint position of the skeletal movement that occurred in the apartment (Fig. 4).
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Fig. 4. Kinect sensor installed in a residential setting. (a) The background is subtracted
while depth silhouettes and skeletons are determined by the Kinect SDK. (b) Infra-red
and depth sensing from the similar image.

3 Results

The participants performed a set of walking movements which involved spine
base, hips, knee and ankle joints. Figures 2 and 5 represent the time series of
spine base, hip and ankle positions (which compound the walking movement)
and the root mean squared errors (RMSE) are shown in Fig. 6. Joint movements
are reported in Figs. 2 and 5 represents the evolution of the walking movement
where as the continuous curve is the filtered output of the each joint position.
The results in Figs. 2 and 5 show the walking movement from one of the exper-
iments using the Kinect based system during the assessment at the hospital. A
correlation coefficient r and RMSE was calculated between the joint (spine-base,

Table 1. Mean RMSE (meters), Correlation (r) between the joint positions during
assessment at hospital and in-home monitoring system.

Experiment Joints RMSE(m) r

Subject 1 Spine-base Assessed/In-home 0.010 0.95

Hip Assessed/In-home 0.011 0.93

Ankle Assessed/In-home 0.010 0.91

Subject 2 Spine-base Assessed/In-home 0.011 0.94

Hip Assessed/In-home 0.015 0.94

Ankle Assessed/In-home 0.012 0.90

Subject 3 Spine-base Assessed/In-home 0.013 0.95

Hip Assessed/In-home 0.015 0.94

Ankle Assessed/In-home 0.10 0.93
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Fig. 5. Joint positions and moving average filtered output. (a) Left and right hip joint
position and filtered output. (b) Left and right ankle joint position and filtered output.
(Color figure online)

Fig. 6. Root mean squared error and correlation between the walking speeds, obtained
during clinical assessment at hospital and at residential setting. (Color figure online)
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hip and ankle) positions obtained during the clinical assessment and the in-house
monitoring as tabulated in Table 1. On average, the RMSE was less than 0.012 for
all joint positions and the correlation coefficient varied between 0.90 ≤ r ≥ 0.95.
Correlations between time series of walking assessment at Table 1. Mean RMSE
(meters), Correlation (r) between the joint positions during assessment at hospi-
tal and in-home monitoring system as tabulated in Table 1. The results obtained
correspond to what we expected. Walking readings at assessment and in-home
monitoring are determined by joint positions activity, which do not necessarily
occur simultaneously.

4 Conclusions

In this an early stage of proof of concept study, we investigated the applicability
and feasibility of Microsoft Kinect v2 assisted motion analysis during the hos-
pital walking gait assessments and in-home monitoring. Our primary question
was whether skeletal tracking data recorded by the Kinect based system would
yield reliable information for clinicians to assess the walking gait from in-home
monitoring system. Using the spine-base, hip and ankle joints, we established
the test SMSW to analyse person’s gait at maximum walking speed. The linear
distance covered by the recognition area was only 3.5 m (see Fig. 1 and Table 1),
and consequently only a few steps of each subject were analysed. Despite this
short walking and recording time, the overall detection quality of the target
hip-centre joint of the SMSW over time was excellent.

The noise from the Microsoft Kinect based system was filtered out by apply-
ing a custom-built moving average filter developed during the analysis of this
experiment. After filtering the SMSW average walking speed parameter was
excellent and on par with T25FW. An analysis of skeletal data from spine-base,
hip and ankle joints was performed for the walking assessment in healthy sub-
jects. Our findings show that Kinect-based motion analysis is also feasible in
Multiple Sclerosis (MS) patients and can detect gait differences in comparison
to healthy controls.
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