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Abstract. The Generalized Intelligent Framework for Tutoring (GIFT) project
is partially an effort to standardize the systems and processes of intelligent
tutoring systems. In addition to these efforts, there is emerging research in
agent-driven systems. Agent-based systems obey software and messaging
communication protocols and accomplish objectives to the original system, but
have different architectural structure. This paper describes the upcoming
research changes for GIFT, from a module-driven system to an agent-driven
system, the reasons for wanting to do so, the advantages of the change, some
initial technical approaches which encapsulate current functionality, and the
types of research that this change will enable in the future.
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1 Introduction

The Generalized Intelligent Framework for Tutoring (GIFT) is a science and tech-
nology project whose goal is to reduce the technical cost time and skills required to
author intelligent tutoring systems (ITS) and to increase the effectiveness of automated
instruction in new domains [1]. This is accomplished through the implementation of
four primary principles: domain independence, componentization, generalized ITS
authoring tools, and automation. A core design philosophy of GIFT is to separate
domain-dependent from domain-independent components. This allows the same
tutoring infrastructure to be used to train car repair, or medical triage, or team situa-
tional awareness, and reduces the number of unique ITS components. Under the
principle of componentization, the modules in GIFT, their functions and the messages
exchanged between them are standardized to simplify tutor creation and modification.
Using this design, an ITS author does not need to have computer programming or
instructional system design skills to create a functional ITS.

Componentization simplifies design and processes through constrained input/output
sets. The constraint of these input/output sets, in turn, renders them easier to automate
or self-construct. Recent projects involving GIFT attempt to build a “policy” which
maps inputs to outputs in a few fashions. As a few examples, an instructional policy
may recommend immediate or delayed feedback based on a profile of a learner, a
learner profile may choose the frequency with which to communicate information to an
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instructional module, or a model of the domain may choose specific implementations of
feedback (in game, avatar-driven, flashing, etc.). These policies can be constructed,
based on historical data, via software process or modified based on the observations of
student state and instructional effects.

Just as componentization simplifies the engineering design space of its components,
the creation of policy-driven input/output functions is easier to automate. Techniques
for automatically creating agent-driven input/output policies are well studied in the
reinforcement learning literature, including techniques such as neural networks,
entropy-reducing decision trees, Markov processes, and others. However, in a system
like GIFT with disparate processes, input/output options, and data sources, these
techniques result in policies that are customized towards each module. A gen-
eral-purpose solution for optimizing the finite-action set is preferred. Over time, ITSs
have developed from custom-crafted systems into systems of interchangeable parts and
into systems of software-customized policies. In this paper we will outline the next step
of ITS evolution into true agent-based systems, which construct their own policies.

This paper briefly reviews the history of the creation of agent-based ITS, agent-based
frameworks for educational purposes, how an agent-based and policy-driven system can
be constructed over top of an existing modular system (i.e. GIFT), the advantages and
disadvantages of doing so, and initial planning steps of implementation. The paper
presents draft designs for interoperability and communication as well as sample tech-
nologies for general-purpose adaptation in the presence of data for the purpose of gaining
knowledge or optimizing instruction.

2 Existing Work with Agent Frameworks and Intelligent
Tutoring Systems (ITS)

In order to frame the discussion of the emergence and development of an agent-based
system, there should be a discussion of what defines an agent, and how the term is
used. Franklin and Graesser present the essence of agency as having components of
sensing the environment, acting upon it, having a sense of time, and pursuing goals [2].
They also state that such agents can be composed of multiple sub-agents, each meeting
the above criteria. Based on this definition, the modules of GIFT do not currently have
all the traits of agents, but do meet some of the criteria. GIFT modules have infor-
mation from the environment (the system) and produce outputs, however they indi-
vidually do not always have a means of assessing the impact of that output on the
environment (knowing if they have achieved a goal). A plug-in, or within-module
process, which is able to track within-module data, determine the module output, serve
the goal of the module (usually modeling), and adjust itself over time would enable
GIFT modules to meet the criteria of agents set for by Franklin and Graesser.

The idea of using a framework of cooperative agents as part of an intelligent
tutoring system is not new. The problems faced by the field in 1995 were similar to the
problems faced with modern-day systems (e.g., lack of reuse, lack of standards, and
lack of flexibility). Overcoming these problems by creating a modular framework
of agents to provide tutoring capabilities, was the objective of the Generic Instructional
Architecture (GIA) project [3]. The GIA and GIFT projects share similar goals,
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but where GIFT attempts to modularize and then automate, GIA attempts automation
directly. In a system such as GIA, the Agent Communication Language (ACL) forms
the backbone of communication, with agents advertising their functionalities, avail-
ability, and ontology for communication. However, the lack of call for specific agents,
or specific groups and types of agents, adds, rather than cuts, from developmental time
of a system. Not specifying the required agents, policies, and functions, results in a lack
of development for specific system instantiation. This weakness is present in the lack of
adoption of the system for in-the-wild tutoring.

Gascuefia presents another agent-based system composed of a Student, Domain,
Pedagogical, and Educational Module, similar to structure adopted by the GIFT project
[4]. Each module in Gascuefia’s system could have multiple agents and each agent its
own software program which can provide recommendation on the output or action of the
total module. Examples of these agents include Pedagogical agents for Preferences,
Accounting, Exercises, and Tests. Other researchers have proposed similar designs that
include Assistant, Evaluation, and Pedagogical agents [5], or may divide these agent
capabilities into services such as a Domain, User, Adaptation, and Application Service
[6]. GIFT handles functions such as Adaptation and Application through optional and
additional plug-in services, which are updated based on outcomes from processing
system outputs. However, currently neither GIFT nor Gascuefia provide a suggestion of
conflict management between recommend agent actions. Overly specifying functions,
agents, and policies results in a tightly bound system where few functions can be added.

Inside of the framework of an educational system, additional agents beyond the
above are needed that function to enable content/training delivery to a student. The
previously mentioned agents only function as part of online instructional management
while greater functionality is needed for full individualization. Examples of the types of
needed agents are provided by Lin et al. [7] who describe a series of external agents
running outside the core instructional loop. These include an adviser agent, which
advises the next content to view, a collaboration agent, for collaborating with peers, a
course planning agent, which plans a student path through a course, a course delivery
agent, which accommodates different delivery styles, and several others. These agents
are managed by an agent management and deployment service. Other work, such as
Regan’s Training and Learning Architecture (TLA) [8], or the Personalized Assistance
for Learning (PAL) [9] effort describe the system-of-systems approach to agent con-
struction. Further work examples can be seen in the Dynamic Tailoring System (DTS),
which provides an agent derived from the Soar cognitive architecture programmed for
the purpose of pedagogy and scaffolding [10]. These systems show the flexibility
required for addition, but, like GIA, cannot function as a pure delivery system.

Each of these systems discussed so far has either (a) not specified the functions
which are required for agents (e.g. recommendation agent), or (b) overly specified the
information for agents (e.g. domain hinting agent). The problem with not specifying the
requirements for agency adequately is that it makes it impossible for the system to be
adopted as an agent-based system. On the other hand, when the functions are too
constrained, they become less flexible and this limits the manner of system expansion.
As we look to ways of transforming GIFT to an agent-based system, it is important to
provide specifications for the addition of new agents without being overly restrictive on
how those agents will function within the GIFT environment. One of the primary
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advantages of GIFT is that very little new ITS functionality is dictated, existing
functions are standardized, and the ability to expand is clearly defined.

3 Online Agents and Online Learning

Terms such as “microadaptive instruction” or “inner instructional loop” may refer to
one or more tutoring actions taken with the student. These actions may include hinting,
prompting, metacognitive reflection, and others. All these actions are provided to help
the learner overcome an impasse in problem solving. For the systems able to assign
multiples of these actions (i.e. a service which recommends hinting conflicting with a
service recommending prompting), there is a mitigation function to help make sure that
all available instructional actions are not taken simultaneously. As an example,
AutoTutor Lite uses a cycle of pump — hint — prompt — assert as the student
progressively needs more content or assistance [11]. Generally speaking, these online
actions are taken in order to nudge, rather than didactically instruct, the student towards
the preferred manner of thinking on problem solving. The online and real-time com-
ponents of these decisions deal with data and decisions which are of small grain size, or
of small individual impact.

3.1 Learning Agents

The typical approach for the creation of an intelligent tutoring system follows a rela-
tively simple process. First, a system is developed and deployed into a production
setting while using a baseline (usually manually created) process. Second, the learner
data for this system is analyzed using an approach such as a Bayesian network, rein-
forcement learning algorithm, or equivalent. Third, the findings are used to improve the
initial models, which serve as the baseline for the next version of the system. This
collect-model-update cycle varies for different ITS. Many systems have followed this
approach for affective learner modeling [12], domain modeling [13], or instructional
modeling [14].

An alternative approach for creating an ITS is to develop agents which can learn in
the presence of new data. While this approach reduces human control of the final
model, and perhaps reduces scientific validity, it generally produces improved model
quality [14]. This is because an agent-based ITS can continuously improve its
underlying models based on ground truth observations, customized to the actual con-
tent delivered. An example of such a system is one which begins to build an initial
model from available data/decisions, modifies or customizes the model for a new
student, and puts the new model into practice immediately. It makes most use of policy
information compatible with multiple instructional domains, allows configuration from
observed evidence, and can potentially share this knowledge with other similar agents
and processes.
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3.2 Potential Implementations

GIFT is based on the learning effect chain, whereby learner data informs learner states
which inform instructional strategy selection which influence learning gains [1].
This chain is instantiated in the GIFT software as a Domain Module which informs a
Learner Module which informs a Pedagogical Module which selects instructional
strategies which are implemented as instructional tactics in the Domain Module. Each
portion of data is passed in real-time in order to deliver content to the student. The most
basic implementation of agent policies is to add a policy-handling component to the
existing structure. The left side of Fig. 1 shows how these items exist in current GIFT
architecture, while right side of Fig. 1 shows the addition of policy information. Figure 2
shows an in-depth implementation of the concept of policy overlay to existing
functionality.

Learner

Domain

Pedagogical
Policy Policy Policy
Domain Learner Pedagogical
Module Module Module

Learner
Module

Domain
Module

Pedagogical
Module

Sensor

Sensor Policy
Sensor
Module
Module

Fig. 1. The addition of a policy component to the existing GIFT structure in order to
accommodate real-time agent functionality.
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However, as agents and agent-based practices are added to GIFT, a manner of
representation is needed, this is especially prevalent for a changing structure over time,
such as when a policy is learned for a specific class of users over a large series of
interactions. A manner of autonomously changing system behavior can be added
through the addition of a policy component as an overlay to the module. In this manner,
the initial module configuration (via various configuration files) can be referenced in
mutable policy, changed in the presence of new data, and de-conflicted in the event of
conflict. The addition of this type of policy information enables additional features and
functions to be supported. Examples of these behaviors for specific model instantia-
tions are presented in Table 1.

Table 1. Listing of modules, example module policies, and data sources for model updates

Module Policy example Cause for alteration
Domain Selection of instructional tactic, Time available for student
module selecting a shorter segment instead
of a longer one
Domain Generation of an after action review | Student actions
module (AAR) as part of a sequence of
content
Learner Prediction of student state, based on Updated assessment of individual
module difficulty of concepts (mined from student, classroom, or
previous example) introduction of new data source
Pedagogical Selection among conflicting Varying observed effects dependent
module instructional policies (“hint” or on authored quality
“prompt”)

4 Offline Agents and Services

In contrast to online agents which perform as part of the real-time decision loop for
managing instructional decisions and delivery, there is a need for offline agents and
services. The factors driving the need for an offline agent or service include output that
takes too much time to produce in real-time, the size of the instructional decision is
larger than a single time-step, a need to reach back to an alternative data source, or
output that is appropriate for multiple online modules.

The expansion of the GIFT architecture shown in Fig. 1 allows for a single policy
which links to other policy components in other modules. As an example, a policy of
“progressive mastery” (teaching one concept to mastery, then moving to the second
concept) can be linked across the pedagogical and domain modules in order to coor-
dinate instruction. Such a policy would require components to be present in both of the
key areas, initialized at runtime, and have a communication component for synchro-
nization. This policy add-on enables two core functionalities: switching policies based
on observed results, and having policies based on multiple module functionality. This
addition of a policy component, although simple, provides significant capability.
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4.1 Functions and Features

The Advanced Distributed Learning (ADL) group has put together a number of
technologies for providing underlying standards for the next generation of intelligent
tutoring systems. Some examples of the offline services offered by agents include items
such as the Learning Registry, which is an indexing service which extends to a number
of publishers for the point of being able to integrate content, as a reusable learning
object, into various learning systems. On top of this layer, it is anticipated that offline
agents can be constructed to provide additional information on the content (e.g.
metadata, paradata, learning object descriptors) or to provide content-matching services
between the users and the content. The accumulated products of these offline agents
would have be available to the online services and agents such that online services
could make use of them. As new offline agents are developed to provide new products,
online ITS agents would simply require new policies to enable them to make appro-
priate use of those new products.

Finally, it is possible that some policies may be developed offline but utilized online.
For example, some instructional decisions may require information gathered across
several modules, or may be based on products compiled from other offline agents but
that inform decisions made in an online environment. Such information may require the
use of a policy component which is constructed offline, but shared in an online envi-
ronment. This type of function would learn from many different instructional decisions
from many learners in many domains, with varying amount of learner history.

4.2 Potential Implementations

Unlike online agent, policies, and services, GIFT has no prescribed structure for the
implementation and communication of offline components. Provided that formats and
configurations are suitable for online instantiations, there is no requirement for offline
standardization at this time. This leaves the offline implementations free to use all data

Table 2. Module-specific services and policies for GIFT

Module using Service/policy example Data source

agent/service

Domain Creation of customized Bank of specific, instructionally valid,
module scenarios around instructional examples

needs

Domain Pre-generation of hints, loaded Domain-specific text corpus, learning
module in for selection at runtime objectives

Domain Recommendation service Based on learner learning goals
module

Learner Modeling of competencies and Learner record store, trace data of
module mapping to taught concepts transferability of skills from previous

sessions

Pedagogical Update to instructional model History of many learners across many

module for a specific domain courses
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available and all standard formats. The limitations on offline services are more relaxed,
and examples of various potential services are provided in Table 2.

5 Efforts Towards Unification and an Interoperable Learning
Ecosystem

One of the core concepts behind the GIFT architecture has been to unify the various
commonly used portions of intelligent tutoring systems. This effort now allows for the
incorporation of agents and policy components which can be expanded across each of
its core modules, and across offline and online processes. However, GIFT is not unique
in its role to attempt standardization among various services. Techniques such as those
implemented in the Open Agent Architecture (OAA) serve as brokering functions
between application agents, meta-agents (facilitate coordination with other agents), and
user agents. The typical functions from this and similar systems from various frame-
works include the user side (front end), processing side (back end), and functionality
side (module purposes).

Not only do we seek to unify commonly used portions of intelligent tutoring
systems, but also to enable GIFT to be interoperable with the larger learning ecosystem.
As described above, the ADL group has been developing standards and agents (e.g.,
PAL, TLA) for such a purpose. As more of these services are developed by various
groups, the risk is that interoperability challenges will multiply. In such an increasingly
diverse and complex ecosystem, the need for intelligent agents will only grow. Agents
will be needed to broker the needs of systems like GIFT and the potential catalogue of
services available in the larger learning ecosystem. As an example, the Virtual Human
Toolkit (VHTk) provides the functionality to model the various aspects of virtual
humans. This functionality includes aspects and services such as speech processing,
emotional modeling of the learner, emotional modeling of the virtual human, the
gestures of the virtual human, rendering, and other services. It has been used in many
tutoring or learning programs [15]. This particular product/package provides for the
integration of many functional back-end features required for human modeling. Virtual
humans serve as a good example of agents or agent based systems that would routinely
interact with an ITS like GIFT. Currently GIFT has limited ability to operate with the
VHTk through basic service calls to supporting functionality. However, in a more
agent based GIFT, this would be accomplished much more easily by creating the
necessary policies via the VHTk, having them represented within modules, and
delivering them to the students.

A final example of services being developed in the larger learning ecosystem is the
Generalized Learning Utilities (SuperGLU). This is a collection of back-end services
and features developed through Office of Naval Research initiative funding to provide
functionality for offline processes and policies [16]. These services include the com-
munication of learner performance data, through the xAPI standard [8], the ability to
add agents without knowledge of the other agent components, and the overall inte-
gration of various tutoring services and data structures. SuperGLU is additionally
intend to work with LearnSphere, as an effort to unite the storage and processing of
data generated by tutoring systems.
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6 Conclusion and Future Research

Transforming GIFT into an agent-based system has both advantages and some dis-
advantages. The anticipated benefits include the simplification of development through
automating the creation and refinement of underlying models and to simplify inter-
operability with a larger learning ecosystem. A potential disadvantage is that as agents
take over the task of refining models and managing interactions among different sys-
tems, humans become monitors and managers of system development rather than
architects. There is some risk that this would result in humans being less effective or
efficient in troubleshooting or in making system-wide changes that might improve
performance, considering the additional complications of having a system which
changes over time.

The benefits of making GIFT into a learning agent-based system are enticing.
Developing learner and pedagogy models through research is time and resource
intensive. Developing intelligent learning agents that can in effect figure out what
works and automatically improve those models could potentially save huge amounts of
time and resources. Furthermore the larger learning ecosystem is an ever changing
entity. Using intelligent, learning agents to constantly search that ecosystem and
establish interfaces between GIFT and new and changing services and agents in that
ecosystem would also save substantial resources.

On the other hand, the risks of converting GIFT (or any system) into an agent-based
system should not be overlooked. As humans manage system evolution by changing
system rewards through new or revised policies, there is always the risk that those
changes may not have the intended effect on learning performance. For example,
suppose a policy was created to reduce time to train one module in a course without
decreasing performance in that module. Suppose the policy change was successful, but
a second order consequence was that there was a decrement in student performance on
another module in the same course. Single-minded focus on limited metrics can result
in unintended effects on other, unmeasured, items. To troubleshoot such issues, it will
be necessary for system managers to be able to understand why those policy changes
had those effects. This would not be a simple problem to solve and it would be more
difficult if managers could not see or understand what the agent had done to reduce
training time for the targeted module. Add to this the possibility that multiple agents
could be making changes to different models at the same time, and one can see that
untangling the causes and effects on overall system performance could be quite diffi-
cult. Thus it will be important to develop ways for agents to provide system managers
with human-readable reports on changes made to the system as well as other agent
activities. These and perhaps other challenges lie ahead as we implement an
agent-based design for GIFT.
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