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Abstract. Big Data visualization relies on an interdisciplinary research area that
includes mass data storage and retrieval, operations, analytics, security, ethics as
well as visualization and interaction with end users. This paper reports on the
characteristics of Big Data systems, mainly focusing on information visualization
and discusses a number of methods towards this direction, analyzing research
issues and challenges that emerge. Additionally, this paper discusses new
approaches for Big Data visualization in the context of Ambient Intelligence
(AmI) environments, highlighting new aspects in the field in respect to informa‐
tion presentation and natural user interaction. Furthermore, a scenario of Big Data
visualization in AmI environments is presented, aiming at bringing to surface the
new potential of such approaches in terms of interaction simplification, and adap‐
tation to the context of use.
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1 Introduction

The term “Big Data” emerged as a scientific domain during the 1990s and gradually
became a field of major academic interest during the 2000s. Since 2010, Big Data
became a focus of attention across various sectors, including trade, business intelligence,
large-scale organizations and start-up companies.

A widely accepted definition of Big Data is still under discussion and there is little
progress regarding a commonly acceptable answer to the fundamental question of how
big the data has to be to qualify as ‘big data’. De Mauro et al. [1] combine several
definitions for Big Data as “representing the Information assets characterized by such a
High Volume, Velocity and Variety to require specific Technology and Analytical
Methods for its transformation into Value”.

Laney [21] introduced one of the first and most widely embraced attempts to define Big
Data. The author suggested that Volume, Variety, and Velocity (or else the three Vs) are
the three dimensions of challenges in data management. Volume refers to the magnitude
of data. The thresholds that discriminate data from big data however are vague, as they
keep increasing due to the soaring of sensors supplying data. Variety refers to the
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heterogeneity of the data, while velocity refers to the rate at which data is generated,
retrieved and processed. Data creation rate is currently increasing rapidly with smart‐
phones and sensors, and is expected to multiply in the era of the Internet of Things.

In addition to the three Vs, other dimensions that characterize other aspects of Big
Data are described in literature. The factor of veracity [12], which describes the quality
of the data, is an additional important characteristic that provides assessment of the data.
Finally, another term is value [26], which describes the dimension of the data values in
the context of Big Data integration.

Due to the vague nature of Big Data, several research fields are involved in the
process of its management and manipulation. Such fields include, but are not limited to,
storage, operations, analytics, security, ethics and visualization. This paper will focus
on the classification of the major Big Data types, on the existing visualization techniques
and on potential future directions of visualization and interaction with Big Data in the
context of Ambient Intelligence environments.

2 Big Data Analytics

Big Data Analytics refer to the process of studying, exploring and reporting on Big Data,
aiming at assisting the human decision making process. Apart from reporting and visu‐
alization, operations that belong to several research fields are involved, such as predic‐
tive analytics, data mining, anomaly detection, statistical analysis and text analytics. As
mentioned in [10], research challenges regarding Big Data analytics involve both struc‐
tural approaches and visualization concerns. The structural approaches refer to the
infrastructure that allows making operations on Big Data, while visualization concerns
encompass the nature of the data source in terms of presentation.

A fundamental characteristic of Big Data is its multidimensional nature. Big Data
comprises massive information with several aspects. For instance, information about a
specific car not only contains data about the car itself, such as model, production start
date, horsepower, acceleration, but also data regarding sales: how many cars were sold,
the sale location, the color of the cars, etc. This information comprises different dimen‐
sions of the data that create different perspectives, which can be retrieved and analyzed
on demand.

2.1 Analytical Processing and Dimensions of Big Data

The first step towards visualizing multidimensional data sets includes the identification
of the involved aspects that need to be presented. Current approaches that cope with this
issue mainly involve OLAP [5] (Online Analytical Processing), which aims to provide
a mechanism for the analysis of Big Data from multiple different perspectives. OLAP
is applied as a means of interactive filtering out extrinsic information. Several data
storage models for the core implementation of OLAP are found in literature, including
Multidimensional OLAP systems (MOLAP), Relational OLAP (ROLAP) and Hybrid
OLAP (HOLAP). This paper will not focus on the different core approaches that allow
OLAP operations, but instead on the visualization aspects that arise at a higher level.

Towards Big Data Interactive Visualization 59



2.2 Temporal Big Data

Time classification is an aspect of Big Data, which is frequently meaningful. It consti‐
tutes a dimension that is often stored, either as supplementary information or as major
descriptive value. Users are accustomed to perceiving time as an additional dimension
of Big Data and are therefore able to easily perceive it as a dimension to any type of
information. Time constitutes an important factor in various contexts, including deci‐
sion-making [7].

2.3 Geospatial Big Data

Another type of information which is often an integral part of Big Data is space. The
datasets can be static or dynamic in terms of location. Dynamic Big Data can be acquired
through the usage of location-aware devices and the adoption of Geographical Infor‐
mation Systems (GIS) and are correlated both to space and time. The quality of data,
which imposes an important issue in terms of geospatial data [22], is expected to improve
especially in the context of the Internet of Things.

Li et al. [23] use Big Data 3D visualization in order to display infrastructure in
Shenzhen and take geographic statistical analysis in consideration for assisting data
analysis and enhancing the decision making process for social service agencies. Big
Data in the context of urban environments in general correlate data sets with both time
[18] and space [3].

3 Big Data Visualization Techniques

3.1 OLAP Visualization

The OLAP tools enable users to analyze multidimensional data interactively from
various perspectives. OLAP consists of five basic analytical operations: consolidation
(roll-up), drill-down, pivoting, slicing and dicing [14]. The applied operations change
the selection of the visualized components on the fly and update the view according to
the user’s actions.

A traditional interface for analyzing OLAP data is a pivot table, or cross-tab, which
is a multidimensional spreadsheet produced by specifying one or more measures of
interest and selecting dimensions to serve as vertical (and, optionally, horizontal) axes
for summarizing the measures [9]. Pivot tables are a widespread visualization model,
which provide a detailed data presentation to users that are familiar with it. Additionally,
they can be easily transformed to serve additional dimensions of information through
the application of color-coding or rows/columns merging. However, the tables’ effi‐
ciency declines for larger data sets, as users are unable to locate specific information,
recognize patterns or get an overview of the displayed data sets (Fig. 1).

Another useful visualization component are parallel coordinates [15, 19], which
allow the display of multiple data dimensions on a 2D plane. The concept of parallel
coordinates is the concurrent visualization of different values in a row, one after another.
For instance, in the case of car comparison, car values regarding horsepower, fuel
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consumption, car dimensions, acceleration, etc., would be meaningful to be displayed
on the same plot. This visualization technique holds the advantage of correlation
between different data dimensions, e.g., horsepower and acceleration, which could
depict the impact of one dimension on another. However, this applies only in the case
where the dimensions are rendered adjacently; if another dimension intervenes between
them, the visual clue disappears and the correlation is impossible to discover. Addi‐
tionally, parallel coordinates are unable to visualize non-numerical values and can be
difficult to comprehend for non-expert users (Fig. 2).

Fig. 2. An indicative example of parallel coordinates created using XDAT [37]

In order to address the aforementioned drawbacks of tables and parallel coordinates,
techniques such as pie charts, plots, graphs and trees are employed by state of the art
commercial tools. The leading software for Big Data Visualization, Business Intelli‐
gence and Analytics is Tableau [24], while other approaches include qlikview [29],
Microsoft’s Power BI [28] and others.

Tableau [24] provides default tools for rendering each specific data type, which can
be overridden by the user on demand. Each visualization is selected to optimally repre‐
sent a specific data type: for instance, cross-tabs are used for the visualization of discrete
categorical data and lines for continuous quantitative information.

Fig. 1. An example pivot table
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Even though OLAP tools are very efficient for Big Data retrieval and on demand
visualization, they usually lack exploratory functionality. Furthermore, due to the
complex nature of the operations supplied, OLAP tools tend to be cumbersome for
novice users to manipulate.

3.2 Big Data 3D Visualization

Traditional visualization techniques fall short in terms of efficient and intuitive display
of the corresponding data sets; therefore, the need for a rich interactive visualization still
constitutes both a business and a research challenge.

In order to fill in the gap of inefficient visualization, some approaches in literature
involve 3D visualization for OLAP [2, 20]. However, 3D visualization approaches are
not yet very popular.

The inclusion of an additional dimension to the visualization adds up to the efficiency
of depicting the dimensions of Big Data. Since the human brain is trained to sense and
act in three dimensions, it is optimized to perceive three dimensions in a natural manner.
The third dimension constitutes an aspect of the rendered information easily perceivable
by the user, thus enhancing potential exploration in a virtual world.

On the other hand, 3D visualizations have certain drawbacks. In general, they present
a steep learning curve, as inexperienced users usually tend to be unable to orientate them‐
selves in the virtual three-dimensional space or to manipulate the interface. The lack of
perception of 3D space does not only involve the virtual space itself, but also the lack of the
exploration and identification of the visualized information. Interaction complexity with
3D user interfaces is also a significant burden due to the additional degrees of freedom,
requiring complex manipulation controls and a rich interaction vocabulary.

3.3 Virtual and Augmented Reality

Virtual and augmented reality environments form an emerging approach that is capable
of providing Big Data visualizations. Such environments in the context of Big Data
constitute interdisciplinary efforts, combining the areas of 3D graphics, stereoscopic
environments, computer vision and Big Data querying. The main advantage of virtual
and augmented reality environments is better user experience and immersion, which
allows the better perception of the visualized geometry. Furthermore, in comparison to
traditional 3D visualizations, the users perceive themselves in the context of the visu‐
alization and thus orientate themselves more easily.

Helbig et al. [17] use a virtual reality environment to visualize massive data in the
context of Weather Research Forecast. Another interesting approach is the immersive
visualization of a landscape in Mars [11], augmented with data describing the surface
characteristics.

Future challenges on applying virtual and augmented reality to Big Data visualizations
include multimodal interaction, display and equipment limitations [25]. Virtual and
augmented reality is a growing research field, mainly due to the emergence of devices like
the Microsoft Kinect and LeapMotion that provide more natural interaction based on
gestures and Oculus Rift, which puts virtual reality in play again in terms of mainstream
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visualization technique. However, still several challenges exist towards incorporating and
enhancing traditional 2D desktop approaches in virtual space as well as developing a suit‐
able infrastructure at the side of Big Data to support additional needs that may rise.

3.4 Graph Visualization

Graphs are a common technique used for displaying the correlation between different
entities. Their main advantage is the user’s ability of starting from a specific node and
exploring neighboring nodes, especially when visualizing data sets that describe
networks or relationships. The survey reported by Beck et al. [4] describes a trend
towards the combination of graphs with interactive timelines in order to include potential
temporal characteristics of the information.

Furthermore, graph visualizations simplify exploration by providing operations like
sampling, filtering, partitioning and clustering [27], while they can also support several
abstraction layers [6] in order to provide meaningful views according to the scope of
the visualization, ranging from overview to detailed view.

Even though graphs can be very helpful in illustrating specific aspects of Big Data,
they tend to focus only on one aspect of the data, which is the interconnection between
the various nodes. Moreover, graphs are meaningful only if the data that they present
are coherent, and are not suitable to illustrate other aspects such as comparison between
data and temporal relationships.

3.5 Exploratory Data Analysis

Exploratory Analytics, or else Discovery Analytics, refers to the process of using
visualization exploration techniques, in the context of Big Data, which aims at discov‐
ering new facts or characteristics of Big Data that users were previously unaware of
[31, 34, 36]. Heer and Shneiderman [16] present a widely adopted taxonomy for
interactive dynamics regarding visual analysis. The proposed taxonomy groups tasks
in three high level categories: data and view specification, view manipulation and
analysis process and provenance.

Faceted navigation, also mentioned as data and view specification [16], refers to the
process of applying specific filters to the data sets provided, in order to focus on the
subset of interest. Faceted navigation can combine multiple visualization techniques to
apply the most suitable ones to the corresponding type. Such an example is EDEN [33],
where the authors use parallel coordinates and geographic visualizations to interactively
refine the displayed values and thus offer exploratory analysis of Big Data by exploring
relationships between entities. Another example of interactive faceted exploration is
discussed in [36], which combines automatically generated and manually specified
visualizations in order to improve support for data exploration.

4 Comprehension of Big Data

What still proves to be a difficult task in the area of Big Data is offering the possibility
to the users to comprehend the dimensions of Big Data. Even though much work focuses
on analyzing the data itself by making operations in order to view and examine specific
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aspects of the data, less effort has focused on creating the optimal environments for the
depiction of the available aspects and offering exploration capabilities.

Comprehending Big Data involves two different roles: (a) experts who are either
familiar with the visualized data or at least are accustomed to the concepts of Big Data
(e.g., data scientists and analysts), and (b) inexperienced end users, who are unaccustomed
to perceiving and manipulating Big Data. The visualization approach for these different
roles varies significantly, as different expectations are raised in the corresponding cases.

The vast majority of the existing Big Data visualization techniques focus on the
experts. On the other hand, occasional or inexperienced users should be provided with
a more user-friendly, exploratory view that allows browsing without requiring knowl‐
edge of the existing data operators or the visualized data domain.

5 Displays of Big Data Visualizations and User Collaboration

Augmented and virtual reality techniques require specialized displays, while the vast
majority of other visualizations relies on desktop displays. On the other hand, the interest
of non-expert end users is expected to increase, requiring access to Big Data in a user-
friendly and easily perceived manner. Therefore, a forthcoming issue will be the access
to Big Data visualizations for a broad audience through different platforms and devices,
such as mobile devices [38].

Furthermore, multi-device environments with shared displays and mobile devices
[30] will support teamwork and collaborative exploration of visualizations. To this
direction, Donalek et al. [11] discuss means of sharing displays between users.

6 Towards Ambient Intelligence

Ambient Intelligence envisions a future where technology is interweaved with everyday
living environments, anticipates users’ needs, and provides natural interaction with
digital information [35].

In respect to human-computer interaction, Ambient Intelligence (AmI) environ‐
ments involve primarily two aspects: context awareness and natural interfaces [8].
Context awareness includes the use of emerging technologies to infer the context of the
interaction (e.g., the location and the activities of the user), whereas natural interfaces
refer to human communication capabilities and implicit actions that should be employed
as a means of interaction in AmI environments, instead of the explicit input used in
traditional human-computer interaction.

Ambient Intelligence environments have the potential to support the visualization
of Big Data and its multiple dimensions due to the wide range of displays and interactions
combined, which can be both implicit and explicit [32].

6.1 The AmI Data Centre Use Case

Data centre infrastructure management constitutes a Big Data use case, as massive data
is generated and collected in real time. Information such as the servers’ state, network
traffic and temperature is continuously created along with logical and physical depend‐
encies that seldom vary.
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The massive growth of data volume, following Moore’s law, results into the need
for further storage space. Consequently, the existing data centres are expected to grow
both in size and in count; thus, their monitoring, maintenance and management involves
comprehensive environment sensing, where the environment is the data centre itself.

Data centres consist of multiple server racks, which in turn contain several servers.
Each server holds a diversity of metrics that are required for its maintenance and opti‐
mization, including anomaly detection, workload balance and power consumption. The
servers’ values are observed and displayed by real time visualization tools, such as the
one presented by Drossis et al. [13].

The integration of Ambient Intelligence could enhance infrastructure management
in various perspectives. The data centre control room can be greatly improved by
coalescing existing management applications with sensors and pervasive displays, that
would allow sensing in the area and act in combination with activities of the employees
and the state of the data centre itself. Additionally, navigation and the finding of specific
components is another field that requires user assistance. The following use case scenario
depicts some aspects that involve Big Data visualization in the context of Ambient
Intelligence.

6.2 Use Case Scenario - A Day in the Data Centre

A 3D visualization of the data centre is displayed at the largest display of the AmI data
centre’s control room, showing the current state of all the servers. The traffic between
the connections is monitored in real-time and overlaid in the visualized servers’ layout
to the corresponding responsible employee. The employee spots a potential issue and
shares his view with his colleagues, having the selected connections between servers
shown in the large display. The real-time analysis of the data center performance, by
the AmI environment, discovers a bottleneck in traffic, and raises a warning to the
personnel, providing a historical view of the traffic for the specific data centre to a side
large display. After the analysis of the traffic history, the data centre’s personnel decides
to install additional servers to improve the performance.

When the new servers are delivered, an employee places them on the smart working
bench, which is capable of recognizing the servers’ configuration by reading their serial
numbers. The smart bench suggests, based on the current traffic demand, alternative
plans of the new servers’ placement, illustrated on a floorplan projected next to them,
with the compatible empty slots highlighted. The administrator of the data centre selects
the preferred position among the available options, using a hand gesture, notifying this
way that the hardware is ready to be installed. Upon installation, all the users are notified
about the addition and the visualizations of the data centre are updated accordingly.

Afterwards, a component with very high temperature is identified by automated
anomaly detection mechanisms. The environment triggers an alarm notifying the respon‐
sible employee, who in turn filters the visualization to display only the servers with high
temperatures to verify that the reporting sensor is not problematic. Furthermore, the
details of the anomaly are shown on demand by bringing to front the temperature control,
which displays the previous values along with the expected ones.
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Upon user intervention, the alarm can be acknowledged by the user or examined in
detail. Since the anomaly requires on spot actions, the employee uses his own smart‐
phone to view the path towards the faulty component, which is highlighted. Upon
reaching the defined rack, he uses an augmented reality view to find the detected server
slot in the rack with the reported temperature. The high temperature was reported due
to a sensor malfunction and therefore the employee replaces the faulty component and
marks the issue as resolved.

6.3 Big Data and Ambient Intelligence

The scenario presented in the previous section illustrates the benefits that Ambient
Intelligence offers for Big Data centre monitoring and maintenance. In more details, the
control room of such a data centre provides visualization facilities that are able to display
thousands of servers according to the context of use (the large display shows generic
information, whereas the users see a personalized view). The visualization displays
relationships between servers (network traffic) and past values (temporal information),
and users are able to collaborate (employee’s view is shared).

The smart bench is able to identify physical objects (new servers) but also to suggest
potential installation locations (specifications of the servers are known and consequently
the environment acts in a smart manner). The installation is sensed by the environment
and the visualization is updated immediately (real time visualization).

The high temperature alarm is personalized and raised to the responsible employee
for action. The employee applies filtering (faceted navigation) and browses towards the
desired area (exploration). Additionally, the temperature control is specialized to suit
the needs of its content (data optimal visualization). Finally, the employee uses his own
smartphone to find the area of interest in a natural manner (using navigation with
augmented reality).

7 Conclusion

Big Data visualizations constitute an interdisciplinary area of research that combines
different technologies. This paper has discussed the characteristics of Big Data, the
existing visualization techniques and the potential benefits of Ambient Intelligence for
Big Data visualization. A use case scenario of a data centre was described, illustrating
the way that Ambient Intelligence can enhance Big Data visualizations in the context
of data centre infrastructure management.

Ambient Intelligence has the potential to fill in gaps of existing Big Data visualiza‐
tion techniques by incorporating the context of use to the visualization and supplying
rich multimodal interaction. Ambient Intelligence can reduce the dimensions of Big
Data and adapt the display of the data rendered in a smart and natural manner, thus
reducing the interface complexity and the user cognitive load. Moreover, Ambient
Intelligence can support and promote collaborative work and real-time human-human
interaction.
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