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Abstract. To determine whether strategic goals are met, organizations
must monitor how their business processes perform. Process Performance
Indicators (PPIs) are used to specify relevant performance requirements.
The formulation of PPIs is typically a managerial concern. Therefore,
considerable effort has to be invested to relate PPIs, described by man-
agement, to the exact operational and technical characteristics of busi-
ness processes. This work presents an approach to support this task,
which would otherwise be a laborious and time-consuming endeavor.
The presented approach can automatically establish links between PPIs,
as formulated in natural language, with operational details, as described
in process models. To do so, we employ machine learning and natural
language processing techniques. A quantitative evaluation on the basis
of a collection of 173 real-world PPIs demonstrates that the proposed
approach works well.

Keywords: Performance measurement · Process performance indica-
tors · Model alignment · Natural language processing

1 Introduction

Process Performance indicators (PPIs) play an important role in monitoring the
performance of a process [12]. Defining and measuring suitable PPIs are key tasks
for aligning strategic business objectives with the operational implementation
of a process [22]. A major problem in this regard is that the formulation of
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PPIs is typically a managerial concern, while the monitoring of PPIs requires
a technical perspective on a process [26]. The resultant gap, representative of
the well-known Business-IT-Gap (cf. [11,14]), leads to a mismatch between the
definitions of PPIs on the one hand and the process models that describe the
actual implementation of processes on the other. This mismatch can result in
PPI descriptions that refer to concepts of managerial interests that do not appear
in the technical process definition.

The monitoring of process performance is furthermore hindered by the fact
that managers frequently start out to provide relevant indicators in the form of
unstructured natural language descriptions [24,26]. In order to compute values
for these PPIs, the concepts contained in these textual PPI descriptions must be
linked to their corresponding process model elements [23]. Currently, the only
way to obtain these links is through manual identification. The effort associated
with such a manual identification is considerable and, in many cases, hardly man-
ageable due to the vast number of process models and accompanying PPIs that
exist in organizations. Specifically, manual alignment actions do not scale with
business process model repositories that contain hundreds or even thousands
of process models [25], each of which may be accompanied by up to a dozen
PPIs. These observations call for an effective and efficient means of automated
support.

The goal of the presented research is to provide the necessary support for
the establishment of links between textual PPI descriptions and process model
elements. To this end, we introduce an approach that automatically relates a tex-
tual PPI description to the relevant parts of a process model. We shall refer to
this relation as an alignment, following the terminology used to describe relations
between concepts from different artifacts in contexts such as schema matching [5]
and process model matching [4]. An alignment consists of a number of pair-wise
correspondences between the PPI and process model elements. To obtain this
alignment, we combine machine learning and natural language processing tech-
niques in a novel manner. A quantitative evaluation with a set of 173 PPIs
obtained from industry and industrial reference frameworks, demonstrates that
our automated approach produces satisfying results. The vast majority of the
automatically identified correspondences is in line with how people would man-
ually align them. The approach thereby successfully supports what would oth-
erwise be a laborious manual endeavor.

The remainder of this paper is structured as follows. Section 2 illustrates
the problem of aligning unstructured textual PPI descriptions to process model
elements. Section 3 describes the proposed approach to automatically generate
alignments. The quality of the generated alignments is evaluated in Sect. 4.
Section 5 discusses related work on both the problem and solution domains.
Finally, we conclude the paper and discuss future research directions in Sect. 6.

2 Problem Illustration

We illustrate the challenges associated with the automated alignment of process
model elements to a PPI using the process model depicted in Fig. 1. The process
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model describes the request for change process as implemented by the IT Depart-
ment of the Andalusian Health Service.1 The process starts when a requester
submits a request for change (RFC). Then, the planning & quality manager ana-
lyzes the request in order to make a decision on its approval. Based on several
factors, including the availability of required resources, expected costs, and the
nature of the requested changes, the RFC will be either approved, canceled, or
the decision will be elevated to further analysis by a committee. In the latter
case, the RFC will return for a final decision to the planning & quality manager,
after an in-depth consideration by the committee.

Fig. 1. Process model for the request for change example (simplified)

Table 1 presents six exemplary PPIs related to the request for change process.
We will use the examples to illustrate that PPIs can have different measure types.
Based on the classification from [24], we distinguish four such types: time, count,
data, and derived measures. Time measures consider the duration between two
instants during the execution of process instances. For instance, PPI1 measures
the average time between the receipt of an RFC and its approval. The start and
end points of time measures can also relate to the same activity, as can be seen
for PPI3. PPI3, namely, measures the time between the start and end of the
“Analyze in committee” activity. A count PPI measures the number of times
something happens, for instance the number of times an RFC is registered in
the process. Data measures consider the attribute values of data objects. PPI5,
for example, sums the “cost” attribute of all approved RFCs. Lastly, we consider
derived measures, which involve mathematical functions over one or more other
measures. Because fraction measures represent the most common kind of derived
measures, we consider these as an explicit sub-class of derived measures. Fraction
measures divide the value of one measure by another, as seen for PPI6: it divides
the number of canceled RFCs by the number of registered RFCs.

1 The interested reader is referred to [24] for an extensive description of the process.
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Table 1. PPIs for the request for change example

ID Description Measure Model elements

PPI1 Average time between receipt and approval of an RFC Time RFC received,

Approve RFC

PPI2 Average lifetime of approved RFCs Time RFC received,

Approve RFC

PPI3 Average duration of a committee decision Time Analyze in committee

PPI4 Number of registered RFCs Count RFC [registered]

PPI5 Estimated costs of approved RFCs Data RFC [approved]

PPI6 % of rejected RFCs from all registered RFCs Fraction RFC [canceled],

RFC [registered]

The exemplary PPIs and their related model elements specified in Table 1
illustrate that the type of a PPI affects the kind and number of process elements
to be included in an alignment. For instance, though most measure types can
relate to activities, events, and data objects, data-based measures exclusively
relate to the latter. Furthermore, count and data-based measures, by definition,
relate to a single process model element, whereas a fraction requires at least one
element as a numerator and one as a denominator. Due to the differences that
exist among the various measure types, the first challenge is, therefore, to ensure
that generated alignments are well-defined, i.e. in accordance with the semantics
of a PPI’s measure type. To create an alignment, an automated approach must
furthermore deal with the inherently ambiguous nature of natural language. In
particular, a second challenge to overcome is the ability of natural language to
express the same semantic concepts through a variety of syntactic patterns [3].
PPI1 and PPI2, for instance, both refer to the time duration between the “RFC
received” event and the completion of the “Approve RFC” activity. However, the
two descriptions are clearly distinct. PPI2 just refers to “the lifetime of approved
RFCs”, whereas PPI1 explicitly specifies start and end points of the measure.
To overcome this challenge, an automated approach must be able to deal with
the flexible and informal language preferred by human users [15]. Third, an
alignment approach must handle differences between the terminology used to
define PPIs and those used for the process model. For instance, PPI6 refers
to “rejected RFCs”, whereas the process model describes these as “cancelled”.
Such differences are particularly relevant because PPIs and process model are
generally defined by different organizational stakeholders, with different perspec-
tives (i.e. managerial versus operational). The alignment approach presented in
Sect. 3 addresses these challenges in order to automatically generate alignments
between PPIs and process model elements.

3 Alignment Approach

Figure 2 presents an overview of the proposed alignment approach. The approach
takes a textual PPI description and a process model to which the PPI relates as
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input. Given this input, the approach generates an alignment in three steps. In
the type classification step, we determine the measure type of a PPI based on its
textual contents. In the PPI parsing step, we parse the textual PPI description
in order to extract a set of phrases that specifically relate to parts of the con-
sidered process. Both of these steps build on a decision tree classifier. For the
former step, this classifier provides the classification of a PPI’s measure type.
For the latter, we use a set of type indicators T , automatically learned during
the training of the decision tree, to support the parsing of a PPI’s description. In
the third and final step, we combine the results of the previous steps to generate
an alignment between the extracted phrases and elements of the process model.
In the following sections, we describe each step in detail.

Process model

Alignment Approach

Decision tree

Type 

PPI parsing

Alignment 
to process 

model

Type
indicators

Extracted
phrases

Measure
type Alignment

PPI description

Fig. 2. Outline of the approach

3.1 Type Classification

The measure type of a PPI affects the number and kind of process model ele-
ments that such a PPI can or should be aligned to. It is, therefore, important to
correctly determine the type of a given PPI. Without a correct type identifica-
tion, an approach can yield nonsensical alignments, such as a data-based measure
aligned to an activity, or a fraction without a denominator. To avoid such issues,
we infer the type of a PPI based on the terms in its textual description. We
achieve this by employing a decision tree classifier.

Classifiers are means to determine to which category of a pre-defined set a
previously unseen data point most likely belongs. In the context of our approach,
we specifically employ a decision tree classifier to determine if a PPI has a time,
count, data, derived, or fraction type of measure. A decision tree is a type of
classifier which models the classification process as a series of data-based choices,
represented as the nodes of a tree. The choice for a decision tree is driven by their
particular suitability to identify keywords that discriminate among the different
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measure types. For example, the occurrence of the term “percentage” in a PPI
description is a good indicator that this PPI describes a fractional measure. We
identify these discriminatory terms, which in the remainder we shall refer to as
type indicators, by training a decision tree on the bag-of-words representations
of previously categorized PPI descriptions. Figure 3 presents a fragment of a
decision tree obtained in this manner. At each node, the presence or absence of
a given term in the description is checked. Based on the outcome of this check, a
branch is chosen from several alternatives. The process continues alongside this
branch until a leaf node is reached. This node then represents the measure type
predicted for the PPI.

Fig. 3. Fragment of a decision tree

The purpose of the decision tree classifier is two-fold. First, we obtain a
classifier as a means to classify the measure type of PPI in order to improve the
quality of the alignments our approach generates. Second, we obtain a collection
of type indicators T , which are those terms that are used as nodes in the decision
tree to distinguish between different measure types. We use these indicators to
support the parsing of PPI descriptions, as described in Sect. 3.2.

3.2 PPI Parsing

In order to align a PPI to a process model’s elements, we extract the phrases
of a PPI description that relate to specific parts of a process. To achieve this,
we first split a PPI description into a number of phrases. Afterwards, we filter
out those phrases that relate to the computation of a PPI’s value rather than to
elements of the process itself. In this section, we will use PPI6, “% of rejected
RFCs from all registered RFCs” as a running example.

Phrase Extraction. We first divide a PPI description into constituent groups
of words or phrases. To achieve this, we make use of the Stanford Parser [8], a
widely employed natural language processing tool. The parser generates a parse
tree, which captures the syntactic structure of a text in a hierarchical manner.
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Figure 4 provides an example of this for PPI6. A parse tree contains different
types of phrases, e.g. prepositional phrases (denoted as PP), and noun phrases
(NP), in a hierarchical structure. For the purposes of our alignment approach,
we extract phrases that contain at most one (nested) noun phrase in its main
clause. These phrases have a level of granularity similar to the granularity most
commonly used in process models, where elements also generally contain a single
noun [16]. For instance, most activity labels have a single noun in the form
of a business object (e.g. an “RFC”) on which an action (e.g. “approve”) is
performed. We augment the extracted main clauses with dependent clauses, if
any, in order to capture information on resources that perform activities or on
execution conditions. The latter is, for example, important if the computation of
a PPI should only consider RFCs that have been rejected for a specific reason.
For PPI6, the extraction step results in the following set of phrases P : {“%”,
“rejected RFCs”, “from all registered RFCs”}.

Fig. 4. Simplified parse tree for of PPI6

Phrase Filtering. Next, we filter out those phrases in P that relate to the cal-
culation of a PPI’s value rather than to parts of the process. These, for example,
include the phrase “average lifetime” in PPI2 and “%” in PPI6. We identify
these phrases by considering the type indicators T obtained while training the
decision tree used in the previously described step. These indicators represents
keywords that exclusively relate to the computation of PPI values for a certain
measure type. Therefore, we identify a phrase that contains one or more of the
terms in T as a phrase that relates to the calculation of a PPI. We thereby recog-
nize that phrases such as “%” or “average time” do not relate to the process
itself and as such should be excluded from consideration when creating an align-
ment. This approach has the great advantage that we filter phrases based on the
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automatically learned set of indicators T , rather than depending on a manually
defined catalog of keywords. For PPI6, this leaves the filtered set of phrases PF

as the outcome of this step: {“rejected RFCs”, “from all registered RFCs”}.

3.3 Alignment to Process Model

In the final step of our approach, we generate an alignment between the extracted
phrases PF and the set of process model elements M . An alignment σ consists
of a number of pair-wise correspondences, each between a phrase p ∈ PF and a
process model element m ∈ M , denoted as p ∼ m. Our approach sets out to find
an optimal alignment σ̂ between PF and M , which we define as the alignment
which (i) has the highest semantic similarity for its correspondences, and (ii)
abides to constraints imposed based on the semantics of a PPI’s measure type.

Semantic Similarity. To quantify the semantic similarity between a phrase p
and a model element m, we compare the bag-of-words representations of p and
the textual label of m. To obtain this representation, we first apply a tokenization
function on the plain texts. This function splits a text into its individual terms,
filters out stop words like “the”, “if ’ ’, “from”, and lemmatizes the remaining
terms. This last step transforms all terms to their grammatical base form or
lemma, e.g. “is” and “been” are both transformed into “be”. We next compare
the resultant bags-of-words, ωm and ωp, using a semantic similarity measure.

The usage of specific terminology from business settings, commonly contained
in PPI descriptions and process models, poses an important challenge here. To
overcome this challenge, we make use of a similarity method called second order
similarity [7]. This method is based on the statistical analysis of co-occurrences
in large text collections. It therefore has the great advantage that it can deal
with context-specific terms, often not fully captured by other natural language
processing tools suchs as WordNet [18]. To compute the similarity score between
ωp and ωm, we make use of a metric introduced in [17], which combines second
order similarity scores and the inverse document frequency (idf) of terms. By
incorporating idf, the metric assigns higher scores to terms that have a high
discriminatory power in a given process context. For instance, in the context
of the request for change example, the rarely occurring term “registered” has a
much higher discriminatory power than the frequently occurring term “RFC”.

Alignment Constraints. To generate an alignment in line with the semantics
of PPIs, we impose constraints on the correspondences included in the alignment
through a constraint function Γ . Specifically, we use Γ to capture constraints on
three characteristics: (i) the classes of process model elements to be included in
σ, (ii) the number of correspondences or cardinality of σ, and (iii) the possible
overlap among correspondences in σ.

We instantiate the constraints for each type in accordance with their seman-
tics, as specified in [24]. Table 2 provides an overview of the specific constraints
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Table 2. Constraints imposed on alignments per measure type

Measure type Model elements Cardinality Overlap

Count Flow elements, data objects 1 n/a

Data Data objects 1 n/a

Time Flow elements, data objects 2 depends on |PF |
Derived Flow elements, data objects |PF | yes

Fraction Flow elements, data objects 2 no

imposed per measure type. The alignments generated for count and data mea-
sures are the least complex. Alignments of these types contain only a single
correspondence between a phrase and model element in σ. For data measures,
these elements can only include data objects, because these measures exclusively
relate to attribute values of data objects. All other measure types can also relate
to flow elements. These elements depict the steps executed in a process. For the
BPMN notation, the most common flow elements include activities and events.
The alignments for time and derived measures are more complex, because they
can include multiple correspondences.

Time measures require start and end points. These two points may refer to
the same model element, e.g. an activity, in order to describe a measure that
computes the duration between the start and end of an activity. This is for
instance seen for PPI3: “The average duration of a committee decision”. We
can identify these cases through the number of phrases extracted from the PPI
description, i.e. |PF |. If the description contains only a single phrase related to
the elements of a process, we expect that the start and end points of a time
measure refer to the same element. In those cases, we allow overlap between the
correspondences. Otherwise, we generate an alignment that contains distinct
correspondences for the start and end points.

Finally, derived measures allow for the widest variety in alignments, because
these measures can describe any function over other measures. To capture this,
we do not impose specific restrictions on the size of their alignments. Rather, we
align each extracted phrase p ∈ PF to its most similar process model element.
This allows the approach to generate a broad variety of alignments, in line with
the semantics of derived measures. For fraction measures, a specific sub-class of
derived measures, we do impose restrictions on the size of their alignments. A
fraction measure requires distinct process model elements to reflect its numerator
and denominator. Therefore, the cardinality of these measures always equals 2.

To obtain the optimal alignment σ̂ for a PPI, we construct the alignment
that has the maximum sum of similarity scores for its correspondences, while
it still abides to the alignment constraints imposed by Γ . This alignment then
represents the final outcome of our approach.
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4 Evaluation

To demonstrate the strength of our alignment approach, we conduct a quanti-
tative evaluation that compares the generated alignments to a manually created
gold standard. The goal of the evaluation is to learn how well the automated app-
roach approximates manual alignments. Section 4.1 introduces the data set used
for the evaluation. Section 4.2 describes the details of the evaluation approach.
Finally, we present and discuss the results in Sect. 4.3.

4.1 Test Collection

To evaluate our approach, we use a collection of process models and accompany-
ing natural language PPI descriptions from practice. To allow for a high external
validity of the evaluation results, the data in the test collection has been obtained
from various sources. Part of the test collection consists of an industrial data set
stemming from prior research on the formalization of PPI definitions and ser-
vice level agreements [23,24]. The request for change example, used throughout
this paper, provides a fragment of one of the models included in this collec-
tion. The test collection furthermore includes a number of process models and
PPIs from the SCOR (Supply Chain Operations Reference) and ITIL (Infor-
mation Infrastructure Technology Library) reference frameworks. From these
frameworks we selected processes from various application contexts and with a
high number of associated performance indicators. The resulting test collection
consists of 15 different process models and a total of 173 PPIs. The PPIs in the
collection comprise 65 count, 28 data, 47 time, and 33 derived measures. Table 3
presents an overview of the characteristics of the collection per source, includ-
ing the average number of elements per process model, and the total number of
correspondences between the PPIs and model elements.

Table 3. Overview of the test collection

ID Source Process models Elements/model PPIs Correspondences

1 Industry 9 11.2 47 65

2 SCOR 3 8.3 86 138

3 ITIL 3 13.7 40 48

Total 15 11.1 173 251

Aside from the broad variety of domains it covers, the heterogeneity of the
test collection mainly manifests itself in terms of granularity. The SCOR and
ITIL process models represent reference models that are intended as templates
for implementations in organizations. The models from the reference collection
are more abstract and, thus, provide less fine-granular process descriptions.
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4.2 Setup

To conduct the evaluation, we implemented the alignment approach in the form
of a prototype. The Java prototype uses the Stanford Parser [8] to assist in
the PPI parsing, the semantic similarity implementation DISCO [10], and the
WEKA toolkit for classification [6]. Specifically, we apply the C4.5 algorithm [21]
to generate a decision tree, one of the most commonly used implementations for
decision tree learning. We train the decision tree on a collection of 300 PPIs from
the SCOR and ITIL frameworks, for which we manually defined the measure
types. To avoid any bias, the PPIs in this training collection are distinct from
those used in the test collection. Furthermore, because the training collection is
obtained from different processes and does not include PPIs from the industrial
sources, the PPIs in the training and test sets differ considerably in terms of
their domain, terminology, and structure.

We use our prototype to automatically generate alignments for the PPIs in
the test collection. To assess the quality of the generated alignments, we compare
them to a manually created gold standard. We involved three researchers in the
creation of the gold standard for the industrial and ITIL collections. Two of
them independently created the alignments. The differences were discussed in
detail, involving a third researcher to settle ties. For the SCOR framework,
we directly obtained the gold standard from the relations that the framework
itself specifies between performance indicators and activities. To perform the
comparison between the correspondences contained in the generated alignments
A and those contained in the gold standard R, we computed precision and recall
metrics as given by Eqs. (1) and (2).

pre(A,M) =
|A ∩ R|

|A| (1) rec(A,M) =
|A ∩ R|

|R| (2)

Precision here reflects the number of correct generated correspondences, i.e.
the correspondences from A that are also included in the gold standard R,
divided by the total number of generated correspondences. Recall is the fraction
of correspondences in the gold standard that are correctly identified by our
approach, i.e. included in the generated alignments. We furthermore report the
f1-score as the harmonic mean of precision and recall.

As we are the first to present an automated approach for the alignment of
PPIs to process models, there is no commonly accepted benchmark available. To
demonstrate the performance of our approach, we therefore compare its results
to a baseline configuration. For this baseline, we align each PPI to the process
model element with the highest semantic similarity to the entire PPI description.
Through this comparison, we are able to illustrate the added value of classifying
and parsing the PPI descriptions instead of this straightforward, rough approach.
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4.3 Results

Table 4 summarizes the evaluation results. It shows that the baseline configura-
tion achieves a considerable precision for the total collection (0.75), but lacks
in recall (0.51). This high precision can be attributed to the use of semantic
similarity measures specifically suited to deal with specific terminology used in
business settings. The lack of recall follows from the low number of correspon-
dences the baseline configuration generates (173). The full approach avoids this
problem by classifying the measure types of the PPIs. Through this classifica-
tion, the approach much better approximates the number of correspondences
to be included in the alignments. It generates 255 correspondences versus 251
included in the gold standard. The slightly higher precision achieved by the full
approach (0.76) is remarkable, because it generates a significantly higher number
of correspondences than the baseline. This achievement can be attributed to the
extraction and filtering of phrases in the PPI parsing step. Because the parsing
step removes extraneous information from consideration, the generated similar-
ity scores are more accurate. The full approach therefore manages to maintain
a high predictive precision. The increased number of correspondences, together
with the stable precision, results in considerable improvements in recall (0.75
versus 0.51) and F1 (0.76 versus 0.60).

Table 4. Evaluation results

Configuration Source |A| Precision Recall F1-score

Baseline Industrial 47 0.79 0.52 0.63

SCOR 86 0.74 0.46 0.57

ITIL 40 0.73 0.60 0.66

Total 173 0.75 0.51 0.60

Full approach Industrial 70 0.73 0.72 0.72

SCOR 139 0.77 0.78 0.77

ITIL 40 0.78 0.75 0.77

Total 255 0.76 0.75 0.76

The evaluation results suggest that the classification of measure types and the
tailored technique for parsing PPI descriptions greatly improve the quality of the
generated alignments. A post-hoc analysis of the results reveals that alignments
which depend on context-specific information present the most important chal-
lenge to the automated approach. This challenge manifests itself in the form of
PPI descriptions that refer to process concepts that are only related in a specific
context. For instance, the ITIL process on Service Design contains the “Aver-
age duration of service interruptions” PPI. This PPI relates to an “availability
monitoring and reporting” activity in the accompanying process model. To iden-
tify the correct correspondence, it must be recognized that service interruptions
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affect the availability of services. Still, due to the usage of semantic similarity
measures, our approach successfully identifies the vast majority of such cases, in
which PPIs and process models do not refer to the same concepts.

5 Related Work

The work presented in this paper mainly relates to two research streams. One is
focused on the problem domain and includes different models to define the rela-
tionships between PPIs and process models. The other is focused on the solution
domain and includes techniques that have been developed to automatically align
process information between different artifacts.

Concerning the former, there are a number of frameworks for modeling PPIs
and their relationship with business processes. For instance, Popova et al. [20]
present a framework for modeling PPIs within a general organization modeling
framework. The framework provides an explicit mechanism to link PPIs with
process models. Momm et al. [19] introduce an approach, based on the principles
of Model-Driven Architecture, for the development of infrastructure necessary
to instrument the monitoring of a set of PPIs in a Service-Oriented Architec-
ture. Wetzstein et al. [26] introduce a Key Performance Indicators (KPIs) ontol-
ogy to specify KPIs over semantic business processes as part of a framework
for Business Activity Monitoring. Finally, PPINOT [24] presents a metamodel
to define PPIs with a high degree of expressiveness and an explicit link with
process model elements. Although these frameworks provide mechanisms to link
PPIs with process models, it was found that in practice, managers often start
out to describe relevant PPIs in an unstructured and ad-hoc manner [24,26].
Our approach is, therefore, complementary to these frameworks. Based on these
existing, unstructured PPI definitions, the approach can generate the links that
are necessary to define PPIs in accordance with the structured notations of the
frameworks.

To the best of our knowledge, there are no earlier methods that generate
alignments in this context. By contrast, numerous approaches, referred to as
process model matchers, exist that create alignments between different process
models, e.g. [4,9,13]. To create alignments these matchers exploit different
process model features, including natural language [9], model structure [4], and
behavior [13]. Process model matchers face challenges similar to our approach
in the form of different levels of detail and the usage of different terminology [1].
Contrary to the unstructured natural language descriptions used as input in
this work, these matchers work with explicitly structured input. An exception
to this is an earlier proposed approach, which aligns textual process descriptions
to process models for the purpose of inconsistency detection [2]. However, the
nature of the input considerably differs from the PPI descriptions used in the
presented work. This results in distinct parsing and alignment challenges.
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6 Conclusions

In this paper, we presented an approach to automatically align natural language
descriptions of PPIs to process models. To achieve this, our approach combines
machine learning and tailored natural language processing techniques to deal
with the variability of natural language and the different measures types of
PPIs. A quantitative evaluation, conducted using a test collection obtained from
various industrial sources, demonstrated that the approach generates alignments
of a high quality. These generated alignments show a high level of similarity to
manually created ones. The approach thus accurately identifies relations between
textually described PPIs and process models in practical settings. As such, it
successfully supports the operationalization of process performance monitoring.
Despite the promising results, we need to reflect on some limitations. First,
the dataset we employed is not representative in a statistical sense. However,
the obtained result quality is stable among the processes from different sources,
which illustrates the approach’s ability to deal with heterogeneous data. Second,
the approach does not generate perfect alignments in all cases, especially not
when the link between PPI and process model depends on a considerable amount
of contextual knowledge. The approach, therefore, remains a means to support
users. It does have the potential to greatly reduce the effort required to identify
correct correspondences for a process collection.

In future work, we set out to further develop the alignment approach. A
promising direction is to develop extraction techniques tailored to the different
PPI measure types in order to further improve the results. Second, the approach
can be extended by also parsing the information in a description that relates
to the calculation of a PPI’s value. As such, the generated alignments can be
extended into fully formalized PPI definitions.
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of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

5. Gal, A.: Uncertain schema matching. Synth. Lect. Data Manag. 3(1), 1–97 (2011)
6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: an update. ACM SIGKDD 11(1), 10–18 (2009)
7. Islam, A., Inkpen, D.: Second order co-occurrence pmi for determining the semantic

similarity of words. In: Proceedings of the International Conference on Language
Resources and Evaluation, Genoa, Italy, pp. 1033–1038 (2006)



Narrowing the Business-IT Gap in Process Performance Measurement 557

8. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting of the ACL, vol. 1, pp. 423–430. ACL (2003)

9. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall
of process model matching by improved activity label matching. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer,
Heidelberg (2013)

10. Kolb, P.: Disco: a multilingual database of distributionally similar words. In: Pro-
ceedings of KONVENS-2008, Berlin (2008)

11. Kovacic, A.: Business renovation: business rules (still) the missing link. Bus.
Process Manag. J. 10(2), 158–170 (2004)

12. Kronz, A.: Managing of process key performance indicators as part of the aris
methodology. In: Scheer, A.W., Jost, W., Heß, H., Kronz, A. (eds.) Corporate
Performance Management, pp. 31–44. Springer, Heidelberg (2006)

13. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

14. Luftman, J., Papp, R., Brier, T.: Enablers and inhibitors of business-it alignment.
Commun. AIS 1(3es), 1–32 (1999)

15. Marshall, B., Chen, H., Madhusudan, T.: Matching knowledge elements in concept
maps using a similarity flooding algorithm. Decis. Support Syst. 42(3), 1290–1306
(2006)

16. Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling:
empirical insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)

17. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based mea-
sures of text semantic similarity. In: AAAI, vol. 6, p. 775–780 (2006)

18. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

19. Momm, C., Malec, R., Abeck, S.: Towards a model-driven development of moni-
tored processes. Wirtschaftsinformatik 2, 319–336 (2007)

20. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators.
Inf. Syst. 35(4), 505–527 (2010)

21. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
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