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Abstract. Pervasive communication technologies have opened up the
opportunities for citizens to cope with disasters by exploiting networked
mobile devices. However, existing approaches often overlook the brittle-
ness of the technological infrastructures and rely heavily on users’ manual
inputs. In this paper, we propose a robust and resilient sensing environ-
ment by extending and integrating cooperative location inference and
participatory sensing using smartphones and IoTs. The proposed app-
roach encourages proactive engagement in disaster mitigation by means
of everyday data collection and end-user deployment of IoT sensors.
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1 Introduction

Owing to the rapid growth of the communication bandwidth and other resources,
citizen science or crowd science is now considered to be a powerful tool to gather
and analyze scientific data. Especially, rapid penetration of sensor-rich smart
phones and IoT sensors make it possible to retrieve real-time data about urban
environments. Their sensor data can be used in ordinary times, however, they
will also play a critical role in disaster monitoring [1]. Understanding what’s
going on and analyzing the data in fine granularity can be achieved only by user
participatory sensing because we cannot deploy conventional expensive sensors
with sufficient density.

Smartphones and IoT sensors can be very useful for mitigating the impact of
disasters if we can effectively handle the huge amount of data they produce. We
need to make their data easier to handle by applying algorithmic and statistical
approaches such as aggregation, indexing, filtering, compression, data mining,
and machine learning. We also need to make the data more useful by activating
c© Springer International Publishing Switzerland 2016
N. Streitz and P. Markopoulos (Eds.): DAPI 2016, LNCS 9749, pp. 459–469, 2016.
DOI: 10.1007/978-3-319-39862-4 42



460 S. Konomi et al.

robust technological infrastructures for collecting and communicating accurate
contextual data reliably.

In this paper, we propose a robust and resilient sensing environment by
extending and integrating cooperative location inference and participatory sens-
ing using smartphones and IoTs. Firstly, it is very important to conserve battery
life of mobile devices in disaster situations as people use them to access and share
critical disaster-related information and communicate with family members and
friends. It is therefore highly desirable to determine the locations of mobile
devices with minimum energy consumption. One of the energy efficient local-
ization techniques for mobile devices is to use wireless location reference points
and pedestrian dead reckoning rather than GPS. However, currently there is no
robust pervasive infrastructure of location reference points. We use IoT devices to
activate such an infrastructure. In particular, we propose a cooperative location
inference mechanism to automatically determine the locations of IoT devices,
thereby turning the devices into ubiquitous location reference points.

Secondly, we develop a user participatory sensing environment for mitigat-
ing the impacts of disasters based on the IoT-supported location infrastructure.
The proposed environment has three key advantages compared to existing par-
ticipatory sensing environments: (1) it facilitates collection of geo-tagged sen-
sor data from smartphones and IoT sensors with smaller battery consumption,
(2) it allows citizens to collect data before, during and after a disaster using
smartphones, omnidirectional cameras, and environmental sensors to build an
integrated large-scale database, and (3) it applies algorithmic and statistical
approaches such as aggregation, indexing, filtering, compression, data mining,
and machine learning to deliver relevant information such as safety-enhancing
route recommendations at citizens’ fingertips.

2 Related Works

We now review existing user participatory environments for disaster detection
and mitigation. People use social media tools to respond to natural disasters such
as earthquakes, floods, and hurricanes. They are often used as a means to collect
(or “sense”) critical information by organizing and coordinating volunteers. Such
a form of crowdsourcing enables swift sharing of disaster information although
it has certain limitations in terms of data quality as well as ease of collaboration
and coordination [2]. Olteanu et al. have analyzed Tweets from various recent
crises and shown their substantial variability across crises [3]. We can exploit
social big data in a more informed manner as we deepen our understanding
about the kinds of information crowds generate in various crises situations.

Crowdsourced disaster information is often linked to location information
and can be visualized on a map. For example, volunteers monitored wildfires in
Santa Barbara by showing text reports, photos and videos on a digital map [4].
Crowds can generate such maps much before authoritative information becomes
available, which is an important benefit that can outweigh the cost of error-prone
crowdsourcing data. Likely relevant to this discussion is that not only grassroots
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organizations but also governmental agencies are now exploiting crowdsourcing.
For example, the Federal Emergency Management Agency (FEMA) in the U.S.
recently introduced a crowdsourcing feature in their mobile app [5].

Smartphones are often used as social and participatory platforms for col-
lecting disaster-relevant information. Moreover, there are a number of experi-
mental projects that explore the uses of ubiquitous sensors in smartphones to
infer critical information such as shakes, infrastructural damages, and fires in
earthquakes. Smartphones’ accelerometers can be used to measure and commu-
nicate the strengths of shakes quickly and cheaply with much higher spatial
resolution than professionally managed high-quality sensors such as K-NET in
Japan. Existing research by Naito et al. has shown that smartphones’ accelerom-
eters are particularly effective for monitoring shakes with the seismic intensity
over 2 on the Japanese seven-stage seismic scale [6]. Monitoring strong shakes
in buildings with high spatial resolution can be extremely useful for analyzing
cumulative impact of shakes on buildings and even for designing safer physical
structures. Community Sense and Response system (CSR) exploits accelerome-
ters in smartphones and dedicated devices to monitor shakes cheaply and infer
complex spatial patterns of shakes based on a machine learning mechanism [7].
Citizen Seismology Project interestingly senses web traffic on a popular earth-
quake web site and Twitter messages to detect earthquakes quickly [8,9].

Fires, which can be triggered by earthquakes, often cause significant damage
to inhabitants. Early detection of the locations of fires is very important for
predicting the spread of the fires and making appropriate evacuation plans in
time. However, there is a relative scarcity of projects that explore smartphone-
based fire detection. Some recent high-end smartphones such as Samsung Galaxy
S4 are equipped with temperature and humidity sensors that can be useful for
detecting high temperature and low humidity as well as their temporal variances
in proximity to fires. Amjad’s recent project exploits such high-end smartphones
to build FireDitector that infers occurrences of fires in indoor environments using
Naive Bayes Classifier with the data from smartphones’ temperature, humidity,
pressure and light sensors [10].

Although existing literature reports many success cases of user participatory
sensing for disaster detection and mitigation, most of the existing systems use
energy-hungry localization mechanisms such as the ones that heavily rely on
GPS. When using stationary sensors, someone would have to specify the loca-
tions of the devices at the time of deployment. However, oftentimes, deployment
processes are not clearly defined.

3 Cooperative Location Inference with IoTs

There will be as many as 26 billion Internet of Things (IoTs) in 5 years [11]. As
we discussed ealier, IoTs can be extremely useful for collecting environmental
information before, during and after disasters. Moreover, they can cooperate
with personal and wearable devices that citizens carry around. For example,
IoT devices could help smartphones to detect their context more accurately by
providing useful reference data.
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Smartphones can use IoT devices as location reference points or “location
tags” if they can identify nearby IoT devices by using short-range radio, visual
recognition, audio detection, etc. Our proposed mechanism considers two types of
location tags: (T1) the ones that already know their accurate locations and (T2)
the ones that don’t know their accurate locations. In addition, location tags have
onstage and offstage states: the system uses onstage tags to compute location
information, and trains offstage tags until they are ready to “go on stage.”

We now consider a physical space in which onstage T1/T2 tags and offstage
T2 tags coexist. Let L be the location estimate of an offstage tag. Our system
collects location information from the smartphones that are in proximity to the
tag, and incrementally computes L as follows:

Li+1 =
(i · Li) + Si+1

i + 1
It obtains new location estimate Li+1 from smartphone location Si+1 and

existing location estimate Li(0 ≤ i). This computational process can be triggered
periodically, using the best smartphone location Si+1 in each interval. Also, when
there are multiple smartphones nearby, Si+1 is a weighted sum of their location
information. Note that our system currently uses RSSI (Received Signal Strength
Indicator) to select the best Si+1 within each interval, and to assign a weight to
each smartphone.

An offstage tag is turned into an onstage tag when its error estimation
becomes smaller than a threshold value. We estimate the error by using maxi-
mum likelihood estimator of a corresponding covariance matrix. We then derive
an ellipse that contains the tag’s real location with 95 % confidence, and use the
area of the ellipse as the tag’s error estimation.

There are multiple benefits gained from providing such a localization mecha-
nism. First of all, as it infers locations of IoT devices automatically, people don’t
always have to define the locations of IoT devices at the time of deployment.
IoT devices can eventually be associated with corresponding location informa-
tion and the data they produce will be geotagged regardless of whether they
are located indoors or outdoors, whether they have GPS modules or not, and
so on. We can then accumulate a lot of georeferenced data which can be used
to detect points of critical events such as occurrences of fire or collapse, and
possibly guide firefighters quickly to the people in need of rescue, help citizens
to evacuate successfully, and assess and predict damages accurately. Moreover,
location-tagged IoT devices can provide nearby smartphones with accurate loca-
tion information. The smartphones can use the received location information to
improve their location estimation without consuming a lot of energy. As the
proposed mechanism does not rely on GPS, it is particularly useful in buildings,
underground passages, and urban canyons.

4 User Participatory Sensing

Making participatory sensing useful in disaster situations would require practical
solutions to fundamental problems such as energy efficient sensing, integration of
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mobile and stationary sensing, integration of sensing in everyday and emergency
situations, and privacy preservation. We describe our approaches to tackle these
issues based on our experiences developing relevant prototypes.

4.1 Energy Efficient Sensing

Some computational processing is more energy consuming than others. Thus,
we can save energy by turning off energy-consuming functions most of the time.
Our approach to energy conserving participatory sensing exploits energy-efficient
sensors such as accelerometers to detect the appropriate timing for turning on
and off more energy-hungry sensors, communication modules, and computational
processes.

One of our ongoing researches aims to record daily interaction of a person
by utilizing Bluetooth in a smartphone as a sensor [12]. Although Bluetooth
is superior to other direct-communication method due to its usable identifier
(MAC address) and useful communication range of approximately 10 m, energy
consumption is still a problem. We developed a method that improves energy
consumption of Bluetooth beaconing leveraging 3-axial accelerometers equipped
on smartphones. Also, the method improves robustness of finding social links
that tend to fail due to collision using the similarity of acceleration and sets of
Bluetooth MAC addresses.

The detailed method to find other smartphones considering energy consump-
tion is illustrated in Fig. 1. First of all, the method recognizes if a user is “staying”
or not with an accelerometer based on the method proposed by Ravi et al. [13].
Second, the method recognizes if a user is “talking” or not with a microphone.
The method does not utilize speech-recognition, but utilizes only the volume of
sound. Finally, the method senses proximity using inquiry mode of the Bluetooth
that is normally used to search unpaired devices. The phone collects the MAC
addresses of nearby phones in a certain seconds.

The proposed method predicts a social link in a robust manner against fail-
ures of finding in inquiry of Bluetooth. In the following equation, sij(B, t) is
the strength of the social link between the person i and the person j from time
t to t + T where Bit and Bjt represent sets of collected MAC addresses. Even
when a smartphone cannot find by the Bluetooth directory, the equation gives
an indication how much two smartphones are located nearby.

sij(B, t) =

{
1 (Found)
Bit∩Bjt

Bit∪Bjt
(Notfound)

We have shown that the proposed approach can reduce energy consumption
through preliminary evaluation studies. We believe that this technique should be
extended and integrated with various kinds of mobile sensing and communication
tools for disaster detection and mitigation.
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Fig. 1. Flowchart of proposed sensing method

4.2 Integration of Mobile and Stationary Sensing

When disasters occur, we would be most likely to seek ways to best utilize
all the tools and datasets in complementary manners in order to minimize the
negative impacts of disasters on citizens. It is then very important to develop
optimal strategies and best practices to use various technologies and resources
in combination.

In our previous project, we have combined stationary wireless sensor net-
work systems and user participatory sensing to collect fine-grained environmen-
tal information, thereby enhancing the safety of citizens in extremely hot urban
environments [14]. The sensor systems are deployed in an urban area, with a
range about 600× 600 m2, near a railway station in Tatebayashi City, Japan.
There are two independent sensor systems: a wireless sensor network (WSN)
to gather temperature and humidity information and a distributed camera sys-
tem to detect the traffic flows of pedestrians. The combined sensor nodes which
measure the conditions of temperature and humidity have been installed on the
utility poles alongside the streets. The sensor nodes transfer data to a sink node
and then to a central server by using IEEE802.15.4 protocol. There are 40 com-
bined sensor nodes which have been deployed in the target area. Stereo cameras
have been installed near the streets so that they can conveniently capture the
scenes of pedestrian crowds. The captured scenes are delivered to a local PC on
which a detection program runs to recognize the traffic flows and velocities of
pedestrians. Then the sensed data are transferred to the central server by using
wireless communication. Six stereo cameras have been deployed in the target
area.

One of the most important issue in this type of integrated sensing is the
spatial and temporal coverage of sensor data. One might opt for eliminating
redundancy, however, redundant measurements can be useful for assuring the
quality of crowd sensed data. This has to be supported by the data management
mechanisms on the cloud, which we will discuss in Sect. 5.
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4.3 Integration of Sensing in Everyday and Emergency Situations

User participatory sensing generally requires citizens to interact with mobile
sensing tools. The amount of work that users are expected to perform differs in
different participatory sensing tools. Opportunistic sensing tools only requires
users to install and activate the tools unless users want to deactivate and activate
the tools from time to time to save energy, memory space, or protect privacy.
Other data collection tools may require users to enter text, numbers, select items
from menus, take photos, record sound or video clips, and so on. However, it is
a question how much time and mental space citizens may have to perform such
operations during a devastating crisis. In order to address this issue, we argue
for an approach that integrate sensing in everyday and emergency situations.

We have sought to identify the kind of useful data which can be collected
in everyday life situations and used to facilitate participatory sensing during
disasters. One of such kind of data can be omnidirectional camera images along
urban streets. In everyday life situations, such data can for example be used to
recommend pleasant green routes for taking a walk. The same data could be used
to assess damages and recommend safer rotes in disaster situations, potentially
combined with complementary participatory sensing during disasters.

Inexpensive omnidirectional cameras such as Ricoh Theta and Kodak Pix-
pro are increasing popular, and people can take 360-degree photographs using
smartphones as well. If citizens are motivated to capture and share geo-tagged
omnidirectional images of streets in their everyday lives, the accumulated images
can be processed as frames of reference for assessing the impact of disasters.

We have developed a system for citizens to capture omnidirectional images
along urban streets and extract the amount of visible green to recommend pleas-
ant walking routes. The system first processes omnidirectional images based on
Lambert azimuthal equal-area projection. As shown in Fig. 2, it then applies an
edge detector and analyzes fractal dimension to find vegetation in the images.
Finally, the amount of green in each image is determined based on a color-based
filtering technique. In particular, color histogram data constructed from sam-
ple images of vegetation are used to compute the percentage of vegetation in
each omnidirectional image. “Green routes” can be recommended based on the
resulting georeferenced data.

Although we have focused on green routes, other information can be extracted
from omnidirectional images using different image processing and spatial analy-
sis techniques. By opening up the possibilities for such everyday applications

Fig. 2. Extracting the amount of vegetation from omnidirectional images
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of omnidirectional street images, we expect to increase useful location indexed
datasets that can be quickly retrieved and used in disaster situations.

4.4 Privacy Preservation

If there is any concern on privacy preservation in user participatory sensing,
people are discouraged to join any participatory sensing applications. Further,
if privacy preservation mechanism cannot be easily understood by the users, it
will also discourage them. In light of these issues, we have proposed a perturba-
tion technique called Negative survey [15] and some of its extensions. Negative
survey and its extension can be applied to user participatory sensing for disas-
ter situation. Typical example is the usage of privacy-preserving smartphones
as seismometers to complement the existing infrastructure deployed by K-NET
[16]. Early and detailed fire detection as well as detection of people follow in
disaster situation is within our scope. We have also proposed mechanisms for
protecting location privacy [17], which makes it difficult to trace the trajectory
of a specific node. Since the degree of location privacy is not yet well defined,
we are now tackling the issue and try to re-define it [18].

5 System Architecture for Providing Integrated Services

To use the data collected through user participatory sensing effectively, we briefly
describe methods to (1) build the environmental data warehouse (EDW) which
works as an infrastructure providing comprehensive and predictive environmen-
tal information, and (2) integrate heterogeneous environmental information from
multi-modal sensors into an aggregate value which facilitates further processing,
and (3) determine the optimal path plans in environments which are varying
continuously.

Figure 3 shows the overall architecture. Raw multi-modal sensor data are
input into fact tables of the EDW where multidimensional data model and data
prediction method are applied. The dimensional information of space and time
is extracted and aggregated into dimension tables. The EDW contains predictive
functions therefore it can provide historical, current and future environmental
information.

The walkable space of pedestrians is modeled as a street network. The inter-
sections are treated as nodes and the walkable street segments between intersec-
tions are treated as edges. Map matching is applied to associate sensor data to
proper street edges.

In order to integrate the multi-modal sensor data consistently and flexibly, a
novel multi-factor cost (MFC) model is proposed. The aggregate cost rates for
edges are calculated out by applying the MFC model. The cost value of an edge
accessed by the PP engine is the product of aggregate cost rate and the travel
time for that edge.

Based on the former two solutions, the optimal path planning (PP) problem
is solved in a time-dependent network by applying a dynamic programming
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Fig. 3. Overall architecture of the proposed methods

method. The PP engine receives path queries that are submitted by pedestrians
in real time. We have developed the prototype client application running on
an Android smartphone. A map view is displayed on the smartphone and the
pedestrian can specify her origin and destination by touching the screen. Then
the planned path calculated on a server is displayed on the map view to navigate
the pedestrian to approach her destination.

This architecture has been used to integrate the data from a wireless sensor
network (WSN) to gather temperature and humidity information and a dis-
tributed camera system to detect the traffic flows of pedestrians [19], thereby
recommending comfortable and safe navigation routes in an extremely hot urban
environments.

6 Conclusion

We have proposed a robust and resilient sensing environment by extending and
integrating cooperative location inference and user participatory sensing. The
proposed user participatory sensing environment supports energy efficient sens-
ing, integrated sensing in everyday and emergency situations using mobile and
stationary sensors, and privacy preservation. In particular, the proposed envi-
ronment encourages proactive engagement in disaster mitigation by means of
everyday data collection. The automated location inference facilitates end-user
deployment of IoT sensors as well.

User participatory sensing has important roles to play even when high qual-
ity sensors and simulation systems are in place. Oftentimes disaster-monitoring
infrastructures are of national and/or regional concerns. Infrastructures, such
as Japanese K-NET, are deployed and managed under different budgetary
restrictions, which may lead to compromised spatial resolutions of sensors. In
the Japanese context, it is particularly important to consider complementary
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relationships between cheap, quick and dense crowd sensing and reliable
infrastructural sensors. Moreover, as people often face scarcity of information in
disaster situations, providing more data through crowd sensing can help reduce
false negative problems of failing to issue alarms and warnings.

Computer-based simulation systems help us understand how things behave
in disaster situations without actually experiencing them in the real world. Con-
necting simulations to real-world events could effectively narrow down the space
for what-if explorations for pertinent decision-making. Crowd sensing then can
play a significant role in making simulations useful in time-critical disaster situa-
tions as it provides a way to feed real-world information quickly into simulations,
much before authoritative information is made available. Also, microscopic sim-
ulations of shakes and fires at a building scale require fine-grained feed of real-
world data that crowd sensing could cater well for. Furthermore, simulations
could be useful for making crowd-sensing systems including crowd behaviors and
computational processing mechanisms smarter. For example, simulation results
could be used to request sensing tasks efficiently by prioritizing data collection
based on the most critical goals such as saving lives.

We expect that our current results will be extended to be a systemic yet flex-
ible environment rather than a complex, monolithic system. Thus, our proposed
mechanisms could be adapted easily to different disaster situations and different
external systems.
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