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Abstract. Many companies rent Virtual Machines (VM) from cloud
providers to meet their computational needs. While this option is also
available to end-users, they do not always take advantage of this option.
One reason may be that it is common to pay on a per-VM-basis, whereas
the telecommunications sector has shown that customers prefer flat rates.
A flat rate for cloud services needs to define utilization thresholds, to cap
the usage of heavy customers and thereby limit their impact on the flat
rate price and the cloud performance. Unfortunately, customers consume
multiple heterogenous resources in clouds, e.g., CPU, RAM, disk I/O and
space, or network access. This makes the definition of a customer’s fair
“cloud share” and according utilization thresholds complex.

Backed by a questionnaire among more than 600 individuals, this
paper designs the new Greediness Metric (GM) that formalizes an
intuitive understanding of multi-resource fairness without access to con-
sumers’ utility functions. This GM enables the introduction of attractive
cloud flat rates and fair sharing policies for private/commodity clouds
and provides incentive to customers to wisely determine VM configura-
tions.

1 Introduction

Cloud Computing (CC) is a computing paradigm enabled by the growing connec-
tivity provided by modern communication systems combined with virtualization
technology [8,27]. CC allows server farms to provide their combined computing
power on demand to customers, such as end-users and companies. To process
a workload through CC a customer starts Virtual Machines (VM) in the cloud
that process the workload. In particular, VMs are defined by Virtual Resources,
e.g., virtual CPU and virtual RAM [3,8]. Resources in private/commodity clouds
are often managed by quotas, i.e., each user has a quota defining a maximum of
VRs that his VMs may have in total.

As opposed to this, in commercial clouds, it is common practice that cus-
tomers pay on a per-VM-basis [2]. However, the telecommunications sector has
shown that customers often prefer flat rates [1,21,22], even if a volume-based tar-
iff would reduce costs [18]. Contrary to a volume-based tariff, a flat rate induces
a fixed cost cap. For private users this allows for care-free use and for commer-
cial users an easy budgeting of costs. This suggests high demand for cloud flat
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rate schemes. With a cloud flat rate customers pay a monthly fee to get access
to a cloud, where they can start VMs. Just as Internet flat rates come with a
maximum bandwidth, cloud flat rate customers would get a certain quota to
spawn VMs.

However, this mechanism is neither sufficient to cap costs that individual
customers cause nor to ensure fairness between customers, because customers
(i) often deploy different amounts of their quota and (ii) load VMs differently. In
particular, (i) means that some customers may only operate a few VMs leaving
most of their quota unused, while others fully utilize their quota. (ii) describes
that even if customers create exactly the same number and types of VMs, the
costs they cause varies depending on how they utilize their VMs. Because VMs
on the same host compete for resources, a heavily loaded VM may impair the
performance of other VMs on the same host. Therefore, in flat rate or pri-
vate/commodity clouds, it is desirable to limit VMs of heavy customers in favor
of VMs of more moderate customers, such that VMs of moderate customers are
not impaired by VMs of heavy customers.

While technical means to enforce fairness in this way exist [3,10,12], cloud
fairness is neither sufficiently enforced nor explored [7–9,15,28]. What makes the
definition of cloud fairness problematic, is that multi-resource fairness has to be
defined without access to utility functions. Here, multi-resource implies that bun-
dles, which are allocated to the consumers, consist of heterogenous resources and
the non-accessibility of utility functions implies that it is unknown how much
consumers valuate different bundles (a consumer’s utility function maps each
bundle to a number quantifying the consumer’s valuation for the bundle). Util-
ity functions are unknown, because, depending on the workload a VM executes,
dependencies between resources differ. Therefore, even for the owner of a VM,
the VM’s utility function is difficult to determine. Furthermore, no standard-
ized format to describe utility functions exists. Lastly, even if cloud users could
determine and express utility functions, they may not want to reveal it to the
cloud operator, as it reveals private information about internal processes.

The problem of cloud fairness is often addressed by VM scheduling, i.e.,
deciding which VM should be started next. This is insufficient to streamline
resource utilization in clouds, because it makes static assumptions on utility
functions necessary [4,7,9], while VM demands are dynamic. To reach a general
applicability (including VM runtime), this paper defines the Greediness Metric
(GM) in return to the research question how to quantify the commensurability
of VMs’ runtime resource utilization, i.e., how fair VMs behave. Because fairness
is an intuitive concept, i.e., differs from person to person, the conformance of
the GM with an intuitive understanding of fairness is verified by a questionnaire
among more than 600 participants.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work leading to the research question stated in Sect. 2.1. Section 3 outlines the
questionnaire, presents its results, and discusses key findings. Based on these
outcomes, the new Greediness Metric (GM) is defined in Sect. 4. Section 5 draws
conclusions and outlines future work.
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2 Related Work and Problem

For a single resource, the size of bundles can be quantified, and thus, the value
of bundles objectively compared. Therefore, fairness can be intuitively defined
as Max-Min-Fairness [25] or Proportional Fairness [4] and quantified by metrics
such as [14,19,30]. While such allocation problems were extensively studied in
computer science [6,25], multi-resource allocation received much less attention.

In data centers, which comprise clusters, grids, and clouds, consumers share
resources, such as CPU time, RAM, Disk I/O and space, and network access,
wherefore it is necessary to define fairness, when every consumer receives a
bundle of heterogenous resources. As noted in [7,9,15,17,23,28], multi-resource
allocation in data centers is so far not fully investigated and often reduced to
single-resource allocation problems at the cost of efficiency and fairness [9,20].
The assumption of more advanced approaches is that the resource utilization
of jobs, which determine those entities consuming resources in clusters and
grids, is static or at least follows static ratios [7,9]. This allows to introduce
fairness by job scheduling, i.e., which job should be started next. However,
VMs, which are the entities consuming resources in clouds, change their resource
utilization frequently and dynamically. This not only prohibits reducing cloud
fairness to VM scheduling but also prohibits incorporating the concept of envy-
freeness [9,11,28]. Envy-freeness, i.e., no consumer prefers to swap his bundle
with another, is essential for the definition of fairness in economics. However,
this definition is not applicable, when consumer’s utility functions are unknown
or highly dynamic, as it is the case for clouds. Subsequently, approaches to multi-
resource fairness in data centers (especially their cloud instances) are compared
here, while ignoring numerous approaches focusing on a single resource.

Dominant Resource Fairness (DRF) is the most prominent approach to intro-
duce multi-resource fairness in data centers [9]. DRF defines the value of a bundle
as the biggest proportion relative to the total supply of any resource in it (cf.
Sect. 3.2). Therefore, to define the value of a bundle only one resource is con-
sidered, which is also known as the L∞ norm. A DRF fair allocation is the
allocation that maximizes this value for every consumer. [11] points out that for
many other functions (including all other Li∈N norms) a unique allocation exists
that can be found in polynomial time, but that the authors of DRF never argue

Table 1. Comparison of related approaches.

App. Fairness Area Utility function

DRF Max-min for L∞ norm Scheduling Leontief

[4] Proportional Fariness Scheduling Leontief

BBF Equal share on a bottleneck Scheduling Perfectly complementary

[28] Envy free and Pareto efficient Micro resources Cobb-Douglas

[17] Priority based on metrics Scheduling Not needed

GM Based on questionnaire Runtime Not needed
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why their choice is superior. Leontief utility functions model that resources are
required in static ratios, i.e., increasing the amount a consumer receives of one
resource does not increase his utility if his share of all other resources is not
increased by the same factor. While all proofs for DRF’s desirable properties are
based on Leontief utility functions [9,23], the actual DRF scheduling policy, as
proposed in [9], allows consumers to request different resource bundles. There-
fore, in the scheduling process, consumers can have arbitrary utility functions,
but DRF’s properties are only proven for Leontief utility functions. [4] shows
that proportional fairness is superior to DRF in terms of efficiency and comes
with the same desirable characteristics under realistic assumptions.

Bottleneck-based fairness (BBF) was introduced in [7,8]. An allocation is
bottleneck-based fair, if every consumer either is allocated all requested resources
or at least the equal share on a congested/bottleneck resource and the other
resource in proportion. [29] defines a multi-resource on-line scheduling policy
that achieves BBF without knowing consumer’s utility functions in advance.

[28] presents an allocation policy that achieves game-theoretic fairness, i.e.,
sharing incentive, envy freeness, and pareto-efficiency, when allocating cache
capacity and memory bandwidth. Different applications are profiled to convinc-
ingly argue that Cobb-douglas utility functions are well suited to model dimin-
ishing returns and substitution effects for these resources.

[17] considers the fair sharing of grids between customers and research groups.
Contrary to all other approaches discussed in this section, [17] achieves fairness
by a penalty/priority function, which is close to our approach. In particular, such
function determines the priority of consumers when granting resource requests.
Such approach is much more practically oriented, because no assumptions about
utility functions need to be made.

Another research field on cloud resource allocation focuses on live-migration
[16,26], i.e., rescheduling VMs during runtime. While live-migration is applied
during VM runtime it is, just as VM scheduling, orthogonal to this work here,
because it does not change priorities of VMs.

Table 1 compares the approaches discussed in terms of the adopted fair-
ness definition, the application area, and the assumed utility function. Most
approaches are way too complex to be applied during VM runtime and none
of these is based on an intuitive understanding of fairness. This motivates the
general research undertaken and specifically this paper’s problem statement.

2.1 Problem Statement

The characteristic of fair cloud resource allocations that is distinct for this con-
text is that customers (between whom fairness is to be defined) utilize resources
from different resource pools (hosts) by intermediaries (VMs). While fairness has
to be achieved between customers, this has to be done by allocating resources to
their VMs. Unfortunately resources can only be moved between VMs, which run
on the same host. However, besides this structural dilemma, also a more general
problem is faced: Defining and enforcing fairness of multi-resource allocations
without knowing consumers’ utility functions. In particular, because bundles
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consist of multiple heterogenous resources, bundles can contain resources in dif-
ferent amounts. This prohibits an objective comparison of bundles. For example,
some customers may require more CPU for their workloads, while others require
more RAM [20]. A third customer may deploy the cloud for backups and, there-
fore, mostly requires disk-space and bandwidth. Therefore, consumers can have
different preferences over the same bundles.

Because utility functions of consumers in clouds are unknown, it is not possi-
ble to define fairness via utility functions here and, thus, fairness has to be defined
via bundles that VMs serve themselves. In particular, hosts work as “self-serving
stores” for VMs, which means that they provide all requested resources to VMs,
if possible. Therefore, fairness in clouds has to be defined as constraining VMs of
those customers whose VMs overcharge their self-serving stores, i.e., are greedy.
While also the concept of greediness has no formal definition, it can be better
defined and quantified with the information that is available in clouds.

Therefore, the problem statement for this paper reads as follows: The
greediness of VMs can be defined and quantified based on their multi-resource
self-servings. An allocation is fair in such a case, when (i) the aggregates per
customer of these quantifications are aligned and (ii) VMs of “greedy” customers
are constrained in favor of VMs of “less greedy” customers.

3 Questionnaire

A questionnaire was developed to evaluate the intuitive understanding of fair-
ness and greediness and to justify empirically the design of the new Greediness
Metric (GM). The questionnaire can be found in the appendix of [24]. The
questionnaire specified real-life resource allocation scenarios in terms of three
questions Q1, Q2, and Q3 to not distract participants by technical terms and let
them fully concentrate on the question of fairness. While these scenarios were
specific, the questions were carefully designed to reach generic insights about
intuitive understandings of fairness and greediness. To describe these questions
subsequently, resources and consumers are denoted by ri and cj , respectively,
where i, j ∈ N>0. Questionnaire participants had to chose between different
options of allocations or define rankings of consumers. Additionally, participants
were offered to explain their answers in text boxes. The questionnaire did not
address any particular target group, to allow evaluating a popular and intuitive
understanding of fairness that is not biased by technical notions established by
experts. Out of 721 participants, who started the questionnaire, 604 completed
it. Q2 addressed the question of how consumer requests should be taken into
account, when allocating resources, but did not address the question of how fair-
ness or greediness can be defined. Therefore, Q2 is not directly related to the
design of the GM and only discussed in [24].

3.1 Choosing the Most Fair Allocation (Question 1)

DRF is the most prominent approach for fairness in data centers (cf. Sect. 2).
Therefore, DRF’s conformance with an intuitive understanding of fairness was
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Table 2. The four Allocation
Options A11, A12, A13, and A14.

A11 A12 A13 A14
Consumer r1 r2 r1 r2 r1 r2 r1 r2
c1 2 0 3 0 4 0 5 0

c2 0 4 0 6 0 8 0 10

c3 4 8 3 6 2 4 1 2

Table 3. The three Scenarios S31, S32, and
S33.

S31 S32 S33
Consumer r1 r2 r3 r1 r2 r3 r1 r2 r3
c1 4 3 3 4 2 4 4 1 4

c2 2 1 5 1 4 3 1 4 3

c3 4 2 1 1 6 2 1 6 2

Remainder 2 3 0 6 0 0 6 1 0

evaluated by Q1. In particular, DRF’s centerpiece, which is using the L∞ norm to
measure the value of a bundle (c.f. Sects. 2 and 3.2), was evaluated. The scenario
described covers two resources r1 and r2 of which six and twelve units where
available, respectively. These resources have to be allocated to three consumers
c1, c2, and c3. c1 only requires r1, c2 only r2, and c3 requires for each unit of r1
two units of r2. This results in seven possible allocations to allocate all resources
and do not give consumers resources they have no use for. However, most of
these allocations are intuitively unfair, e.g., in two of these allocations at least
one consumer receives no resources at all.

Because the scenario describes that resources are requested in static ratios, it
is transferable to allocation problems in data centers, where these static ratios of
resource requests, i.e., Leontief utility functions, are the standard assumption [4,
7,9]. Table 2 shows four of the seven allocations and their respective labels. These
four allocations were presented to participants numerically and graphically and
they had to choose the allocation that seemed most fair to them. As expected,
A11 and A14 were only chosen by a minority of the 721 participants (0.4 %
and 1.1 %, respectively) and most participants deterred between A12 and A13
(30.0 % and 68.5 %, respectively). The following arguments in support of A12
are summarized from textual comments received:

– c1 and c2 only compete with c3 for resources, but not with one another. A fair
allocation splits resources equally between those who contend for them.

– All receive an equal amount of what they want.
– This is the only allocation where nobody can complain that someone has more

of the same resource.

For the following reasons A13 was supported:

– When prices are introduced based on available units, this option gives the
same value to all consumers.

– c1 and c2 receive 2/3 of one resource and c3 1/3 of two resources, which makes
2/3 for everybody. On a similar note, some participants rejected A12, because
c3 gets as much as c1 and c2 combined.

– Because c1 and c2 only want one resource, they should get more of it than c3,
as c3 wants both resources.

– This option is the result of a simple auction or when all consumers get an
equal share of both resources and then trade.
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3.2 Estimating Greediness (Question 3)

Q3 was designed to collect information on how the greediness of consumers, who
served themselves from a pool of common resources, is perceived. The transfer-
ability to clouds is evident, because in clouds VMs serve themselves from their
host. Moreover, because in flat rate and commodity clouds no payment on a
per VM basis occurs, such clouds are also a common resource shared among
customers. In addition, insights were collected on how proportionality and value
of resource bundles is perceived, when no information about consumers’ utility
functions is available. Thus, Q3 provides insights on how resources that different
VMs on the same host utilize can be compared.

Q3 is based on three scenarios S31, S32, and S33, were three consumers c1,
c2, and c3 had served themselves from a pool of three common resources r1, r2,
and r3 (like VMs on the same host). To split these resources, each consumer had
allocated himself a certain bundle as shown in Table 3. The three consumers had
to be ranked according to how their greediness was perceived, all being based
on the amounts the consumers had allocated themselves.

Metrics: Many participants tackled Q3 by proposing one of the four metrics
discussed subsequently.

Price: The price metric is the simplest metric. The value of one unit of resource
ri is defined as p/←→ri , where p is a constant and ←→ri is the number of units
available of ri. The value of a bundle is the sum of values of its resources. For
example, for p = 1 the value of c2’s bundle in S31 is 2

12 + 1
9 + 5

9 = 5
6 . This metric

is equivalent to the sum-based-penalty function presented in [17].

P × S (Price×Scarcity): The P×S metric is a natural extension of the price
metric. The value of one unit of resource ri is defined as a(ri) · p/←→ri

2, where
a(ri) is the amount that is allocated in total of ri. The value of a bundle is
defined as the sum of values of those resources contained. For example, for p = 1
the value of c2’s bundle in S31 is 2·10

122 + 1·6
92 + 5·9

92 = 29
54 .

P ∩S (Price∩Scarcity): The P∩S metric is another natural extension of the price
metric and defines the value of a resource just as the price metric. However, the
value of a bundle is defined only over resources that are depleted, i.e., resources
where a(ri) = ←→ri . For example, for p = 1 the value of c2’s bundle in S31 is⌊
10
12

⌋ · 2
12 +

⌊
6
9

⌋ · 1
9 +

⌊
9
9

⌋ · 5
9 = 5

9 .

DRF (Dominant Resource Fairness): The DRF metric defines the value of a
bundle by the L∞ norm, i.e., by the biggest share of any resource relative to the
overall amount of the resource. For example, the value of c2’s bundle in S31 is
max

(
2
12 , 1

9 , 5
9

)
= 5

9 . According to this DRF metric, the bundles of c1 and c2 in
S33 are equally valuable. This tie is broken by the second biggest share in the
bundles, wherefore c1’s bundle is more valuable.
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Frequency Investigations: For some questionnaire rankings the free text indi-
cated that the participant had assumed real life values of those resources and
ranked the consumers accordingly. These rankings as well as incomplete rankings
were removed, wherefore the presented results are based on 553 answers. Sub-
sequently, consumer rankings are denoted by triplets. For example, the triplet
(2,1,3) denotes the first consumer as moderate, the second consumer as most
greedy, and the third consumer as least greedy.

Figure 1 illustrates for each scenario how many participants selected each
ranking and highlights those rankings that correspond to all metrics discussed
in Sect. 3.2. These numbers in Fig. 1 allow to compile Table 4 showing for each
metric the respective ranking in the three scenarios and by how many partic-
ipants this ranking was selected. Figure 1 and Table 4 show that the metrics
discussed in Sect. 3.2 cover the majority of participants’ rankings.

[24] analyses the combinations of rankings over the three scenarios, because
these rankings given by most participants did not match the same metric over
the three scenarios. This reveals that the most frequent combination was selected
by 79 participants, conforming to the DRF metric. The second, third, and fourth
most frequent combinations were selected by 55, 43, and 32 participants, con-
forming to the P×S, Price, and P∩S metric, respectively.

Fig. 1. Ranking frequencies (represented by triplets) in Q3 scenarios.

Table 4. Percentages of most frequent rankings in Q3.

Metric S31 S32 S33

DRF (2,1,3): 52.7 % (2,3,1): 36.8 % (2,3,1): 37.7 %

Price (1,2,3): 38.0 % (1,3,2): 35.5 % (1,3,2): 22.5 %

P×S (1,2,3): 38.0 % (1,3,2): 35.5 % (2,3,1): 37.7 %

P∩S (2,1,3): 52.7 % (3,2,1): 22.5 % (1,2,3): 13.4 %
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Table 5. A problematic DRF ranking.

r1 r2 r3 Price P×S P∩S DRF

available 30 30 30

c1 18 0 0 1.80 1.68 0.00 0.60

c2 0 14 17 3.10 3.04 1.40 0.56

c3 10 16 12 3.80 3.69 1.60 0.53

3.3 Discussion

Only the first two arguments of the questionnaire’s text replies in favor of A12
of the above presented Q1 are correct. The third argument is incorrect, because
c1 receives least of r2 and c2 least of r1. Therefore, the arguments in favor of A13
are more versatile and sound than those in favor of A12. Because A12 and A13
were chosen by 30.0 % and 68.5 % of the participants, respectively, it is concluded
that A13 determines the intuitively fair allocation.

In Q3, participants who ranked in conformance to the Price and P∩S metrics,
stated that they had applied these metrics to arrive at the ranking. In contrast,
participants who ranked conforming to the DRF and P×S metrics often argued
not in conformance to the respective metric. In particular, for participants ranking
in conformance to the DRF metric, only one participant argued in conformance to
the DRF metric, while the majority argued that those consumers who exceed their
equal share are greedy. Thus, in S31 c2 is the greediest due to the disproportional
consumption of r3. Analog, in S32 and S33 c3 is the greediest, because c3 exceeds
the equal share of r2 by 50 % and c1 is the second greedy, because c1 exceeds the
equal share of r1 by 33 %. Participants who ranked conforming to the P×S metric
mostly argued that the total amount of resources consumed is deceive (the tie of
c1 and c3 in S33 according to this logic was broken by c3’s 50 % overconsumption
of r2). Further details can be found in [24].

Implications for Existing Metrics: While the metrics discussed in Sect. 3.2
cover the majority of participants rankings (cf. Table 4 and [24]), none of these
metrics captures an intuitive understanding of fairness: The P∩S metric has a
low conformance in S32 and S33 and for S33 results in the inverted ranking of
S32. The latter implies that consumers can decrease their score by consuming
more. This is not only counter-intuitive, but gives the undesirable incentive to
consume more than needed. The Price metric has a low conformance in S33 and
identifies c1 as “greediest” in S31, although c1 does not cause the bottleneck, but
precisely sticks to his equal share (a behavior that is considered humble in S32
and S33). The sum- and the root-based-penalty functions, which [17] identifies
as best metrics, result in the same rankings as the Price metric and, therefore,
are also not satisfactory. Similar arguments hold for the P×S metric.

The DRF metric is satisfactory at a first glance: For all three scenarios of Q3
it results in the most frequent ranking and also in the most frequent combination
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of rankings (cf. Table 4 and [24]). However, only one participant argued according
to DRF, while the majority argued that those who exceed their equal share are
greedy. Therefore, the high conformance of DRF stems rather from the fact
that every consumer exceeds the equal share on at most one resource (because
DRF only considers these resources, this allows DRF to produce good results).
Table 5 shows an allocation that proves that DRF’s approach to ignore all but
one resource can lead to undesirable results. For the depicted allocation, all other
metrics discussed in Sect. 3.2 give the inverse ranking of DRF. Also, according
to the arguments made by the participants, the DRF ranking is unfair: DRF
classifies c1 as the consumer with the most valuable bundle, although c1 only
receives the least loaded resource. c3 cedes no resource at all and receives most
of the only scarce resource, but DRF classifies c3 as most humble. Also, Q1
of the questionnaire identified A13 as the intuitively fair allocation, while the
DRF-fair allocation is A12. Because Leontief utility functions are assumed in
Q1, i.e., resources are required in static ratios, and DRF is defined based on
this assumption, DRF should result in an intuitively fair allocation. Therefore,
while DRF is often applied, when Leontief utility functions do not hold, Q1
shows that already for Leontief utility functions, DRF may result in allocations
that are not intuitively fair. Moreover, consumers and resources can be added
to this scenario, where consumer ci requests only resource ri (and as before one
consumer requests all resources evenly). Thereby, the perceived unfairness of
DRF can be increased arbitrarily, because the consumer requesting all resources
receives as much as all other consumers combined.

Due to these shortcomings of all metrics presented so far, the new Greediness
Metric (GM) was developed. This GM is aligned with arguments of this discus-
sion and, thus, (i) classifies A13 in Q1 as the most fair allocation, (ii) results
in the most frequent ranking for each of the three scenarios in Q3, (iii) gives
the “correct” ranking for the allocation in Table 5, and (iv) captures an intu-
itive understanding of fairness, which allows defining attractive cloud flat rate
models.

4 Greediness Metric

The Greediness Metric (GM) maps each resource bundle in an allocation to a
rational number that can be associated to the greediness of the consumer, who
served himself the bundle. In that sense this GM serves the same purpose as the
other metrics presented in Sect. 3.2, which quantify the value of a bundle. As
the most frequent textual comments of the questionnaire suggest, the GM sums
up, what exceeds the equal share in each bundle. However, it also deducts what
is not consumed of the equal share but handed over to other consumers instead.

Let R = (r1, r2, . . . , rm) be a set of m resources, where resource ri ∈ R is
available in the amount of ←→ri . An allocation of R to n consumers (c1, c2, . . . , cn)
can be denoted by a matrix A ∈ R

m×n
≥0 with

∑n
j=1 aij ≤ ←→ri , for all i ∈

{1, 2, . . . ,m}, where cj receives amount aij of ri. The amount of ri that cj

receives beyond his equal share is then aij − ←→ri /n (if the difference is negative,
cj does not utilize its entire equal share of the resource).
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If aij > ←→ri /n, consumers other than cj have to cede some of their equal
share of ri in order to enable cj ’s share of ri. Therefore, the amount by which
cj exceeds his equal share is added to the greediness of cj .

If aij = ←→ri /n, cj exactly receives his equal share, wherefore it does not
change cj ’s greediness. In particular, if aij = ←→ri /n for all i ∈ {1, 2, . . . ,m}, cj ’s
greediness is zero.

If aij < ←→ri /n, cj ’s cession of ri is credited to cj , i.e., subtracted from cj ’s
greediness, to the extent that other consumers profit from this cession, which
is the case, when they utilize ri beyond their equal share. This extension not
only depends on how much of ri is utilized beyond the equal share by other
consumers, but also on how much of ri is ceded by other consumers. Therefore,
the credit factor for the cession of ri is the ratio of what is ceded of ri to what is
consumed beyond the equal share of ri. To capture this notion formally, the sum
of what consumers receive beyond and cede of their equal share of ri is defined
by α(ri) and β(ri), respectively. Therefore,

α(ri) :=
n∑

j=1

max
(
0, aij − ←→ri /n

)
and β(ri) :=

n∑

j=1

max
(
0,←→ri /n − aij

)
.

Multiplying the amount that cj cedes of ri with α(ri)/β(ri) implements the
considerations above. Therefore, the greediness of cj is defined as

g(cj) :=
m∑

i=1

o(i, j) · n/(m · ←→ri ), (1)

where o(i, j) is the offset for cj ’s consumption of ri and defined as

o(i, j) :=

{
aij − ←→ri /n if aij ≥ ←→ri /n,

γ · α(ri)
β(ri)

· (
aij − ←→ri /n

)
else.

(2)

Note that, if β(ri) = 0, no consumer cedes ri and, therefore, the else-part of
Eq. 2 is never reached (thus, no division by zero occurs). The factor n/(m ·←→ri ) in
Eq. 1 normalizes resource units. [24] discusses (i) the choice of this normalization
factor in detail, (ii) detailed examples for the calculation of the GM, and (iii) how
the GM is applicable to scenarios, where consumers have different endowments
(instead of every consumer having an endowment of ←→ri /n).

The parameter γ defines how strongly the ceding of resources is credited
and, thereby, fine-tunes the greediness metric to best comply with the ques-
tionnaire results. Table 6 shows the results of the GM dependent on γ for the
questionnaire’s scenarios. As the table shows, already without the parameter γ
(or, equivalently, γ = 1), the GM complies with results of Q1 and S31. However,
for S32 and S33, the GM results in the ranking (3,2,1) (cf. Table 6), while the
ranking most frequently selected by the participants is (2,3,1) (cf. Table 4). This
mismatch for γ = 1 can be explained as follows: In S32 and S33, c1 exceeds the
equal share of r3 by 33 % but also cedes 50% of r2 to c3, while c2 is “neutral”.
Thus, while c2’s greediness is zero independent of γ, c1 has a negative greediness
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Table 6. GM results for Q1 and Q3 of the questionnaire.

γ Cons. A12 A13 S31 S32 and S33

x c1 0.25−0.5·x 0.5−0.5·x 0 0.1−0.16·x
c2 0.25−0.5·x 0.5−0.5·x 0.2 0

c3 0.5 0 −0.2·x 0.16−0.1·x
1 c1 −0.25 0 0 −0.05

c2 −0.25 0 0.2 0

c3 0.5 0 −0.2 0.05

0.5 c1 0 0.25 0 0.027

c2 0 0.25 0.2 0

c3 0.5 0 −0.1 0.1

for γ = 1, i.e., for γ = 1, the GM ranks c2 greedier than c1. However, most
participants rated c1 greedier than c2, because c1 over-consumes r3 while c2
never exceeds the equal share. Accordingly, γ ∈ [0, 1] regulates how strongly the
ceding of resources is credited (in addition to the dynamic regulation by α(ri)

β(ri)
),

where, the smaller γ is chosen, the harder it gets to compensate for exceeding
the equal share. [24] shows that for γ ∈ ]14 , 2

3 [ the GM perfectly complies with
the questionnaire results and Table 6 lists that γ = 0.5 is an appropriate choice.

5 Conclusions and Future Work

Multi-resource fairness for clouds was so far not defined satisfactorily. There-
fore, the Greediness Metric (GM) was defined and verified via a questionnaire
among more than 600 participants. The GM defines an intuitive understanding
of multi-resource fairness without access to utility functions. This questionnaire
also revealed that DRF, which is the state-of-the-art in data center fairness, not
always conforms with an intuitive understanding of fairness. Because the GM’s
definition is based on arguments of non-technical participants, it is intuitively
comprehensible. This intuitive definition of cloud applicable fairness, allows for
the design of attractive cloud flat rates. In particular, the telecommunications
sector has shown that customers often prefer flat rates. Also private/commodity
clouds are a perfect use case for the GM, as here no service level agreements
guide the resource allocation making fairness an important allocation goal.

In addition to its intuitiveness, the GM is also well suited to be integrated
into cloud sharing schemes, because the GM provides the right incentives to
chose the configuration of a VM, such that it matches the VM’s subsequent
load: When a VM tries to exceed the resources it is configured with, it will
receive them, if available. However, the customer’s greediness increases with a
potentially negative effect on other VMs of this customer. Because a customer’s
greediness only decreases, when resources that his VMs do not utilize are utilized



42 P. Poullie and B. Stiller

by other VMs, it is not guaranteed that idle resources are credited to the con-
sumer. Therefore, under- as well as over-provisioning VMs is costly. No metric
known today (including those in Sect. 3.2) provides this incentive mechanism.

The GM is currently being evaluated within two different settings: the first
setting allows for an evaluation of the GM under idealistic conditions to con-
clude on the effect of different design aspects, e.g., the function to aggregate the
VM greediness to customer greediness. The second setting defines a CloudSim
[5] extension, which allows for evaluating the GM under realistic conditions in
operation. In turn, the implementation to integrate the GM fairness mechanism
into OpenStack [13] is ongoing.
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