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Abstract. Real-time monitoring of the flight crew’s health status with ambient
and body sensors have become an important concern to improve the safety and
the efficiency of flight operations. In this paper we report our preliminary findings
on a functional near-infrared spectroscopy (fNIR) based online algorithm devel-
oped for real-time monitoring of mental workload of an airline pilot. We devel-
oped a linear discriminant analysis (LDA) based classifier that aims to predict
low, moderate and high mental workload states based on a set of features
computed over a moving window of oxy- and deoxy-hemoglobin measures
obtained from 16 locations distributed over the prefrontal cortex. In this paper we
explore the predictive power of a model trained for a single pilot over a sample
of eight pilots and discuss the technical challenges involved with real-time meas-
urement of brain activity in a flight simulator environment that involves other
infra-red sources.
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1 Introduction

Flight-crew’s cognitive and physical well-being is a critical factor on flight safety.
International Civil Aviation Organization’s (ICAO) statistics indicate that cognitive
factors account for 26 % of the incidents and accidents in civilian flight operations [1].
Although modern avionics systems assist the flight crew in important ways to reduce
their cognitive and physical load, piloting is still a cognitively demanding task where
pilots’ are expected to maintain a high level of situational awareness, actively monitor
the flight instruments, engage in the planning of flight legs, communicate with the air
traffic controller (ATC) and the co-pilot, perceive and remember instructions provided
by the ATC, stay vigilant to anticipate and avoid possible issues etc. Such aspects of
piloting typically put a significant burden on the attentional and working memory
resources of the pilots, especially in the case of critical flight episodes such as take off
and landing, as well as unexpected events such as emergencies and instrument failures.
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Despite the critical importance of pilots’ cognitive and physical well-being for the
success of flight operations, there are currently no operational pilot health monitoring
systems in today’s airliner cockpits. Due to the technological advances in biomedical
sensors, real-time monitoring of flight crew’s health status with ambient and body
sensors have become increasingly feasible. In the context of a European Union 7™
Framework Programme for Research project, the Advanced Cockpit for the Reduction
of Stress and Workload (ACROSS) consortium has been exploring the use of multiple
sensors such as eye/body trackers, facial recognition software, heart rate sensors, and
optical brain imaging sensors in real time for this purpose in an effort to improve the
safety and the efficiency of flight operations.

Monitoring the level of mental workload is a critical component of such real-time
flight-crew health monitoring applications. In the aviation domain, related studies have
explored the use of various sensors such as electroencephalography (EEG), electrocar-
diogram (ECG), electromyogram (EMG), electrooculogram (EOG) and galvanic skin
conductance (GSR) to relate measures such as brain activity, heart rate variability, eye
blink frequency, pupil dilation, eye fixation, muscle contractions and electro-dermal
activity with pilot’s mental workload [2]. These studies reported that an increase in
pilot’s mental workload tends to be associated with an increase in heart-rate variability,
an increase in the rate of respiration, a decrease in the rate and duration of eye blinks,
and an increase in gaze fixation durations. However, the fact that such measures can be
influenced by physical factors that are unrelated to mental workload makes it difficult
to use a single physiological sensor for this purpose. For instance, changes in cockpit
lighting or the illumination from flight displays may elicit similar changes at the ocular
level, whereas heart variability and the rate of respiration may increase due to muscle
fatigue rather than an increase in mental workload [3].

These challenges motivated the use of sensors such as EEG that can monitor brain
activity directly in the cockpit. EEG monitors the changes in electric potentials due to
neural activity via electrodes distributed over the scalp. EEG studies investigating the
changes in the level of alertness and mental workload of pilots during simulated flight
missions primarily focused on fluctuations in the power of EEG signals in the theta (4—
8 Hz), alpha (8—12 Hz) and beta (12—18 Hz) bands [2]. For instance, decrease in vigilance
and deterioration in performance are associated with increased EEG power spectra in
the theta band together with a change in EEG alpha power, whereas slips in attention
and drowsiness modulate alpha waves [4]. The main limitation of the EEG approach is
the difficulties involved with sensor placement and ensuring good conductivity to ensure
data quality, which makes it challenging to employ the EEG method in the cockpit.

Functional near-infrared spectroscopy (fNIR) provides an alternative approach for
the real-time monitoring of brain activity in the cockpit. The optical nature of the fNIR
method allows the design of portable, wearable and durable sensors that offer practical
advantages particularly for neuroergonomic applications [5]. In a very recent application
of fNIR on real-time mental workload assessment, Gateau et al. succeeded in distin-
guishing high versus low workload situations in a controlled flight simulator environ-
ment by using a support-vector machine algorithm [6]. Moreover, in the context of a
task that progressively elicits more mental effort, Herff et al. demonstrated that single
trial discrimination of workload can be accomplished with an accuracy up to 78 % with
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the help of a linear discriminant classifier [7]. These findings suggest that fNIR can be
a viable option for real time monitoring of flight-crew’s mental workload.

In this study we aim to build on this line of work by investigating the use of fNIR
for real-time monitoring of pilot’s mental workload during simulated flight scenarios.
The study was conducted as part of the ACROSS project, which aims to bring together
multiple remote and wearable sensors into a commercial grade flight simulator for
synchronous monitoring of multiple measures related to the level of vigilance, drowsi-
ness, emotional/physical well-being, mental workload and situational awareness of the
flight crew in real-time. We developed a linear discriminant analysis (LDA) classifier
to distinguish low, moderate and high levels of mental workload during realistic flight
simulation scenarios. The flight scenarios were designed to elicit different levels of
workload by incorporating regular flight operations such as take off, climb, en-route,
approach, descend and landing episodes as well as unanticipated complications such as
engine/instrument failure or executing a go-around. Our study differs from existing
applications of fNIR in the aviation context in terms of the realism of the flight scenarios
used, the number of workload levels considered, and the presence of other IR sources
in the environment. We aimed to explore the potential of fNIR for real-time mental
workload assessment in a realistic flight simulation environment.

The rest of the paper is organized as follows. The next section provides an overview
of the optical brain imaging method employed in this study as well as a description of
the data collection and processing stages. This is followed by a description of the LDA
model, the training data and an evaluation of the model’s predictions on other pilots’
performance in the same environment. The paper concludes with a discussion of the
findings and implications for future work.

2 Methodology

2.1 Functional Near-Infrared Spectroscopy

Functional near-infrared spectroscopy (fNIR) is a neuroimaging modality that enables
continuous, noninvasive, and portable monitoring of changes in blood oxygenation and
blood volume related to human brain function [8]. Neuronal activity is determined with
respect to the changes in oxygenation since variation in cerebral hemodynamics are
related to functional brain activity through a mechanism which is known as neurovas-
cular coupling [9]. Over the last decade, studies in the laboratory have established that
fNIR spectroscopy provides a veridical measure of oxygenation and blood flow in the
brain [8, 9]. fNIR is not only non-invasive, safe, affordable and portable, it also provides
a balance between temporal and spatial resolution which makes fNIR a viable option
for in-the field neuroimaging.

Several neuro-imaging modalities such as fMRI, PET and fNIR are based on methods
for monitoring the hemodynamic changes in the brain due to neuronal activity. Neurons
require energy to get activated, which is supplied by the metabolization of glucose via
astrocytes [10]. The metabolization process requires oxygen which is supplied by the
hemoglobin molecules present in the capillary beds within the vascular system. When
a group of neurons fire, they initially consume the oxygen present in their vicinity, which
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will produce an initial increase in the concentration of deoxy-hemoglobin (HbR) and a
dip in the concentration of oxy-hemoglobin (HbO). In the order of 4-6 s, the vascular
system responds to this local energy need by supplying more oxygenated blood towards
that location, which increases the concentration of HbO and washes away the HbR. As
the neural population returns back to its baseline activity level, the concentrations of
HbR and HbO also come back to their baseline levels. The change in relative concen-
trations of HbR and HbO due to neuronal activity is called the hemodynamic response.

fNIR technology uses specific wavelengths of light, introduced at the scalp, to enable
the non-invasive measurement of changes in the relative ratios of HbR and HbO in the
capillary beds during brain activity. Typically, an optical apparatus for fNIR Spectro-
scopy consists of at least one near infra-red light source and a detector that receives light
after it has interacted with the tissue. Near-infra red light is known to diffuse through
the intact scalp and skull, which makes it suitable for tracing relative changes in the
concentration of specific chromophores in the neural tissue with non-invasive, spectro-
scopic methods [11]. Whereas most biological tissue (including water) are relatively
transparent to light in the near infrared range between 700 to 900 nm, hemoglobin is a
strong absorber of light waves in this range of the spectrum. Figure 1 below shows the
absorption characteristics of elements present in biological tissue. Within 700 to 900 nm,
HbO and HbR are among the highest absorbers of infra-red light. Moreover, within this
range, the absorption characteristics of these molecules criss-cross each other, which
makes it possible to separate the two chromophores from each other. This provides an
optical window into neural tissue where one can approximate relative changes in the
concentration of HbO and HbR based on how infra-red light is attenuated in neural tissue.
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Fig. 1. The banana shaped path followed by the photons in the tissue (left). The optical window
in which HbO and HbR have the strongest absorption characteristics in the IR range (right). (Color
figure online)

Photons that enter tissue undergo two different types of interaction: absorption and
scattering [9, 12]. Two chromophores, HbO and HbR, are strongly linked to tissue
oxygenation and metabolism. The absorption spectra of HbO and HbR remain signifi-
cantly different from each other allowing spectroscopic separation of these compounds
to be possible by using only a few sample wavelengths. Once photons are introduced
into the human head, they are either scattered by extra- and intracellular boundaries of
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different layers of the head (skin, skull, cerebrospinal fluid, brain, etc.) or absorbed
mainly by HbO and HbR. If a photodetector is placed on the skin surface at a certain
distance from the light source, it can collect the photons that are scattered and thus have
travelled along a “banana shaped path” (Fig. 1) from the source to the detector, which
carry important information about the optical properties of the diffused neural tissue.
By using the Modified Beer Lambert Law, this information is converted into estimations
of changes in relative concentrations of HbO and HbR [8].

2.2 Experiment Setup

Participants. Our sample include 8 pilots who have commercial/military flight hours
in the range 3500-17000 h (M = 10712, SD = 5057). Pilots had normal or corrected to
normal vision, and normal hearing. Participants did not report any history of psychiatric
disorders. This study was approved by the Middle East Technical University Human
Subjects Research Ethics Committee.

Materials, Apparatus and Software. The experiments were run at the premises of
Thales Aviation (Cergy, France). In the context of the ACROSS project, several sensors
including fNIR, SmartEye eye trackers, a Microsoft Kinect body tracker, a seat sensor
and a heart rate sensor were installed on a Thales Airbus A320 simulator (Fig. 2). In this
paper we focus only on the fNIR data collected in this setting. In order to shield the fNIR
sensor from other infra-red sources such as the eye trackers and the Kinect body tracker,
we used multiple layers of aluminium foil sawn inside a cloth cover that was installed
over the fNIR sensor pad.

Fig. 2. A participant piloting the Thales Airbus 320 Simulator
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While the pilots flew the scenarios the neural activity in their prefrontal cortex was
monitored by a functional near-infrared spectroscopy (fNIR) system developed at
Drexel University (Philadelphia, PA), manufactured and supplied by fNIR Devices LLC
(Potomac, MD; www.fnirdevices.com). The real-time mental workload monitoring
application consists of four modules; a flexible head-piece (sensor pad), a control box
for hardware management, a computer that runs the COBI Studio software [12] for data
acquisition, the DAQ Station module of fNIRSoft [13] for real-time low level processing
of fNIR data, and a software application for real-time classification of mental workload
level of the participant (Fig. 3).
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Fig. 3. The flexible sensor pad and its installation on the forehead (left), the fNIR data acquisition
box (center), anatomical locations for the 16 optodes.

The fNIR sensor holds 4 light sources and 10 detectors, which obtains oxygenation
measures at 16 optodes on the prefrontal cortex. The sensors have a source-detector
separation of 2.5 cm, which allows for approximately 1.25 cm penetration depth to reach
the cortical surface. This system can monitor changes in relative concentrations of HbO
and HbR at a temporal resolution of 2 Hz. The locations of the regions on the cortical
surface monitored by these two different sensors are displayed in Fig. 3, which corre-
spond to Broadmann areas 9,10,44 and 45. Existing neuroimaging studies suggest that
the prefrontal cortex has a special role in the processing of higher order cognitive func-
tions such as working memory management, sequential processing of sensory and
memory input, as well as response inhibition and decision making [8]. fNIR can monitor
regions including left/right dorsolateral prefrontal cortex (dIPFC), left/right dorsomedial
prefrontal cortex (dmPFC) and frontopolar cortex which are known to be associated
with the abovementioned higher order cognitive processes.

In the scope of ACROSS project, the fNIR sensor is used to monitor the mental
workload induced on pilot flying (PF) during the aviate-navigate-communicate tasks.
The linkage between the mental workload monitoring and the fNIRS technology is based
on the fact that the workload has direct relationship with the hemodynamic response and
it can be measured by fNIRS technology.
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Flight Scenarios. Pilots performed 4 flight scenarios during the experiment. The first
scenario involved a free play task that took about an hour including sensor installation
and demonstration of the flight simulator. After a rest period, the second scenario was
run, which started in cruise mode and ended with normal workload landing. After the
second scenario there was a lunch break. The third scenario also included cruise mode
flight followed by a landing which was diverted to a different airport by the ATC, with
the aim to increase the mental workload level. The final scenario simulated a high work-
load landing by having the ATC to initiate a sudden go-around due to late aircraft incur-
sion on runway. During the climb an instrument failure (e.g. flap or engine failure) was
initiated in order to further increase the mental workload level.

Data Processing. The fNIR sensor collects raw optical measures from 16 locations at
3 wavelengths (i.e. 730 nm, 805 nm, 850 nm) at 2 Hz. Raw optical signals are sampled
in 60 s long blocks. A script executed by the DAQ station converts raw signals into HbO
and HbR measures by using the Modified Beer Lambert Law by considering the first
10 s as a baseline. The script also computes the mean, standard deviation, slope,
minimum, maximum and range values for HbO and HbR signals. The script streams the
processed oxygenation measures to the mental workload classification application for
every 5 s. The package sent by the script contains the oxygenation measures obtained
for the last 60 s, together with a feature vector including mean, standard deviation, slope
and range measures for HbO and HbR signals respectively. The features are fed into
two discriminant functions to compute the distance between the feature vector and the
centroids for mental workload categories. The application returns the closest centroid
as the mental workload level estimate (Fig. 4).

5 second Sliding Analysis Window Length
. <—— 60second ———>
Shift
l | | Raw NIR Data|
0 ' { : t
55sec.overlap
10 sec portion used for baseline

Fig. 4. The temporal progression of the employed sliding window method. Features used for
mental workload estimation were sampled from a 60 s long window, which is updated every 5 s.

3 Mental Workload Estimation Model

3.1 Linear Discriminant Model

Discriminant analysis is a popularly used multivariate statistics method for the classi-
fication of neuroimaging signals [7]. The method is based on the eigenvalue decompo-
sition of a high dimensional input space. Dimension reduction is accomplished by
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focusing on the discriminant functions that are a linear combination of several features,
given a categorization as training input. The discriminant analysis method aims to find
the most discriminating directions in the high dimensional vector space to achieve a
comparable discriminating power among the existing data points.

Our LDA model uses 92 dimensional feature vectors to discriminate 3 different
mental workload levels. The model is based on a single subject’s fNIR data recorded
during the simulated flight scenarios described above. The model parameters are esti-
mated by using IBM SPSS v22. Due to high level of noise observed at optodes 8,10 and
16, the discriminant model was constructed on the remaining 13 optodes.

Prior to training, we prepared a training dataset by performing a qualitative analysis
of the video files to judge the level of mental workload experienced by the subject during
each of the three scenarios. Pilots’ self-assessments of their mental workload which is
collected after the experiment and the differences between the scenarios in terms of the
presence of unexpected events such as failures are used as additional cues while
manually marking the episodes for low, moderate and high mental workload. Once a
mental workload assignment is made for each scenario, the annotated data is used for
training a LDA model.

The discriminant analysis method computed 2 functions that significantly discrim-
inate the three mental workload categories, where the first and second functions account
for 73 % and 27 % of the total variability in the data. Wilk’s lambda statistic suggest that
these two functions significantly discriminate the three workload -categories,
74(208) = 1047.32, p < .001. The group centroids in the 2D space defined by discriminant
functions 1 and 2 are plotted in Fig. 5. When the origin is taken as a reference, this plot
suggests that function 1 distinguishes between lower (i.e. 0) versus higher (i.e. 1 and 2)

Canonical Discriminant Functions

Workload

L0 Low

sod 1 MEDIUM
02 HIGH

M Group Centroid

259

Function 2
o
o
1

-2.54

-5.07

T
50 25 00 25 50
Function 1

Fig. 5. The distribution of data points in the 2D space defined by the two LDA functions (Color
figure online)
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workload cases, whereas function 2 distinguishes high workload cases (i.e. 2) from lower
workload cases (i.e. 0 and 1). Altogether, the functions predicts the mental workload
categories with an accuracy of 91 %. Standardized LDA coefficients suggested that
features obtained from optodes 1, 3, 5 on the left PFC and 13, 15 on the right PFC are
the strongest contributors. Especially optodes 1, 3 and 13, 15 correspond to bilateral
dorsolateral PFC region, which were also implicated in Gateu et al.’s [6] findings as
strong contributors to mental workload estimation.

3.2 Model Evaluation

In order to evaluate the performance of the model, we sampled 69 episodes from the
flight videos of 8 pilots that include routine flight episodes where we expect low mental
workload as well as moments where events such as a flap or engine failure occurred that
are expected to elicit higher levels of mental workload (Fig. 6). Table 1 summarizes the
cross tabulation of predicted versus expected mental workload levels for the test cases.
Of the 69 cases we analyzed, in 68.1 % of the cases there was a perfect match between
the predicted and expected mental workload levels. The highest number of mismatches
occurred when the model predicted a high MW case, whereas the expectation was low
MW. As indicated under specific instances above, such cases happened due to fluctua-
tions in the raw oxygenation measures due to excessive head motion or ambient noise
in some of the optodes that contribute to the model and workload predictions.

Event : FO announces Flaps failure - Time: 15:50:53

Workload : HIGH

Assessment : MW goes low for a while nearly 50 second. However it increases to high with
increasing difficulty of control.

Fig. 6. One of 69 episodes sampled from the entire dataset. The sample episode shows the change
in mental workload estimation from low to high following an engine failure alert.
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Table 1. The distribution of predicted and expected mental workload levels

Expected Total
0 1 2
Predicted |0 | Count |13 2 5 20
% 188% [|29% 7.2 % 29 %
1 |[Count |0 5 0 5
% 0% 72 % 0% 72 %
2 |Count |11 4 29 44
% 159% |5.8% 42 % 63.8 %
Total Count |24 11 34 69
% 3480 % | 1590 % |49.30 % | 100 %

4 Discussion and Future Work

In this study we developed and evaluated a preliminary LDA based classifier that aim
to predict low, moderate and high mental workload states of pilots in real-time based on
a set of features computed over a moving window of HbO and HbR measures obtained
from 16 locations distributed on the prefrontal cortex. The initial classifier was trained
over a single pilot who ran through all three flight-scenarios with an accuracy of 92 %.
This model was then used to predict the mental workload levels of the remaining 7 pilots
in real-time while they were running the scenarios. A qualitative analysis of 69 events
sampled from these simulated flights showed that the model trained over a single pilot
could predict the expected workload level in 68 % of the cases. We also found that false
positive predictions may arise due to excessive head motions of the pilot and the inter-
ference from other IR sources in the cockpit. In such cases the classifier tend to over-
estimate the workload level. The IR sources especially affected the raw signals obtained
from the bottom row of optodes, which explains the lower standardized discriminant
coefficients observed for these optodes. The strongest contributors to the discriminant
functions were optodes 1,3 of left dIPFC and optodes 13,15 of right dIPFC, consistent
with Gateu et al. [6].

In general, establishing a robust relationship between physiological measures and
psychological states of subjects is a challenging undertaking in cognitive neuroscience
research. Although each individual is unique in terms of their cognitive and behavioral
attributes, years of neuroscience research has identified some common brain activity
patterns that are valid across individuals during specific cognitive tasks. Such common-
alities correspond to rough generalizations of cognitive function attributed to a number
of anatomical areas. However, they may be useful for practical applications such as
monitoring mental workload in real time. Findings in cognitive neuroscience and
psychology have pointed out that attention is a scarce resource despite the immense
computational power of the approximately 20 billion neurons inside the brain that can
process information in parallel. When attention needs to be divided between multiple
tasks or when the subject is confronted by a sudden, challenging problem, existing
studies point out that there is an increased oxygen demand in prefrontal areas that are
believed to be responsible for orchestrating the coordination between multiple neural
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resources distributed in the brain. Such novel forms of challenging stimulus that require
conscious deliberation tend to activate a network of cortical areas known as the multiple
demand system [14], which also includes areas in the bi-lateral prefrontal cortex that we
relied on while developing a real-time mental workload assessment application.
Although we still don’t exactly know how the brain functions, such generalized findings
in cognitive neuroscience based on imaging and lesion studies provide the necessary
theoretical background that suggest the feasibility of an approach based on real-time
monitoring of blood oxygenation in the cortex.

Although our mental workload estimation algorithm aims to capitalize on neural
activation patterns that are assumed to be valid and consistent across participants,
research on brain-computer interfaces (BCI) suggest that models that are customized
for an individual provide more precise predictions about their intended behavior based
on their brain activity. This is especially important in the BCI context, because subjects
need to learn how to act with such novel interfaces, and there are important individual
differences in how people acquire new skills. In our case, the information obtained from
the brain is passively assessed without providing any feedback to the monitored partic-
ipant. Moreover, we worked with expert pilots, so we did not focus on learning aspects
or novice vs. expert contrasts. These factors allowed us to focus more on commonalities
than individual differences while designing our mental workload estimations algorithm.

There are a number of issues to be addressed to improve the reliability of the mental
workload estimate obtained via fNIR sensors. First of all, proper sensor placement and
appropriate shielding of sensors from other IR sources is important for collecting useful
information from the brain. Secondly, the model should be trained over a larger sample
of subjects to construct a more robust, generalizable prediction model for workload
assessment. Moreover, the algorithm design can be improved in several ways. A range
of additional features such as skew, kurtosis, time to maximum for each sliding window
could be used to better parametrize the distribution of the HbO and HbR signals. The
effect of choosing different window size options on prediction accuracy should also be
carefully studied. Filters that can be used to minimize the influence of head movements
and saturated channels would also positively contribute to the prediction accuracy of
the model. Finally, there are additional machine learning approaches such as deep
learning networks, support vector machines and hidden markov models that can be
exploited for better predictions. Some of these methods can even be fused with other
sensors in the cockpit, such as the eye trackers, for improved accuracy.

Our discriminant function analysis showed that the strongest contributors to our
workload assessment algorithm were optodes located in the left and right dorsolateral
prefrontal cortex. Since these areas cover relatively a smaller part of the forehead, esti-
mating mental workload with a smaller fNIR sensor seems to be feasible. The current
device already supports a “split sensor”’, which can monitor 4 optodes located over left
and right dorsolateral prefrontal cortex as well as left and right dorsomedial prefrontal
cortex. Using a smaller sensor may improve crew acceptability as it is much more light-
weight and easier to install. Moreover, the smaller size of the sensor also makes it rela-
tively easier to shield from outside IR sources like eye-trackers or Kinect cameras. In
the near future we expect to see further refinements in sensor design, which may allow
us to use small patch like thin sensors wireless connected to the control box.
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